1
|
Choi JC, Kang JH, Kim DW, Park CW. Preparation and Evaluation of Inhalable Amifostine Microparticles Using Wet Ball Milling. Pharmaceutics 2023; 15:1696. [PMID: 37376145 DOI: 10.3390/pharmaceutics15061696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The conventional dosage form of Ethyol® (amifostine), a sterile lyophilized powder, involves reconstituting it with 9.7 mL of sterile 0.9% sodium chloride in accordance with the United States Pharmacopeia specifications for intravenous infusion. The purpose of this study was to develop inhalable microparticles of amifostine (AMF) and compare the physicochemical properties and inhalation efficiency of AMF microparticles prepared by different methods (jet milling and wet ball milling) and different solvents (methanol, ethanol, chloroform, and toluene). Inhalable microparticles of AMF dry powder were prepared using a wet ball-milling process with polar and non-polar solvents to improve their efficacy when delivered through the pulmonary route. The wet ball-milling process was performed as follows: AMF (10 g), zirconia balls (50 g), and solvent (20 mL) were mixed and placed in a cylindrical stainless-steel jar. Wet ball milling was performed at 400 rpm for 15 min. The physicochemical properties and aerodynamic characteristics of the prepared samples were evaluated. The physicochemical properties of wet-ball-milled microparticles (WBM-M and WBM-E) using polar solvents were confirmed. Aerodynamic characterization was not used to measure the % fine particle fraction (% FPF) value in the raw AMF. The % FPF value of JM was 26.9 ± 5.8%. The % FPF values of the wet-ball-milled microparticles WBM-M and WBM-E prepared using polar solvents were 34.5 ± 0.2% and 27.9 ± 0.7%, respectively; while the % FPF values of the wet-ball-milled microparticles WBM-C and WBM-T prepared using non-polar solvents were 45.5 ± 0.6% and 44.7 ± 0.3%, respectively. Using a non-polar solvent in the wet ball-milling process resulted in a more homogeneous and stable crystal form of the fine AMF powder than using a polar solvent.
Collapse
Affiliation(s)
- Jae-Cheol Choi
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | - Ji-Hyun Kang
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Dong-Wook Kim
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| |
Collapse
|
2
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
3
|
Allen ME, Elani Y, Brooks NJ, Seddon JM. The effect of headgroup methylation on polymorphic phase behaviour in hydrated N-methylated phosphoethanolamine:palmitic acid membranes. SOFT MATTER 2021; 17:5763-5771. [PMID: 34019613 DOI: 10.1039/d1sm00178g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mixtures of fatty acids and phospholipids can form hexagonal (HII) and inverse bicontinuous cubic phases, the latter of which are implicated in various cellular processes and have wide-ranging biotechnological applications in protein crystallisation and drug delivery systems. Therefore, it is vitally important to understand the formation conditions of inverse bicontinuous cubic phases and how their properties can be tuned. We have used differential scanning calorimetry and synchrotron-based small angle and wide angle X-ray scattering (SAXS/WAXS) to investigate the polymorphic phase behaviour of palmitic acid/partially-methylated phospholipid mixtures, and how headgroup methylation impacts on inverse bicontinuous cubic phase formation. We find that upon partial methylation of the phospholipid headgroup (1 or 2 methyl substituents) inverse bicontinuous cubic phases are formed (of the Im3m spacegroup), which is not the case with 0 or 3 methyl substituents. This shows how important headgroup methylation is for controlling phase behaviour and how a change in headgroup methylation can be used to controllably tune various inverse bicontinuous phase features such as their lattice parameter and the temperature range of their stability.
Collapse
Affiliation(s)
- Matthew E Allen
- Department of Chemistry, Imperial College London, W12 7SL, UK.
