1
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
2
|
Xu H, Xu D, Liu Y. Molecular Biology Applications of Psychrophilic Enzymes: Adaptations, Advantages, Expression, and Prospective. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04810-5. [PMID: 38183603 DOI: 10.1007/s12010-023-04810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/08/2024]
Abstract
Psychrophilic enzymes are primarily produced by microorganisms from extremely low-temperature environments which are known as psychrophiles. Their high efficiency at low temperatures and easy heat inactivation property have attracted extensive attention from various food and industrial bioprocesses. However, the application of these enzymes in molecular biology is still limited. In a previous review, the applications of psychrophilic enzymes in industries such as the detergent additives, the food additives, the bioremediation, and the pharmaceutical medicine, and cosmetics have been discussed. In this review, we discuss the main cold adaptation characteristics of psychrophiles and psychrophilic enzymes, as well as the relevant information on different psychrophilic enzymes in molecular biology. We summarize the mining and screening methods of psychrophilic enzymes. We finally recap the expression of psychrophilic enzymes. We aim to provide a reference process for the exploration and expression of new generation of psychrophilic enzymes.
Collapse
Affiliation(s)
- Hu Xu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dawei Xu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yongqin Liu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Ohta A, Tanada M, Shinohara S, Morita Y, Nakano K, Yamagishi Y, Takano R, Kariyuki S, Iida T, Matsuo A, Ozeki K, Emura T, Sakurai Y, Takano K, Higashida A, Kojima M, Muraoka T, Takeyama R, Kato T, Kimura K, Ogawa K, Ohara K, Tanaka S, Kikuchi Y, Hisada N, Hayashi R, Nishimura Y, Nomura K, Tachibana T, Irie M, Kawada H, Torizawa T, Murao N, Kotake T, Tanaka M, Ishikawa S, Miyake T, Tamiya M, Arai M, Chiyoda A, Akai S, Sase H, Kuramoto S, Ito T, Shiraishi T, Kojima T, Iikura H. Validation of a New Methodology to Create Oral Drugs beyond the Rule of 5 for Intracellular Tough Targets. J Am Chem Soc 2023; 145:24035-24051. [PMID: 37874670 DOI: 10.1021/jacs.3c07145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Establishing a technological platform for creating clinical compounds inhibiting intracellular protein-protein interactions (PPIs) can open the door to many valuable drugs. Although small molecules and antibodies are mainstream modalities, they are not suitable for a target protein that lacks a deep cavity for a small molecule to bind or a protein found in intracellular space out of an antibody's reach. One possible approach to access these targets is to utilize so-called middle-size cyclic peptides (defined here as those with a molecular weight of 1000-2000 g/mol). In this study, we validated a new methodology to create oral drugs beyond the rule of 5 for intracellular tough targets by elucidating structural features and physicochemical properties for drug-like cyclic peptides and developing library technologies to afford highly N-alkylated cyclic peptide hits. We discovered a KRAS inhibitory clinical compound (LUNA18) as the first example of our platform technology.
Collapse
Affiliation(s)
- Atsushi Ohta
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Mikimasa Tanada
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Shojiro Shinohara
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Yuya Morita
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Kazuhiko Nakano
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Yusuke Yamagishi
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Ryusuke Takano
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Shiori Kariyuki
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Takeo Iida
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Atsushi Matsuo
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Kazuhisa Ozeki
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Takashi Emura
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Yuuji Sakurai
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Koji Takano
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Atsuko Higashida
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Miki Kojima
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Terushige Muraoka
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Ryuuichi Takeyama
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Tatsuya Kato
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Kaori Kimura
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Kotaro Ogawa
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Kazuhiro Ohara
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Shota Tanaka
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Yasufumi Kikuchi
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Nozomi Hisada
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Ryuji Hayashi
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Yoshikazu Nishimura
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Kenichi Nomura
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Tatsuhiko Tachibana
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Machiko Irie
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Hatsuo Kawada
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Takuya Torizawa
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Naoaki Murao
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Tomoya Kotake
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Masahiko Tanaka
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Shiho Ishikawa
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Taiji Miyake
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Minoru Tamiya
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Masako Arai
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Aya Chiyoda
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Sho Akai
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Hitoshi Sase
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Shino Kuramoto
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Toshiya Ito
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Takuya Shiraishi
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Tetsuo Kojima
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| | - Hitoshi Iikura
- Research Division, Chugai Pharmaceutical Co., Ltd., 216, Totsuka-cho,Totsuka-ku, Yokohama 244-8602, Kanagawa, Japan
| |
Collapse
|
4
|
Fu X, Shang Y, Chen S, Dedkova LM, Hecht SM. Activation of d-Asparagine and d-Glutamine Derivatives Using the Mitsunobu Reaction. Org Lett 2023. [PMID: 36800493 DOI: 10.1021/acs.orglett.3c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Seven d-amino acid derivatives having reactive side chains have been activated to afford their respective 3,5-dinitrobenzyl esters using the Mitsunobu reaction. This esterification was found to be difficult using traditional methods involving 3,5-dinitrobenzyl chloride under alkaline conditions. The conversion of a tRNA to the respective d-glutaminyl-tRNA using d-glutamine 3,5-dinitrobenzyl ester was catalyzed by a flexizyme, followed by purification to remove all the unacylated tRNAs and other byproducts. Both d- and l-glutamine were incorporated from their aminoacyl-tRNAs into a model peptide structurally related to IFN-β.
Collapse
Affiliation(s)
- Xuan Fu
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuqin Shang
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for Bioenergetics, Arizona State University, Tempe, Arizona 85287, United States.,School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
5
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
6
|
Thommen M, Draycheva A, Rodnina MV. Ribosome selectivity and nascent chain context in modulating the incorporation of fluorescent non-canonical amino acid into proteins. Sci Rep 2022; 12:12848. [PMID: 35896582 PMCID: PMC9329280 DOI: 10.1038/s41598-022-16932-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Fluorescence reporter groups are important tools to study the structure and dynamics of proteins. Genetic code reprogramming allows for cotranslational incorporation of non-canonical amino acids at any desired position. However, cotranslational incorporation of bulky fluorescence reporter groups is technically challenging and usually inefficient. Here we analyze the bottlenecks for the cotranslational incorporation of NBD-, BodipyFL- and Atto520-labeled Cys-tRNACys into a model protein using a reconstituted in-vitro translation system. We show that the modified Cys-tRNACys can be rejected during decoding due to the reduced ribosome selectivity for the modified aa-tRNA and the competition with native near-cognate aminoacyl-tRNAs. Accommodation of the modified Cys-tRNACys in the A site of the ribosome is also impaired, but can be rescued by one or several Gly residues at the positions −1 to −4 upstream of the incorporation site. The incorporation yield depends on the steric properties of the downstream residue and decreases with the distance from the protein N-terminus to the incorporation site. In addition to the full-length translation product, we find protein fragments corresponding to the truncated N-terminal peptide and the C-terminal fragment starting with a fluorescence-labeled Cys arising from a StopGo-like event due to a defect in peptide bond formation. The results are important for understanding the reasons for inefficient cotranslational protein labeling with bulky reporter groups and for designing new approaches to improve the yield of fluorescence-labeled protein.