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | | | - John M Seddon
- Department of Chemistry, Imperial College London, W12 7SL, UK.
| |
Collapse
|
4
|
Vallooran JJ, Duss M, Ansorge P, Mezzenga R, Landau EM. Stereochemical Purity Can Induce a New Crystalline Mesophase in Phytantriol Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9132-9141. [PMID: 32654490 DOI: 10.1021/acs.langmuir.0c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The impact of stereochemical purity of lipids on their self-assembly behavior is critical for establishing their true phase behavior from their commercial counterparts, which often contains stereoisomeric mixtures and other impurities. Here, stereochemically pure phytantriol (PT), (3,7,11,15-tetramethylhexadecane-1,2,3-triol) was synthesized from the natural trans-phytol and its thermotropic and lyotropic phase behavior in water investigated by small-angle X-ray scattering (SAXS), polarized optical microscopy (POM), and differential scanning calorimetry (DSC). These chemically pure lipids contain two chiral centers at the hydrophilic head group region and two chiral centers at the lipophilic tail region, allowing us to address the question of whether the molecular stereochemistry is related to the macroscopic phase behavior of phytantriol. In contrast to its commercial stereoisomeric mixtures, which form an isotropic micellar phase, neat (2S,3S,7R,11R)-3,7,11,15-tetramethylhexadecane-1,2,3-triol (S,S-PT) shows a smectic lamellar phase at room temperature, whereas (2R,3R,7R,11R)-3,7,11,15-tetramethylhexadecane-1,2,3-triol (R,R-PT) forms solid crystals. The lyotropic phase behavior of R,R-PT appears to be identical to that of the previously reported commercial stereoisomeric PT mixtures. In contrast, S,S-PT exhibits a different phase behavior. A lamellar crystalline phase (Lc) is formed instead of an isotropic micellar phase at a low water content, which also coexisted with other phases at low temperature. Subtle change in the shape of the diastereomers leads to variable steric interactions and subsequently affects the packing of the lipids at the molecular level, thereby influencing its self-assembling behavior. Finally, lipidic cubic phase crystallization of the membrane protein bacteriorhodopsin yielded a larger number of microcrystals with a higher average crystal length from S,S-PT than from commercial PT, suggesting faster nucleation.
Collapse
Affiliation(s)
- Jijo J Vallooran
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Michael Duss
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Philipp Ansorge
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Ehud M Landau
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
5
|
Bacteriocin enterocin CRL35 is a modular peptide that induces non-bilayer states in bacterial model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183135. [DOI: 10.1016/j.bbamem.2019.183135] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 11/17/2022]
|
6
|
Sendecki AM, Poyton MF, Baxter AJ, Yang T, Cremer PS. Supported Lipid Bilayers with Phosphatidylethanolamine as the Major Component. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13423-13429. [PMID: 29119796 DOI: 10.1021/acs.langmuir.7b02323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Phosphatidylethanolamine (PE) is notoriously difficult to incorporate into model membrane systems, such as fluid supported lipid bilayers (SLBs), at high concentrations because of its intrinsic negative curvature. Using fluorescence-based techniques, we demonstrate that having fewer sites of unsaturation in the lipid tails leads to high-quality SLBs because these lipids help to minimize the curvature. Moreover, shorter saturated chains can help maintain the membranes in the fluid phase. Using these two guidelines, we find that up to 70 mol % PE can be incorporated into SLBs at room temperature and up to 90 mol % PE can be incorporated at 37 °C. Curiously, conditions under which three-dimensional tubules project outward from the planar surface as well as conditions under which domain formation occurs can be found. We have employed these model membrane systems to explore the ability of Ni2+ to bind to PE. It was found that this transition metal ion binds 1000-fold tighter to PE than to phosphatidylcholine lipids. In the future, this platform could be exploited to monitor the binding of other transition metal ions or the binding of antimicrobial peptides. It could also be employed to explore the physical properties of PE-containing membranes, such as phase domain behavior and intermolecular hydrogen bonding.
Collapse
Affiliation(s)
- Anne M Sendecki
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Matthew F Poyton
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Alexis J Baxter
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Tinglu Yang
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Paul S Cremer
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
7
|
Tenchov B, Koynova R. Cubic phases in phosphatidylethanolamine dispersions: Formation, stability and phase transitions. Chem Phys Lipids 2017; 208:65-74. [DOI: 10.1016/j.chemphyslip.2017.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/13/2023]
|
8
|
Dupuy F, Fernández Bordín S, Maggio B, Oliveira R. Hexagonal phase with ordered acyl chains formed by a short chain asymmetric ceramide. Colloids Surf B Biointerfaces 2017; 149:89-96. [DOI: 10.1016/j.colsurfb.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/11/2016] [Accepted: 10/05/2016] [Indexed: 01/03/2023]
|
9
|
Fong WK, Sánchez-Ferrer A, Ortelli FG, Sun W, Boyd BJ, Mezzenga R. Dynamic formation of nanostructured particles from vesicles via invertase hydrolysis for on-demand delivery. RSC Adv 2017. [DOI: 10.1039/c6ra26688f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Controlled hydrolysis via invertase action alters molecular shape and therefore lipid curvature, consequently triggering the release of encapsulated drug.
Collapse
Affiliation(s)
- Wye-Khay Fong
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
- Drug Delivery, Disposition & Dynamics
| | | | | | - Wenjie Sun
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
| | - Ben J. Boyd
- Drug Delivery, Disposition & Dynamics
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology
| | - Raffaele Mezzenga
- ETH Zürich
- Department of Health Sciences & Technology
- 8092 Zürich
- Switzerland
| |
Collapse
|
10
|
Barragán Vidal IA, Rosetti CM, Pastorino C, Müller M. Measuring the composition-curvature coupling in binary lipid membranes by computer simulations. J Chem Phys 2015; 141:194902. [PMID: 25416907 DOI: 10.1063/1.4901203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The coupling between local composition fluctuations in binary lipid membranes and curvature affects the lateral membrane structure. We propose an efficient method to compute the composition-curvature coupling in molecular simulations and apply it to two coarse-grained membrane models-a minimal, implicit-solvent model and the MARTINI model. Both the weak-curvature behavior that is typical for thermal fluctuations of planar bilayer membranes as well as the strong-curvature regime corresponding to narrow cylindrical membrane tubes are studied by molecular dynamics simulation. The simulation results are analyzed by using a phenomenological model of the thermodynamics of curved, mixed bilayer membranes that accounts for the change of the monolayer area upon bending. Additionally the role of thermodynamic characteristics such as the incompatibility between the two lipid species and asymmetry of composition are investigated.
Collapse
Affiliation(s)
- I A Barragán Vidal
- Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - C M Rosetti
- Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - C Pastorino
- Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, CNEA/CONICET, Av. Gral. Paz 1499, 1650 Pcia. de Buenos Aires, Argentina
| | - M Müller
- Institut für Theoretische Physik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Pera H, Kleijn JM, Leermakers FAM. On the edge energy of lipid membranes and the thermodynamic stability of pores. J Chem Phys 2015; 142:034101. [PMID: 25612683 DOI: 10.1063/1.4905260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To perform its barrier function, the lipid bilayer membrane requires a robust resistance against pore formation. Using a self-consistent field (SCF) theory and a molecularly detailed model for membranes composed of charged or zwitterionic lipids, it is possible to predict structural, mechanical, and thermodynamical parameters for relevant lipid bilayer membranes. We argue that the edge energy in membranes is a function of the spontaneous lipid monolayer curvature, the mean bending modulus, and the membrane thickness. An analytical Helfrich-like model suggests that most bilayers should have a positive edge energy. This means that there is a natural resistance against pore formation. Edge energies evaluated explicitly in a two-gradient SCF model are consistent with this. Remarkably, the edge energy can become negative for phosphatidylglycerol (e.g., dioleoylphosphoglycerol) bilayers at a sufficiently low ionic strength. Such bilayers become unstable against the formation of pores or the formation of lipid disks. In the weakly curved limit, we study the curvature dependence of the edge energy and evaluate the preferred edge curvature and the edge bending modulus. The latter is always positive, and the former increases with increasing ionic strength. These results point to a small window of ionic strengths for which stable pores can form as too low ionic strengths give rise to lipid disks. Higher order curvature terms are necessary to accurately predict relevant pore sizes in bilayers. The electric double layer overlap across a small pore widens the window of ionic strengths for which pores are stable.