Collapse
Affiliation(s)
- Michael Thommen
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
7
|
Wu WH, Guo J, Zhang L, Zhang WB, Gao W. Peptide/protein-based macrocycles: from biological synthesis to biomedical applications. RSC Chem Biol 2022; 3:815-829. [PMID: 35866174 PMCID: PMC9257627 DOI: 10.1039/d1cb00246e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Living organisms have evolved cyclic or multicyclic peptides and proteins with enhanced stability and high bioactivity superior to their linear counterparts for diverse purposes. Herein, we review recent progress in applying this concept to artificial peptides and proteins to exploit the functional benefits of these macrocycles. Not only have simple cyclic forms been prepared, numerous macrocycle variants, such as knots and links, have also been developed. The chemical tools and synthetic strategies are summarized for the biological synthesis of these macrocycles, demonstrating it as a powerful alternative to chemical synthesis. Its further application to therapeutic peptides/proteins has led to biomedicines with profoundly improved pharmaceutical performances. Finally, we present our perspectives on the field and its future developments.
Collapse
Affiliation(s)
- Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianwen Guo
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Longshuai Zhang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department, Peking University Beijing 100191 P. R. China
| |
Collapse
|
8
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
9
|
Kimoto M, Hirao I. Genetic Code Engineering by Natural and Unnatural Base Pair Systems for the Site-Specific Incorporation of Non-Standard Amino Acids Into Proteins. Front Mol Biosci 2022; 9:851646. [PMID: 35685243 PMCID: PMC9171071 DOI: 10.3389/fmolb.2022.851646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 12/21/2022] Open
Abstract
Amino acid sequences of proteins are encoded in nucleic acids composed of four letters, A, G, C, and T(U). However, this four-letter alphabet coding system limits further functionalities of proteins by the twenty letters of amino acids. If we expand the genetic code or develop alternative codes, we could create novel biological systems and biotechnologies by the site-specific incorporation of non-standard amino acids (or unnatural amino acids, unAAs) into proteins. To this end, new codons and their complementary anticodons are required for unAAs. In this review, we introduce the current status of methods to incorporate new amino acids into proteins by in vitro and in vivo translation systems, by focusing on the creation of new codon-anticodon interactions, including unnatural base pair systems for genetic alphabet expansion.
Collapse
Affiliation(s)
| | - Ichiro Hirao
- *Correspondence: Michiko Kimoto, ; Ichiro Hirao,
| |
Collapse
|
10
|
Hecht SM. Expansion of the Genetic Code Through the Use of Modified Bacterial Ribosomes. J Mol Biol 2022; 434:167211. [PMID: 34419431 PMCID: PMC9990327 DOI: 10.1016/j.jmb.2021.167211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Biological protein synthesis is mediated by the ribosome, and employs ~20 proteinogenic amino acids as building blocks. Through the use of misacylated tRNAs, presently accessible by any of several strategies, it is now possible to employ in vitro and in vivo protein biosynthesis to elaborate proteins containing a much larger variety of amino acid building blocks. However, the incorporation of this broader variety of amino acids is limited to those species utilized by the ribosome. As a consequence, virtually all of the substrates utilized over time have been L-α-amino acids. In recent years, a variety of structural and biochemical studies have provided important insights into those regions of the 23S ribosomal RNA that are involved in peptide bond formation. Subsequent experiments, involving the randomization of key regions of 23S rRNA required for peptide bond formation, have afforded libraries of E. coli harboring plasmids with the rrnB gene modified in the key regions. Selections based on the use of modified puromycin derivatives with altered amino acids then identified clones uniquely sensitive to individual puromycin derivatives. These clones often recognized misacylated tRNAs containing altered amino acids similar to those in the modified puromycins, and incorporated the amino acid analogues into proteins. In this fashion, it has been possible to realize the synthesis of proteins containing D-amino acids, β-amino acids, phosphorylated amino acids, as well as long chain and cyclic amino acids in which the nucleophilic amino group is not in the α-position. Of special interest have been dipeptides and dipeptidomimetics of diverse utility.
Collapse
Affiliation(s)
- Sidney M Hecht
- Center for BioEnergetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
11
|
Tamura T, Inoue M, Yoshimitsu Y, Hashimoto I, Ohashi N, Tsumura K, Suzuki K, Watanabe T, Hohsaka T. Chemical Synthesis and Cell-Free Expression of Thiazoline Ring-Bridged Cyclic Peptides and Their Properties on Biomembrane Permeability. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Takashi Tamura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Masaaki Inoue
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Yuji Yoshimitsu
- Synthetic Organic Chemistry Laboratories, FUJIFILM Corporation, 577 Ushijima, Kaisei-machi, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Ichihiko Hashimoto
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Noriyuki Ohashi
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Kyosuke Tsumura
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Koo Suzuki
- Analysis Technology Center, FUJIFILM Corporation, 210 Nakanuma, Minamiashigara, Kanagawa 258-0123, Japan
| | - Takayoshi Watanabe
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| | - Takahiro Hohsaka
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1211, Japan
| |
Collapse
|
12
|
Guo J, Niu W. Genetic Code Expansion Through Quadruplet Codon Decoding. J Mol Biol 2021; 434:167346. [PMID: 34762896 PMCID: PMC9018476 DOI: 10.1016/j.jmb.2021.167346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 12/31/2022]
Abstract
Noncanonical amino acid mutagenesis has emerged as a powerful tool for the study of protein structure and function. While triplet nonsense codons, especially the amber codon, have been widely employed, quadruplet codons have attracted attention for the potential of creating additional blank codons for noncanonical amino acids mutagenesis. In this review, we discuss methodologies and applications of quadruplet codon decoding in genetic code expansion both in vitro and in vivo.
Collapse
Affiliation(s)
- Jiantao Guo
- Department of Chemistry, University of Nebraska-Lincoln, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States.
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, United States; The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States
| |
Collapse
|
13
|
Kamalinia G, Grindel BJ, Takahashi TT, Millward SW, Roberts RW. Directing evolution of novel ligands by mRNA display. Chem Soc Rev 2021; 50:9055-9103. [PMID: 34165126 PMCID: PMC8725378 DOI: 10.1039/d1cs00160d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA display is a powerful biological display platform for the directed evolution of proteins and peptides. mRNA display libraries covalently link the displayed peptide or protein (phenotype) with the encoding genetic information (genotype) through the biochemical activity of the small molecule puromycin. Selection for peptide/protein function is followed by amplification of the linked genetic material and generation of a library enriched in functional sequences. Iterative selection cycles are then performed until the desired level of function is achieved, at which time the identity of candidate peptides can be obtained by sequencing the genetic material. The purpose of this review is to discuss the development of mRNA display technology since its inception in 1997 and to comprehensively review its use in the selection of novel peptides and proteins. We begin with an overview of the biochemical mechanism of mRNA display and its variants with a particular focus on its advantages and disadvantages relative to other biological display technologies. We then discuss the importance of scaffold choice in mRNA display selections and review the results of selection experiments with biological (e.g., fibronectin) and linear peptide library architectures. We then explore recent progress in the development of "drug-like" peptides by mRNA display through the post-translational covalent macrocyclization and incorporation of non-proteogenic functionalities. We conclude with an examination of enabling technologies that increase the speed of selection experiments, enhance the information obtained in post-selection sequence analysis, and facilitate high-throughput characterization of lead compounds. We hope to provide the reader with a comprehensive view of current state and future trajectory of mRNA display and its broad utility as a peptide and protein design tool.
Collapse
Affiliation(s)
- Golnaz Kamalinia
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
14
|
Abstract
![]()
Since the establishment
of site-specific mutagenesis of single
amino acids to interrogate protein function in the 1970s, biochemists
have sought to tailor protein structure in the native cell environment.
Fine-tuning the chemical properties of proteins is an indispensable
way to address fundamental mechanistic questions. Unnatural amino
acids (UAAs) offer the possibility to expand beyond the 20 naturally
occurring amino acids in most species and install new and useful chemical
functions. Here, we review the literature about advances in UAA incorporation
technology from chemoenzymatic aminoacylation of modified tRNAs to in vitro translation systems to genetic encoding of UAAs
in the native cell environment and whole organisms. We discuss innovative
applications of the UAA technology to challenges in bioengineering
and medicine.
Collapse
Affiliation(s)
- Mia A Shandell
- York Structural Biology Laboratory, University of York, Heslington, York YO10 5DD, U.K
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Virginia W Cornish
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Department of Systems Biology, Columbia University, New York, New York 10027, United States
| |
Collapse
|
15
|
Zhang C, Talukder P, Dedkova LM, Hecht SM. Facilitated synthesis of proteins containing modified dipeptides. Bioorg Med Chem 2021; 41:116210. [PMID: 34022527 DOI: 10.1016/j.bmc.2021.116210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
The elaboration of peptides and proteins containing non-proteinogenic amino acids has been realized using several complementary strategies, including chemical synthesis, ribosome- or non-ribosome-mediated elaboration, intein-mediated polypeptide rearrangements, or some combination of these strategies. All of these have strengths and limitations, and significant efforts have been focused on minimizing the effects of limitations, to improve the overall utility of individual strategies. Our laboratory has studied ribosomally mediated peptide and protein synthesis involving a wide variety of non-proteinogenic amino acids, and in recent years we have described a novel strategy for the selection of modified bacterial ribosomes. These modified ribosomes have enabled the incorporation into peptides and proteins of numerous modified amino acids not accessible using wild-type ribosomes. This has included d-amino acids, β-amino acids, dipeptides and dipeptidomimetic species, as well as phosphorylated amino acids. Presently, we have considered novel strategies for incorporating non-proteinogenic amino acids in improved yields. This has included the incorporation of non-proteinogenic amino acids into contiguous positions, a transformation known to be challenging. We demonstrate the preparation of this type of protein modification by utilizing a suppressor tRNACUA activated with a dipeptide consisting of two identical non-proteinogenic amino acids, in the presence of modified ribosomes selected to recognize such dipeptides. Also, we demonstrate that the use of bis-aminoacylated suppressor tRNAs, shown previously to increase protein yields significantly in vitro, can be extended to the use of non-proteinogenic amino acids.
Collapse
Affiliation(s)
- Chao Zhang
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Poulami Talukder
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
16
|
Discovery of De Novo Macrocyclic Peptides by Messenger RNA Display. Trends Pharmacol Sci 2021; 42:385-397. [PMID: 33771353 DOI: 10.1016/j.tips.2021.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Macrocyclic peptides are a promising class of compounds that can often engage challenging therapeutic targets. Display technologies, such as mRNA display, allow for the efficient discovery of macrocyclic peptides. This article reviews the current approaches for generating macrocyclic peptide libraries using mRNA display and highlights some recent examples of ribosomal incorporation of nonproteinogenic amino acids into macrocyclic peptides.
Collapse
|
17
|
Canu N, Moutiez M, Belin P, Gondry M. Cyclodipeptide synthases: a promising biotechnological tool for the synthesis of diverse 2,5-diketopiperazines. Nat Prod Rep 2021; 37:312-321. [PMID: 31435633 DOI: 10.1039/c9np00036d] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to mid-2019 Cyclodipeptide synthases (CDPSs) catalyse the formation of cyclodipeptides using aminoacylated-tRNA as substrates. The recent characterization of large sets of CDPSs has revealed that they can produce highly diverse products, and therefore have great potential for use in the production of different 2,5-diketopiperazines (2,5-DKPs). Sequence similarity networks (SSNs) are presented as a new, efficient way of classifying CDPSs by specificity and identifying new CDPS likely to display novel specificities. Several strategies for further increasing the diversity accessible with these enzymes are discussed here, including the incorporation of non-canonical amino acids by CDPSs and use of the remarkable diversity of 2,5-DKP-tailoring enzymes discovered in recent years.