Collapse
Affiliation(s)
- H Pera
- Laboratory of Physical Chemistry and Colloid Science, W ageningen University, Dreijenplein 6, 6307 HB Wageningen, The Netherlands
| | - J M Kleijn
- Laboratory of Physical Chemistry and Colloid Science, W ageningen University, Dreijenplein 6, 6307 HB Wageningen, The Netherlands
| | - F A M Leermakers
- Laboratory of Physical Chemistry and Colloid Science, W ageningen University, Dreijenplein 6, 6307 HB Wageningen, The Netherlands
| |
Collapse
|
12
|
The antimicrobial peptide microcin J25 stabilizes the gel phase of bacterial model membranes. Colloids Surf B Biointerfaces 2015; 129:183-90. [DOI: 10.1016/j.colsurfb.2015.03.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 01/22/2023]
|
13
|
Jacoby G, Cohen K, Barkan K, Talmon Y, Peer D, Beck R. Metastability in lipid based particles exhibits temporally deterministic and controllable behavior. Sci Rep 2015; 5:9481. [PMID: 25820650 PMCID: PMC4377625 DOI: 10.1038/srep09481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/27/2015] [Indexed: 01/06/2023] Open
Abstract
The metastable-to-stable phase-transition is commonly observed in many fields of science, as an uncontrolled independent process, highly sensitive to microscopic fluctuations. In particular, self-assembled lipid suspensions exhibit phase-transitions, where the underlying driving mechanisms and dynamics are not well understood. Here we describe a study of the phase-transition dynamics of lipid-based particles, consisting of mixtures of dilauroylphosphatidylethanolamine (DLPE) and dilauroylphosphatidylglycerol (DLPG), exhibiting a metastable liquid crystalline-to-stable crystalline phase transition upon cooling from 60°C to 37°C. Surprisingly, unlike classically described metastable-to-stable phase transitions, the manner in which recrystallization is delayed by tens of hours is robust, predetermined and controllable. Our results show that the delay time can be manipulated by changing lipid stoichiometry, changing solvent salinity, adding an ionophore, or performing consecutive phase-transitions. Moreover, the delay time distribution indicates a deterministic nature. We suggest that the non-stochastic physical mechanism responsible for the delayed recrystallization involves several rate-affecting processes, resulting in a controllable, non-independent metastability. A qualitative model is proposed to describe the structural reorganization during the phase transition.
Collapse
Affiliation(s)
- Guy Jacoby
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Keren Cohen
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kobi Barkan
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Dan Peer
- Laboratory of NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Department of Materials Sciences and Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roy Beck
- The Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
14
|
Microemulsions, modulated phases and macroscopic phase separation: a unified picture of rafts. Essays Biochem 2015; 57:21-32. [DOI: 10.1042/bse0570021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We consider two mechanisms that can lead to an inhomogeneous distribution of components in a multicomponent lipid bilayer: macroscopic phase separation and the formation of modulated phases. A simple model that encompasses both mechanisms displays a phase diagram that also includes a structured fluid, a microemulsion. Identifying rafts with the inhomogeneities of this structured fluid, we see how rafts are related to the occurrence of macroscopic phase separation or the formation of modulated phases in other systems, and focus our attention on specific differences between them.
Collapse
|
15
|
Shlomovitz R, Schick M. Model of a raft in both leaves of an asymmetric lipid bilayer. Biophys J 2014; 105:1406-13. [PMID: 24047992 DOI: 10.1016/j.bpj.2013.06.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/11/2013] [Accepted: 06/27/2013] [Indexed: 01/03/2023] Open
Abstract
We present a theory of inhomogeneities in the plasma membrane, or rafts, that can exist in both leaves of the plasma membrane. We note that although neither of the major phospholipid components of the outer leaf, sphingomyelin (SM) nor phosphatidylcholine (PC), evinces a tendency to form phases characterized by nonzero curvature, one of the major components of the inner leaf, phosphatidylethanolamine (PE), displays a strong tendency to do so whereas the other, phosphatidylserine (PS), does not. Therefore, we posit that the concentration difference of PS and PE couples to height fluctuations of the plasma membrane bilayer. This brings about a microemulsion in the inner leaf. Coupling of the concentration difference between PS and PE in the inner leaf and SM and PC in the outer leaf propagates the microemulsion to that leaf as well. The characteristic size of the inhomogeneities is equal to the square-root of the ratio of the bending modulus of the bilayer to its surface tension, a size which is ~100 nm for the plasma membrane. If the coupling between leaves were to be provided by the interchange of cholesterol, then our model raft would consist of SM and cholesterol in the outer leaf and PS and cholesterol in the inner leaf floating in a sea of PC and PE in both leaves.