Collapse
Affiliation(s)
- Nicolas Canu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
18
|
Canu N, Tellier C, Babin M, Thai R, Ajel I, Seguin J, Cinquin O, Vinck R, Moutiez M, Belin P, Cintrat JC, Gondry M. Flexizyme-aminoacylated shortened tRNAs demonstrate that only the aminoacylated acceptor arms of the two tRNA substrates are required for cyclodipeptide synthase activity. Nucleic Acids Res 2021; 48:11615-11625. [PMID: 33095883 PMCID: PMC7672478 DOI: 10.1093/nar/gkaa903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 01/15/2023] Open
Abstract
Cyclodipeptide synthases (CDPSs) use two aminoacyl-tRNAs (AA-tRNAs) to catalyse cyclodipeptide formation in a ping-pong mechanism. Despite intense studies of these enzymes in past years, the tRNA regions of the two substrates required for CDPS activity are poorly documented, mainly because of two limitations. First, previously studied CDPSs use two identical AA-tRNAs to produce homocyclodipeptides, thus preventing the discriminative study of the binding of the two substrates. Second, the range of tRNA analogues that can be aminoacylated by aminoacyl-tRNA synthetases is limited. To overcome the limitations, we studied a new model CDPS that uses two different AA-tRNAs to produce an heterocyclodipeptide. We also developed a production pipeline for the production of purified shortened AA-tRNA analogues (AA-minitRNAs). This method combines the use of flexizymes to aminoacylate a diversity of minitRNAs and their subsequent purifications by anion-exchange chromatography. Finally, we were able to show that aminoacylated molecules mimicking the entire acceptor arms of tRNAs were as effective a substrate as entire AA-tRNAs, thereby demonstrating that the acceptor arms of the two substrates are the only parts of the tRNAs required for CDPS activity. The method developed in this study should greatly facilitate future investigations of the specificity of CDPSs and of other AA-tRNAs-utilizing enzymes.
Collapse
Affiliation(s)
- Nicolas Canu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Carine Tellier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Morgan Babin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Robert Thai
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Inès Ajel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Jérôme Seguin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Olivier Cinquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France.,Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Robin Vinck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191, Gif-sur-Yvette, France.,Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Mireille Moutiez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Pascal Belin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| | - Jean-Christophe Cintrat
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France
| | - Muriel Gondry
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
19
|
Abstract
Preventing the escape of hazardous genes from genetically modified organisms (GMOs) into the environment is one of the most important issues in biotechnology research. Various strategies were developed to create "genetic firewalls" that prevent the leakage of GMOs; however, they were not specially designed to prevent the escape of genes. To address this issue, we developed amino acid (AA)-swapped genetic codes orthogonal to the standard genetic code, namely SL (Ser and Leu were swapped) and SLA genetic codes (Ser, Leu, and Ala were swapped). From mRNAs encoded by the AA-swapped genetic codes, functional proteins were only synthesized in translation systems featuring the corresponding genetic codes. These results clearly demonstrated the orthogonality of the AA-swapped genetic codes against the standard genetic code and their potential to function as "genetic firewalls for genes". Furthermore, we propose "a codon-bypass strategy" to develop a GMO with an AA-swapped genetic code.
Collapse
Affiliation(s)
- Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Masahiro Tozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8603, Japan
| |
Collapse
|
20
|
Wu Y, Wang Z, Qiao X, Li J, Shu X, Qi H. Emerging Methods for Efficient and Extensive Incorporation of Non-canonical Amino Acids Using Cell-Free Systems. Front Bioeng Biotechnol 2020; 8:863. [PMID: 32793583 PMCID: PMC7387428 DOI: 10.3389/fbioe.2020.00863] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cell-free protein synthesis (CFPS) has emerged as a novel protein expression platform. Especially the incorporation of non-canonical amino acids (ncAAs) has led to the development of numerous flexible methods for efficient and extensive expression of artificial proteins. Approaches were developed to eliminate the endogenous competition for ncAAs and engineer translation factors, which significantly enhanced the incorporation efficiency. Furthermore, in vitro aminoacylation methods can be conveniently combined with cell-free systems, extensively expanding the available ncAAs with novel and unique moieties. In this review, we summarize the recent progresses on the efficient and extensive incorporation of ncAAs by different strategies based on the elimination of competition by endogenous factors, translation factors engineering and extensive incorporation of novel ncAAs coupled with in vitro aminoacylation methods in CFPS. We also aim to offer new ideas to researchers working on ncAA incorporation techniques in CFPS and applications in various emerging fields.
Collapse
Affiliation(s)
- Yang Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Zhaoguan Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xin Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jiaojiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Xiangrong Shu
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Hao Qi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
21
|
Müller D, Trucks S, Schwalbe H, Hengesbach M. Genetic Code Expansion Facilitates Position-Selective Modification of Nucleic Acids and Proteins. Chempluschem 2020; 85:1233-1243. [PMID: 32515171 DOI: 10.1002/cplu.202000150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Transcription and translation obey to the genetic code of four nucleobases and 21 amino acids evolved over billions of years. Both these processes have been engineered to facilitate the use of non-natural building blocks in both nucleic acids and proteins, enabling researchers with a decent toolbox for structural and functional analyses. Here, we review the most common approaches for how labeling of both nucleic acids as well as proteins in a site-selective fashion with either modifiable building blocks or spectroscopic probes can be facilitated by genetic code expansion. We emphasize methodological approaches and how these can be adapted for specific modifications, both during as well as after biomolecule synthesis. These modifications can facilitate, for example, a number of different spectroscopic analysis techniques and can under specific circumstances even be used in combination.
Collapse
Affiliation(s)
- Diana Müller
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Tharp JM, Krahn N, Varshney U, Söll D. Hijacking Translation Initiation for Synthetic Biology. Chembiochem 2020; 21:1387-1396. [PMID: 32023356 PMCID: PMC7237318 DOI: 10.1002/cbic.202000017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Genetic code expansion (GCE) has revolutionized the field of protein chemistry. Over the past several decades more than 150 different noncanonical amino acids (ncAAs) have been co-translationally installed into proteins within various host organisms. The vast majority of these ncAAs have been incorporated between the start and stop codons within an open reading frame. This requires that the ncAA be able to form a peptide bond at the α-amine, limiting the types of molecules that can be genetically encoded. In contrast, the α-amine of the initiating amino acid is not required for peptide bond formation. Therefore, including the initiator position in GCE allows for co-translational insertion of more diverse molecules that are modified, or completely lacking an α-amine. This review explores various methods which have been used to initiate protein synthesis with diverse molecules both in vitro and in vivo.
Collapse
Affiliation(s)
- Jeffery M Tharp
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
23
|
Hammerling MJ, Krüger A, Jewett MC. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 2020; 48:1068-1083. [PMID: 31777928 PMCID: PMC7026604 DOI: 10.1093/nar/gkz1011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
24
|
Methods for generating and screening libraries of genetically encoded cyclic peptides in drug discovery. Nat Rev Chem 2020; 4:90-101. [PMID: 37128052 DOI: 10.1038/s41570-019-0159-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Drug discovery has traditionally focused on using libraries of small molecules to identify therapeutic drugs, but new modalities, especially libraries of genetically encoded cyclic peptides, are increasingly used for this purpose. Several technologies now exist for the production of libraries of cyclic peptides, including phage display, mRNA display and split-intein circular ligation of peptides and proteins. These different approaches are each compatible with particular methods of screening libraries, such as functional or affinity-based screening, and screening in vitro or in cells. These techniques allow the rapid preparation of libraries of hundreds of millions of molecules without the need for chemical synthesis, and have therefore lowered the entry barrier to generating and screening for inhibitors of a given target. This ease of use combined with the inherent advantages of the cyclic-peptide scaffold has yielded inhibitors of targets that have proved difficult to drug with small molecules. Multiple reports demonstrate that cyclic peptides act as privileged scaffolds in drug discovery, particularly against 'undruggable' targets such as protein-protein interactions. Although substantial challenges remain in the clinical translation of hits from screens of cyclic-peptide libraries, progress continues to be made in this area, with an increasing number of cyclic peptides entering clinical trials. Here, we detail the various platforms for producing and screening libraries of genetically encoded cyclic peptides and discuss and evaluate the advantages and disadvantages of each approach when deployed for drug discovery.
Collapse
|
25
|
Urbanek A, Elena-Real CA, Popovic M, Morató A, Fournet A, Allemand F, Delbecq S, Sibille N, Bernadó P. Site-Specific Isotopic Labeling (SSIL): Access to High-Resolution Structural and Dynamic Information in Low-Complexity Proteins. Chembiochem 2019; 21:769-775. [PMID: 31697025 DOI: 10.1002/cbic.201900583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Indexed: 12/17/2022]
Abstract
Remarkable technical progress in the area of structural biology has paved the way to study previously inaccessible targets. For example, large protein complexes can now be easily investigated by cryo-electron microscopy, and modern high-field NMR magnets have challenged the limits of high-resolution characterization of proteins in solution. However, the structural and dynamic characteristics of certain proteins with important functions still cannot be probed by conventional methods. These proteins in question contain low-complexity regions (LCRs), compositionally biased sequences where only a limited number of amino acids is repeated multiple times, which hamper their characterization. This Concept article describes a site-specific isotopic labeling (SSIL) strategy, which combines nonsense suppression and cell-free protein synthesis to overcome these limitations. An overview on how poly-glutamine tracts were made amenable to high-resolution structural studies is used to illustrate the usefulness of SSIL. Furthermore, we discuss the potential of this methodology to give further insights into the roles of LCRs in human pathologies and liquid-liquid phase separation, as well as the challenges that must be addressed in the future for the popularization of SSIL.
Collapse
Affiliation(s)
- Annika Urbanek
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Carlos A Elena-Real
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Matija Popovic
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Anna Morató
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Aurélie Fournet
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Frédéric Allemand
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Stephane Delbecq
- Laboratoire de Biologie Cellulaire et Moléculaire, (LBCM-EA4558 Vaccination Antiparasitaire), UFR Pharmacie, Université de Montpellier, 15, Av. Charles Flahault, BP 14491, 34000, Montpellier, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale (CBS), INSERM, CNRS, Université de Montpellier, 29, rue de Navacelles, 34090, Montpellier, France
| |
Collapse
|
26
|
Lee J, Schwieter KE, Watkins AM, Kim DS, Yu H, Schwarz KJ, Lim J, Coronado J, Byrom M, Anslyn EV, Ellington AD, Moore JS, Jewett MC. Expanding the limits of the second genetic code with ribozymes. Nat Commun 2019; 10:5097. [PMID: 31704912 PMCID: PMC6841967 DOI: 10.1038/s41467-019-12916-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The site-specific incorporation of noncanonical monomers into polypeptides through genetic code reprogramming permits synthesis of bio-based products that extend beyond natural limits. To better enable such efforts, flexizymes (transfer RNA (tRNA) synthetase-like ribozymes that recognize synthetic leaving groups) have been used to expand the scope of chemical substrates for ribosome-directed polymerization. The development of design rules for flexizyme-catalyzed acylation should allow scalable and rational expansion of genetic code reprogramming. Here we report the systematic synthesis of 37 substrates based on 4 chemically diverse scaffolds (phenylalanine, benzoic acid, heteroaromatic, and aliphatic monomers) with different electronic and steric factors. Of these substrates, 32 were acylated onto tRNA and incorporated into peptides by in vitro translation. Based on the design rules derived from this expanded alphabet, we successfully predicted the acylation of 6 additional monomers that could uniquely be incorporated into peptides and direct N-terminal incorporation of an aldehyde group for orthogonal bioconjugation reactions.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Kenneth E Schwieter
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Andrew M Watkins
- Departments of Biochemistry and Physics, Stanford University, Stanford, 94305, CA, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Hao Yu
- Departments of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Kevin J Schwarz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA
| | - Jongdoo Lim
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Jaime Coronado
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Michelle Byrom
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, 78712, TX, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, 78712, TX, USA
| | - Andrew D Ellington
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, 78712, TX, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, 60208, IL, USA.
| |
Collapse
|
27
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
28
|
Richardson SL, Dods KK, Abrigo NA, Iqbal ES, Hartman MC. In vitro genetic code reprogramming and expansion to study protein function and discover macrocyclic peptide ligands. Curr Opin Chem Biol 2018; 46:172-179. [PMID: 30077877 DOI: 10.1016/j.cbpa.2018.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 01/26/2023]
Abstract
The ability to introduce non-canonical amino acids into peptides and proteins is facilitated by working within in vitro translation systems. Non-canonical amino acids can be introduced into these systems using sense codon reprogramming, stop codon suppression, and by breaking codon degeneracy. Here, we review how these techniques have been used to create proteins with novel properties and how they facilitate sophisticated studies of protein function. We also discuss how researchers are using in vitro translation experiments with non-canonical amino acids to explore the tolerance of the translation apparatus to artificial building blocks. Finally, we give several examples of how non-canonical amino acids can be combined with mRNA-displayed peptide libraries for the creation of protease-stable, macrocyclic peptide libraries for ligand discovery.