Collapse
Affiliation(s)
- Roie Shlomovitz
- Department of Physics, University of Washington, Seattle, Washington
| | | |
Collapse
|
16
|
Cevc G. Effect of Lipid Headgroups and (Nonelectrolyte) Solution on the Structural and Phase Properties of Bilayer Membranes. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/bbpc.198800240] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Pera H, Kleijn JM, Leermakers FAM. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling. J Chem Phys 2014; 140:065102. [DOI: 10.1063/1.4863994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Popova AV, Hincha DK. Interactions of the amphiphiles arbutin and tryptophan with phosphatidylcholine and phosphatidylethanolamine bilayers in the dry state. BMC BIOPHYSICS 2013; 6:9. [PMID: 23879885 PMCID: PMC3726346 DOI: 10.1186/2046-1682-6-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/17/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Water is essential for life, but some organisms can survive complete desiccation, while many more survive partial dehydration during drying or freezing. The function of some protective molecules, such as sugars, has been extensively studied, but much less is known about the effects of amphiphiles such as flavonoids and other aromatic compounds. Amphiphiles may be largely soluble under fully hydrated conditions, but will partition into membranes upon removal of water. Little is known about the effects of amphiphiles on membrane stability and how amphiphile structure and function are related. Here, we have used two of the most intensively studied amphiphiles, tryptophan (Trp) and arbutin (Arb), along with their isolated hydrophilic moieties glycine (Gly) and glucose (Glc) to better understand structure-function relationships in amphiphile-membrane interactions in the dry state. RESULTS Fourier-transform infrared (FTIR) spectroscopy was used to measure gel-to-liquid crystalline phase transition temperatures (Tm) of liposomes formed from phosphatidylcholine and phosphatidylethanolamine in the presence of the different additives. In anhydrous samples, both Glc and Arb strongly depressed Tm, independent of lipid composition, while Gly had no measurable effect. Trp, on the other hand, either depressed or increased Tm, depending on lipid composition. We found no evidence for strong interactions of any of the compounds with the lipid carbonyl or choline groups, while all additives except Gly seemed to interact with the phosphate groups. In the case of Arb and Glc, this also had a strong effect on the sugar OH vibrations in the FTIR spectra. In addition, vibrations from the hydrophobic indole and phenol moieties of Trp and Arb, respectively, provided evidence for interactions with the lipid bilayers. CONCLUSIONS The two amphiphiles Arb and Trp interact differently with dry bilayers. The interactions of Arb are dominated by contributions of the Glc moiety, while the indole governs the effects of Trp. In addition, only Trp-membrane interactions showed a strong influence of lipid composition. Further investigations, using the large structural diversity of plant amphiphiles will help to understand how their structure determines the interaction with membranes and how that influences their biological functions, for example under freezing or dehydration conditions.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany.
| | | |
Collapse
|
19
|
Tenchov B, Koynova R. Cubic phases in membrane lipids. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:841-50. [DOI: 10.1007/s00249-012-0819-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 04/21/2012] [Indexed: 11/29/2022]
|
20
|
Herrera FE, Bouchet A, Lairion F, Disalvo EA, Pantano S. Molecular Dynamics Study of the Interaction of Arginine with Phosphatidylcholine and Phosphatidylethanolamine Bilayers. J Phys Chem B 2012; 116:4476-83. [DOI: 10.1021/jp2096357] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fernando E. Herrera
- Institut Pasteur de Montevideo, Calle Mataojo 2020. CP 11400 Montevideo,
Uruguay
- Consejo Nacional
de Investigaciones
Científicas y Técnicas (CONICET), Departamento de Física,
Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, C.C. 242, Ciudad
Universitaria, C.P. S3000ZAA, Santa Fe, Argentina
| | - Ana Bouchet
- Laboratorio de Fisicoquímica
de Membranas Lipídicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 2°P
(1113), Buenos Aires, Argentina
| | - Fabiana Lairion
- Laboratorio de Fisicoquímica
de Membranas Lipídicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 2°P
(1113), Buenos Aires, Argentina
| | - E. Aníbal Disalvo
- Laboratorio de Fisicoquímica
de Membranas Lipídicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956 2°P
(1113), Buenos Aires, Argentina
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Calle Mataojo 2020. CP 11400 Montevideo,
Uruguay
| |
Collapse
|
21
|
Larsson K, Quinn P, Sato K, Tiberg F. Liquid-crystalline lipid–water phases. Lipids 2012. [DOI: 10.1533/9780857097910.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Lateral order in gel, subgel and crystalline phases of lipid membranes: Wide-angle X-ray scattering. Chem Phys Lipids 2012; 165:59-76. [DOI: 10.1016/j.chemphyslip.2011.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 11/21/2022]
|
23
|
Popova AV, Hincha DK. Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state. BMC BIOPHYSICS 2011; 4:11. [PMID: 21595868 PMCID: PMC3116483 DOI: 10.1186/2046-1682-4-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although biological membranes are organized as lipid bilayers, they contain a substantial fraction of lipids that have a strong tendency to adopt a nonlamellar, most often inverted hexagonal (HII) phase. The polymorphic phase behavior of such nonbilayer lipids has been studied previously with a variety of methods in the fully hydrated state or at different degrees of dehydration. Here, we present a study of the thermotropic phase behavior of the nonbilayer lipids egg phosphatidylethanolamine (EPE) and monogalactosyldiacylglycerol (MGDG) with a focus on interactions between the lipid molecules in the interfacial and headgroup regions. RESULTS Liposomes were investigated in the dry state by Fourier-transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Dry EPE showed a gel to liquid-crystalline phase transition below 0°C and a liquid-crystalline to HII transition at 100°C. MGDG, on the other hand, was in the liquid-crystalline phase down to -30°C and showed a nonbilayer transition at about 85°C. Mixtures (1:1 by mass) with two different phosphatidylcholines (PC) formed bilayers with no evidence for nonbilayer transitions up to 120°C. FTIR spectroscopy revealed complex interactions between the nonbilayer lipids and PC. Strong H-bonding interactions occurred between the sugar headgroup of MGDG and the phosphate, carbonyl and choline groups of PC. Similarly, the ethanolamine moiety of EPE was H-bonded to the carbonyl and choline groups of PC and probably interacted through charge pairing with the phosphate group. CONCLUSIONS This study provides a comprehensive characterization of dry membranes containing the two most important nonbilayer lipids (PE and MGDG) in living cells. These data will be of particular relevance for the analysis of interactions between membranes and low molecular weight solutes or soluble proteins that are presumably involved in cellular protection during anhydrobiosis.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
24
|
Marsh D. Pivotal surfaces in inverse hexagonal and cubic phases of phospholipids and glycolipids. Chem Phys Lipids 2011; 164:177-83. [DOI: 10.1016/j.chemphyslip.2010.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 12/21/2010] [Indexed: 11/29/2022]
|
25
|
Thompson TE, Sankaram MB, Huang C. Organization and Dynamics of the Lipid Components of Biological Membranes. Compr Physiol 2011. [DOI: 10.1002/cphy.cp140102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Marsh D. Molecular volumes of phospholipids and glycolipids in membranes. Chem Phys Lipids 2010; 163:667-77. [DOI: 10.1016/j.chemphyslip.2010.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/17/2022]
|
27
|
Abstract
Three synthetically produced glycolipids, N-(beta-D-glucopyranosyl)-N-octadecyl-stearoylamide (OSGA), N-(beta-D-glucopyranosyl-N-octadecyl-oleoylamide (OOGA), N-(beta-D-galactopyranosyl)-N-octadecyl-lauroylamide (OLGA) have been studied in different mixtures with water by x-ray diffraction and dielectric measurements with microwaves at 9.4 GHz. The measurements were performed in the temperature range -50-70 degrees C. X-Ray diffraction revealed a direct L(beta') --> H( parallel) transition at 20 degrees C, 60 degrees C, and 45 degrees C depending on the glycolipid species but nearly not on the water content. The hexagonal phases are saturated at a water content of approximately 20 wt%. The lamellar phase absorbs even less water (< 10 wt%). The dielectric data show that in the H( parallel) phase the binding of water is stronger than in the L(beta') phase. In the temperature range below 0 degrees C, OSGA and OOGA show a "subzero transition" due to the freeze-out of water in a separate ice phase. This transition can be seen in an abrupt decrease of the dielectric function because the dielectric response of ice is much smaller at microwave frequencies. OLGA does not show the subzero transition but an additional transition, hexagonal --> distorted hexagonal at 60 degrees C.