Collapse
Affiliation(s)
- Stacie L Richardson
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Kara K Dods
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Nicolas A Abrigo
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Emil S Iqbal
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA
| | - Matthew Ct Hartman
- Department of Chemistry, Virginia Commonwealth University (VCU), 1001 West Main Street, P.O. Box 842006, Richmond, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, USA.
| |
Collapse
|
29
|
Suga H. Max-Bergmann award lecture:A RaPID way to discover bioactive nonstandard peptides assisted by the flexizyme and FIT systems. J Pept Sci 2018; 24. [PMID: 29322648 DOI: 10.1002/psc.3055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/10/2022]
Abstract
Although general review articles should cover various people's achievements related to the subject, this review is privileged to describe the technology developed by Suga (and colleagues) as a recipient of the Max-Bergmann Medal in 2016. The technology consists of 3 unique and essential tools, flexizymes, FIT, and RaPID systems. This review describes the history of the development of each tool and discusses the recent applications of the RaPID system to discover potent nonstandard peptides for therapeutic and diagnostic uses.
Collapse
Affiliation(s)
- Hiroaki Suga
- Department of Chemistry, Graduate School of Science, Tokyo, The University of Tokyo, Japan
- JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
30
|
Ohtsuki T, Kanzaki S, Nishimura S, Kunihiro Y, Sisido M, Watanabe K. Phototriggered protein syntheses by using (7-diethylaminocoumarin-4-yl)methoxycarbonyl-caged aminoacyl tRNAs. Nat Commun 2016; 7:12501. [PMID: 27530762 PMCID: PMC4992060 DOI: 10.1038/ncomms12501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 07/08/2016] [Indexed: 01/29/2023] Open
Abstract
The possibility of spatiotemporally photocontrolling translation holds considerable promise for studies on the biological roles of local translation in cells and tissues. Here we report caged aminoacyl-tRNAs (aa-tRNAs) synthesized using a (7-diethylaminocoumarin-4-yl)methoxycarbonyl (DEACM)-cage compound. DEACM-caged aa-tRNA does not spontaneously deacylate for at least 4 h in neutral aqueous solution, and does not bind to the elongation factor Tu. On irradiation at ∼405 nm at 125 mW cm−2, DEACM-aa-tRNA is converted into active aa-tRNA with a half-life of 19 s. Notably, this rapid uncaging induced by visible light does not impair the translation system. Translation is photoinduced when DEACM-aa-tRNA carrying a CCCG or a CUA anticodon is uncaged in the presence of mRNAs harbouring a CGGG four-base codon or a UAG amber codon, respectively. Protein synthesis is phototriggered in several model systems, including an in vitro translation system, an agarose gel, in liposomes and in mammalian cells. Spatiotemporal regulation of protein synthesis would advance studies into the consequences of localised protein translation in cells and tissues. Here, Ohtsuki et al. improve on an earlier caged-tRNA design to provide caged aminoacyl-tRNAs that are rapidly uncaged by visible light.
Collapse
Affiliation(s)
- Takashi Ohtsuki
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Shigeto Kanzaki
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Sae Nishimura
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Yoshio Kunihiro
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Masahiko Sisido
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Kazunori Watanabe
- Department of Biomedical Engineering, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
31
|
Kawakami T, Ogawa K, Hatta T, Goshima N, Natsume T. Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor. ACS Chem Biol 2016; 11:1569-77. [PMID: 27010125 DOI: 10.1021/acschembio.5b01014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-alkyl amino acids are useful building blocks for the in vitro display evolution of ribosomally synthesized peptides because they can increase the proteolytic stability and cell permeability of these peptides. However, the translation initiation substrate specificity of nonproteinogenic N-alkyl amino acids has not been investigated. In this study, we screened various N-alkyl amino acids and nonamino carboxylic acids for translation initiation with an Escherichia coli reconstituted cell-free translation system (PURE system) and identified those that efficiently initiated translation. Using seven of these efficiently initiating acids, we next performed in vitro display evolution of cyclized peptidomimetics against an arbitrarily chosen model human protein (β-catenin) cell-free expressed from its cloned cDNA (HUPEX) and identified a novel β-catenin-binding cyclized peptoid-peptide chimera. Furthermore, by a proteomic approach using direct nanoflow liquid chromatography-tandem mass spectrometry (DNLC-MS/MS), we successfully identified which protein-β-catenin interaction is inhibited by the chimera. The combination of in vitro display evolution of cyclized N-alkyl peptidomimetics and in vitro expression of human proteins would be a powerful approach for the high-speed discovery of diverse human protein-targeted cyclized N-alkyl peptidomimetics.
Collapse
Affiliation(s)
- Takashi Kawakami
- Molecular Profiling Research
Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Koji Ogawa
- Molecular Profiling Research
Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tomohisa Hatta
- Molecular Profiling Research
Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Naoki Goshima
- Molecular Profiling Research
Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tohru Natsume
- Molecular Profiling Research
Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
32
|
Fujino T, Murakami H. In VitroSelection Combined with Ribosomal Translation Containing Non-proteinogenic Amino Acids. CHEM REC 2016; 16:365-77. [DOI: 10.1002/tcr.201500239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Tomoshige Fujino
- Department of Chemical and Biological Engineering, School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| | - Hiroshi Murakami
- Department of Chemical and Biological Engineering, School of Engineering; Nagoya University; Furo-cho, Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
33
|
Abstract
Antibody conjugates are important in many areas of medicine and biological research, and antibody-drug conjugates (ADCs) are becoming an important next generation class of therapeutics for cancer treatment. Early conjugation technologies relied upon random conjugation to multiple amino acid side chains, resulting in heterogeneous mixtures of labeled antibody. Recent studies, however, strongly support the notion that site-specific conjugation produces a homogeneous population of antibody conjugates with improved pharmacologic properties over randomly coupled molecules. Genetically incorporated unnatural amino acids (uAAs) allow unique orthogonal coupling strategies compared to those used for the 20 naturally occurring amino acids. Thus, uAAs provide a novel paradigm for creation of next generation ADCs. Additionally, uAA-based site-specific conjugation could also empower creation of additional multifunctional conjugates important as biopharmaceuticals, diagnostics, or reagents.