Collapse
|
28
|
Yao H, Hatta I, Koynova R, Tenchov B. Time-resolved x-ray diffraction and calorimetric studies at low scan rates: II. On the fine structure of the phase transitions in hydrated dipalmitoylphosphatidylethanolamine. Biophys J 2010; 61:683-93. [PMID: 19431820 DOI: 10.1016/s0006-3495(92)81873-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The phase transitions of dipalmitoylphosphatidylethanolamine (DPPE) in excess water have been examined by low-angle time-resolved x-ray diffraction and calorimetry at low scan rates. The lamellar subgel/lamellar liquid-crystalline (L(c) --> L(alpha)), lamellar gel/lamellar liquid-crystalline (L(beta) --> L(alpha)), and lamellar liquid-crystalline/lamellar gel (L(alpha) --> L(beta)) phase transitions proceed via coexistence of the initial and final phases with no detectable intermediates at scan rates 0.1 and 0.5 degrees C/min. At constant temperature within the region of the L(beta) --> L(alpha) transition the ratio of the two coexisting phases was found to be stable for over 30 min. The state of stable phase coexistence was preceded by a 150-s relaxation taking place at constant temperature after termination of the heating scan in the transition region. While no intermediate structures were present in the coexistence region, a well reproducible multipeak pattern, with at least four prominent heat capacity peaks separated in temperature by 0.4-0.5 degrees C, has been observed in the cooling transition (L(alpha) --> L(beta)) by calorimetry. The multipeak pattern became distinct with an increase of incubation time in the liquid-crystalline phase. It was also clearly resolved in the x-ray diffraction intensity versus temperature plots recorded at slow cooling rates. These data suggest that the equilibrium state of the L(alpha) phase of hydrated DPPE is represented by a mixture of domains that differ in thermal behavior, but cannot be distinguished structurally by x-ray scattering.
Collapse
Affiliation(s)
- H Yao
- Department of Applied Physics, School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan
| | | | | | | |
Collapse
|
29
|
Proposed Mechanism for H(II) Phase Induction by Gramicidin in Model Membranes and Its Relation to Channel Formation. Biophys J 2010; 53:111-7. [PMID: 19431714 DOI: 10.1016/s0006-3495(88)83072-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A model is proposed for the molecular mechanism of H(II) phase induction by gramicidin in model membranes. The model describes the sequence of events that occurs upon hydration of a mixed lipid/gramicidin film, relating them to gramicidin channel formation and to relevant literature on gramicidin and lipid structure.
Collapse
|
30
|
Scherer JR. Dependence of lipid chain and head group packing of the inverted hexagonal phase on hydration. Biophys J 2010; 55:965-71. [PMID: 19431742 DOI: 10.1016/s0006-3495(89)82895-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A model which positions the hydrophobic/hydrophilic boundary in phosphatidylethanolamine lipids at the first CH(2) group in the acyl or alkyl chain is used to calculate the surface area per lipid, the mean chain and head-group dimensions and diameters of the hydrophilic tubes of the inverted hexagonal phase of didodecylphosphatidylethanolamine. The calculated surface areas compare favorably with areas obtained for the lamellar liquid crystal phase of the same lipid using the same boundary. Placement of the boundary within the lipid structure permits a determination of the maximum headgroup packing at hydration levels down to complete dehydration. The headgroup dimensions are consistent with a 5 A diam void at the center of a hydrophilic tube at zero hydration. The calculated mean fluid chain length is approximately 2 A smaller than the mean chain length of the lamellar phase at comparable levels of hydration. Comparison of the calculated mean fluid chain length and distances between hydrophobic boundaries shows that the fluid chains are interdigitated between adjacent tubes, and not interdigitated in the central space between three tubes. At low hydration the chains interdigitate in both spaces. The number of lipids packed around a tube at low hydration is only a function of the headgroup geometry, whereas at high hydration, it is a function of the number of carbon atoms in the chains.
Collapse
|
31
|
Abstract
The sensitivity of calculated structural dimensions of hydrated lipids to the position of the hydrophobic/hydrophilic boundary is reviewed. The position of this boundary is critical in determining the extent of hydration and location of water in the bilayer. A calculation of the dimensions of the hydrophilic and hydrophobic parts of the phosphatidylcholine and ethanolamine bilayer from literature values of the x-ray long spacing shows that the choice of boundary in phospholipids is not arbitrary and is best placed at the average position of the first CH(2) group in the hydrocarbon chains. Calculated dimensions of the hydrocarbon core and the water accessible regions agree with neutron and x-ray diffraction measurements. Hydration differences between phosphatidylcholines and phosphatidylethanolamines are readily explained from derived estimates of the layers of water which cover these headgroups.