Collapse
Affiliation(s)
- Trevor J Hallam
- †Sutro Biopharma, 310 Utah Avenue, Suite 150, South San Francisco, California 94080, United States
| | - Erik Wold
- ‡The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Alan Wahl
- §Ambrx, Inc. 10975 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Vaughn V Smider
- ‡The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
34
|
Abstract
Antibody-drug conjugates are an important and emerging drug class for the treatment of cancer. Recent evidence strongly suggests that site-specific drug conjugation results in a homogenous population of molecules with more favorable activity and pharmacokinetic properties than randomly conjugated antibodies. Unnatural amino acids (uAAs) can be incorporated in recombinant proteins to enable unique orthogonal chemistries in comparison to the side chains of the natural 20 amino acids. Thus, uAAs present a novel platform for which to create next-generation antibody-drug conjugates. Furthermore, site-specific conjugation through uAAs can also enpower unique small molecule, bispecific, multispecific and other conjugates that could be important constructs for therapeutics, diagnostics and research reagents. Here, we review the progress in uAA incorporation and conjugate construction through both cell-based and -free approaches.
Collapse
|
35
|
Kotsuki H, Kataoka M, Fukui C, Mimoto A, Kuge H, Honke K. A New Strategy for Synthesis of the Dinucleotide pdCpA: A Convenient Method for the Deprotection of Cyanoethyl, TBDMS, and Benzoyl Groups in One Step at High Pressure. HETEROCYCLES 2015. [DOI: 10.3987/com-15-13223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Ma H, Liu N, Shi S, Wang S, Chen Y. Genetic incorporation of d-amino acids into green fluorescent protein based on polysubstrate specificity. RSC Adv 2015; 5:39580-39586. [DOI: 10.1039/c5ra02289d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024] Open
Abstract
A number of d-amino acids were genetically incorporated into green fluorescent protein, and the GFPuv mutant containing d-phenylalanine in the fluorophore at residue 66 was characterized.
Collapse
Affiliation(s)
- Hairong Ma
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Nan Liu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Shaobo Shi
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| |
Collapse
|
37
|
Kwiatkowski M, Wang J, Forster AC. Facile synthesis of N-acyl-aminoacyl-pCpA for preparation of mischarged fully ribo tRNA. Bioconjug Chem 2014; 25:2086-91. [PMID: 25338217 DOI: 10.1021/bc500441b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemical synthesis of N-acyl-aminoacyl-pdCpA and its ligation to tRNA(minus CA) is widely used for the preparation of unnatural aminoacyl-tRNA substrates for ribosomal translation. However, the presence of the unnatural deoxyribose can decrease incorporation yield in translation and there is no straightforward method for chemical synthesis of the natural ribo version. Here, we show that pCpA is surprisingly stable to treatment with strong organic bases provided that anhydrous conditions are used. This allowed development of a facile method for chemical aminoacylation of pCpA. Preparative synthesis of pCpA was also simplified by using t-butyl-dithiomethyl protecting group methodology, and a more reliable pCpA postpurification treatment method was developed. Such aminoacyl-pCpA analogues ligated to tRNA(minus CA) transcripts are highly active in a purified translation system, demonstrating utility of our synthetic method.
Collapse
Affiliation(s)
- Marek Kwiatkowski
- Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, Uppsala 75124, Sweden
| | | | | |
Collapse
|
38
|
Huber T, Sakmar T. Chemical Biology Methods for Investigating G Protein-Coupled Receptor Signaling. ACTA ACUST UNITED AC 2014; 21:1224-37. [DOI: 10.1016/j.chembiol.2014.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/21/2014] [Accepted: 08/20/2014] [Indexed: 11/26/2022]
|
39
|
Dougherty DA, Van Arnam EB. In vivo incorporation of non-canonical amino acids by using the chemical aminoacylation strategy: a broadly applicable mechanistic tool. Chembiochem 2014; 15:1710-20. [PMID: 24990307 DOI: 10.1002/cbic.201402080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 01/05/2023]
Abstract
We describe a strategy for incorporating non-canonical amino acids site-specifically into proteins expressed in living cells, involving organic synthesis to chemically aminoacylate a suppressor tRNA, protein expression in Xenopus oocytes, and monitoring protein function, primarily by electrophysiology. With this protocol, a very wide range of non-canonical amino acids can be employed, allowing both systematic structure-function studies and the incorporation of reactive functionalities. Here, we present an overview of the methodology and examples meant to illustrate the versatility and power of the method as a tool for investigating protein structure and function.
Collapse
Affiliation(s)
- Dennis A Dougherty
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (USA).
| | | |
Collapse
|
40
|
Talukder P, Chen S, Arce PM, Hecht SM. Efficient asymmetric synthesis of tryptophan analogues having useful photophysical properties. Org Lett 2014; 16:556-9. [PMID: 24392870 DOI: 10.1021/ol403429e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Two new fluorescent probes of protein structure and dynamics have been prepared by concise asymmetric syntheses using the Schöllkopf chiral auxiliary. The site-specific incorporation of one probe into dihydrofolate reductase is reported. The utility of these tryptophan derivatives lies in their absorption and emission maxima which differ from those of tryptophan, as well as in their large Stokes shifts and high molar absorptivities.
Collapse
Affiliation(s)
- Poulami Talukder
- Center for BioEnergetics, The Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University , Tempe, Arizona 85827, United States
| | | | | | | |
Collapse
|
41
|
Terasaka N, Suga H. Flexizymes-facilitated Genetic Code Reprogramming Leading to the Discovery of Drug-like Peptides. CHEM LETT 2014. [DOI: 10.1246/cl.130910] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo
| |
Collapse
|
42
|
Kawakami T, Ishizawa T, Murakami H. Extensive Reprogramming of the Genetic Code for Genetically Encoded Synthesis of Highly N-Alkylated Polycyclic Peptidomimetics. J Am Chem Soc 2013; 135:12297-304. [DOI: 10.1021/ja405044k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Takashi Kawakami
- Department of Life Sciences, Graduate
School of Arts
and Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takahiro Ishizawa
- Department of Life Sciences, Graduate
School of Arts
and Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hiroshi Murakami
- Department of Life Sciences, Graduate
School of Arts
and Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
43
|
Fujino T, Goto Y, Suga H, Murakami H. Reevaluation of the d-Amino Acid Compatibility with the Elongation Event in Translation. J Am Chem Soc 2013; 135:1830-7. [DOI: 10.1021/ja309570x] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomoshige Fujino
- Department of Life
Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo,
153-8902, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | - Hiroshi Murakami
- Department of Life
Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo,
153-8902, Japan
| |
Collapse
|
44
|
Mellal D, Fonvielle M, Santarem M, Chemama M, Schneider Y, Iannazzo L, Braud E, Arthur M, Etheve-Quelquejeu M. Synthesis and biological evaluation of non-isomerizable analogues of Ala-tRNAAla. Org Biomol Chem 2013; 11:6161-9. [DOI: 10.1039/c3ob41206g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Singh-Blom A, Hughes RA, Ellington AD. Residue-specific incorporation of unnatural amino acids into proteins in vitro and in vivo. Methods Mol Biol 2013; 978:93-114. [PMID: 23423891 DOI: 10.1007/978-1-62703-293-3_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The incorporation of noncanonical (unnatural) amino acids into proteins offers researchers the ability to augment the biochemical functionality of proteins for a myriad of applications including bioorthogonal conjugation, biophysical and structural studies, and the enhancement or de novo creation of novel enzymatic activities. The augmentation of a protein throughout its coding sequence by global residue-specific incorporation of unnatural amino acid analogs is an attractive technique for studying both the utility of individual chemistries available through unnatural amino acids and the general effects of unnatural amino acid substitution on protein structure and function. Herein we describe protocols to introduce unnatural amino acids into proteins using the Escherichia coli translation system either in vivo or in vitro. Special attention is paid to obtaining high levels of incorporation while maintaining high yields of protein expression.
Collapse
Affiliation(s)
- Amrita Singh-Blom
- Department of Molecular Genetics and Microbiology, The University of Texas at Austin, Austin, TX, USA
| | | | | |
Collapse
|
46
|
Genetically encoded libraries of nonstandard peptides. J Nucleic Acids 2012; 2012:713510. [PMID: 23097693 PMCID: PMC3477784 DOI: 10.1155/2012/713510] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/12/2012] [Indexed: 11/17/2022] Open
Abstract
The presence of a nonproteinogenic moiety in a nonstandard peptide often improves the biological properties of the peptide. Non-standard peptide libraries are therefore used to obtain valuable molecules for biological, therapeutic, and diagnostic applications. Highly diverse non-standard peptide libraries can be generated by chemically or enzymatically modifying standard peptide libraries synthesized by the ribosomal machinery, using posttranslational modifications. Alternatively, strategies for encoding non-proteinogenic amino acids into the genetic code have been developed for the direct ribosomal synthesis of non-standard peptide libraries. In the strategies for genetic code expansion, non-proteinogenic amino acids are assigned to the nonsense codons or 4-base codons in order to add these amino acids to the universal genetic code. In contrast, in the strategies for genetic code reprogramming, some proteinogenic amino acids are erased from the genetic code and non-proteinogenic amino acids are reassigned to the blank codons. Here, we discuss the generation of genetically encoded non-standard peptide libraries using these strategies and also review recent applications of these libraries to the selection of functional non-standard peptides.
Collapse
|
47
|
Replacing amino acids in translation: expanding chemical diversity with non-natural variants. Methods 2012; 60:70-4. [PMID: 23718982 DOI: 10.1016/j.ymeth.2012.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 03/09/2012] [Indexed: 11/21/2022] Open
Abstract
Here, we describe a strategy for synthesis of peptides with multiple unnatural amino acids (UAAs) using in vitro translation. Our method involves removing a natural amino acid and replacing it with an UAA variant in a reconstituted translation system. Whereas other systems require engineered components or chemical synthesis to charge UAAs onto tRNAs prior to translation, our strategy utilizes the wild-type machinery and charging occurs concomitant with translation. The design of the system allows for easy quantification of the UAA's incorporation efficiency and fidelity.
Collapse
|
48
|
Suga H, Hayashi G, Terasaka N. The RNA origin of transfer RNA aminoacylation and beyond. Philos Trans R Soc Lond B Biol Sci 2012; 366:2959-64. [PMID: 21930588 DOI: 10.1098/rstb.2011.0137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aminoacylation of tRNA is an essential event in the translation system. Although in the modern system protein enzymes play the sole role in tRNA aminoacylation, in the primitive translation system RNA molecules could have catalysed aminoacylation onto tRNA or tRNA-like molecules. Even though such RNA enzymes so far are not identified from known organisms, in vitro selection has generated such RNA catalysts from a pool of random RNA sequences. Among them, a set of RNA sequences, referred to as flexizymes (Fxs), discovered in our laboratory are able to charge amino acids onto tRNAs. Significantly, Fxs allow us to charge a wide variety of amino acids, including those that are non-proteinogenic, onto tRNAs bearing any desired anticodons, and thus enable us to reprogramme the genetic code at our will. This article summarizes the evolutionary history of Fxs and also the most recent advances in manipulating a translation system by integration with Fxs.
Collapse
Affiliation(s)
- Hiroaki Suga
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan.
| | | | | |
Collapse
|
49
|
Zheng S, Kwon I. Manipulation of enzyme properties by noncanonical amino acid incorporation. Biotechnol J 2011; 7:47-60. [PMID: 22121038 DOI: 10.1002/biot.201100267] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/22/2011] [Accepted: 09/22/2011] [Indexed: 11/07/2022]
Abstract
Since wild-type enzymes do not always have the properties needed for various applications, enzymes are often engineered to obtain desirable properties through protein engineering techniques. In the past decade, complementary to the widely used rational protein design and directed evolution techniques, noncanonical amino acid incorporation (NCAAI) has become a new and effective protein engineering technique. Recently, NCAAI has been used to improve intrinsic functions of proteins, such as enzymes and fluorescent proteins, beyond the capacities obtained with natural amino acids. Herein, recent progress on improving enzyme properties through NCAAI in vivo is reviewed and the challenges of current approaches and future directions are also discussed. To date, both NCAAI methods-residue- and site-specific incorporation-have been primarily used to improve the catalytic turnover number and substrate binding affinity of enzymes. Numerous strategies used to minimize structural perturbation and stability loss of a target enzyme upon NCAAI are also explored. Considering the generality of NCAAI incorporation, we expect its application could be expanded to improve other enzyme properties, such as substrate specificity and solvent resistance in the near future.
Collapse
Affiliation(s)
- Shun Zheng
- Department of Chemical Engineering University of Virginia, Charlottesville, VA 22904, USA
| | | |
Collapse
|
50
|
Chen S, Zhang Y, Hecht SM. p-Thiophenylalanine-Induced DNA Cleavage and Religation Activity of a Modified Vaccinia Topoisomerase IB. Biochemistry 2011; 50:9340-51. [DOI: 10.1021/bi201291p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shengxi Chen
- Center for BioEnergetics, Biodesign
Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Yi Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904,
United States
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign
Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| |
Collapse
|