Collapse
|
32
|
Köberl M, Hinz HJ, Rappolt M, Rapp G. Kinetics of glycolipid phase transitions: ms laser T-jump synchrotron studies. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/bbpc.19971010504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Fiedler S, Broecker J, Keller S. Protein folding in membranes. Cell Mol Life Sci 2010; 67:1779-98. [PMID: 20101433 PMCID: PMC11115603 DOI: 10.1007/s00018-010-0259-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/01/2010] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
Abstract
Separation of cells and organelles by bilayer membranes is a fundamental principle of life. Cellular membranes contain a baffling variety of proteins, which fulfil vital functions as receptors and signal transducers, channels and transporters, motors and anchors. The vast majority of membrane-bound proteins contain bundles of alpha-helical transmembrane domains. Understanding how these proteins adopt their native, biologically active structures in the complex milieu of a membrane is therefore a major challenge in today's life sciences. Here, we review recent progress in the folding, unfolding and refolding of alpha-helical membrane proteins and compare the molecular interactions that stabilise proteins in lipid bilayers. We also provide a critical discussion of a detergent denaturation assay that is increasingly used to determine membrane-protein stability but is not devoid of conceptual difficulties.
Collapse
Affiliation(s)
- Sebastian Fiedler
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Jana Broecker
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Sandro Keller
- Leibniz Institute of Molecular Pharmacology (FMP), Robert-Rössle-Str. 10, 13125 Berlin, Germany
- Molecular Biophysics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| |
Collapse
|
34
|
Marsh D. Structural and thermodynamic determinants of chain-melting transition temperatures for phospholipid and glycolipids membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:40-51. [DOI: 10.1016/j.bbamem.2009.10.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/07/2009] [Accepted: 10/14/2009] [Indexed: 11/25/2022]
|
35
|
Anglin TC, Conboy JC. Kinetics and Thermodynamics of Flip-Flop in Binary Phospholipid Membranes Measured by Sum-Frequency Vibrational Spectroscopy. Biochemistry 2009; 48:10220-34. [DOI: 10.1021/bi901096j] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Timothy C. Anglin
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112
| | - John C. Conboy
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112
| |
Collapse
|
36
|
Bouchet A, Frías M, Lairion F, Martini F, Almaleck H, Gordillo G, Disalvo E. Structural and dynamical surface properties of phosphatidylethanolamine containing membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:918-25. [DOI: 10.1016/j.bbamem.2009.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 01/26/2009] [Accepted: 02/17/2009] [Indexed: 10/21/2022]
|
37
|
Lenné T, Garvey CJ, Koster KL, Bryant G. Effects of Sugars on Lipid Bilayers during Dehydration − SAXS/WAXS Measurements and Quantitative Model. J Phys Chem B 2009; 113:2486-91. [DOI: 10.1021/jp808670t] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Thomas Lenné
- Applied Physics, RMIT University, Melbourne, Victoria, 3001, Australia, Australian Nuclear Science and Technology Organization, Menai, Australia, Department of Biology, The University of South Dakota, Vermillion, South Dakota
| | - Christopher J. Garvey
- Applied Physics, RMIT University, Melbourne, Victoria, 3001, Australia, Australian Nuclear Science and Technology Organization, Menai, Australia, Department of Biology, The University of South Dakota, Vermillion, South Dakota
| | - Karen L. Koster
- Applied Physics, RMIT University, Melbourne, Victoria, 3001, Australia, Australian Nuclear Science and Technology Organization, Menai, Australia, Department of Biology, The University of South Dakota, Vermillion, South Dakota
| | - Gary Bryant
- Applied Physics, RMIT University, Melbourne, Victoria, 3001, Australia, Australian Nuclear Science and Technology Organization, Menai, Australia, Department of Biology, The University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
38
|
Tenchov BG, Wang L, Koynova R, MacDonald RC. Modulation of a membrane lipid lamellar–nonlamellar phase transition by cationic lipids: A measure for transfection efficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2405-12. [DOI: 10.1016/j.bbamem.2008.07.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/16/2008] [Accepted: 07/18/2008] [Indexed: 11/25/2022]
|
39
|
Marsh D. Protein modulation of lipids, and vice-versa, in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1545-75. [DOI: 10.1016/j.bbamem.2008.01.015] [Citation(s) in RCA: 260] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/17/2008] [Accepted: 01/19/2008] [Indexed: 11/29/2022]
|
40
|
Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases. Biophys J 2008; 94:3987-95. [PMID: 18234828 DOI: 10.1529/biophysj.107.118034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Based on curvature energy considerations, nonbilayer phase-forming phospholipids in excess water should form stable bicontinuous inverted cubic (Q(II)) phases at temperatures between the lamellar (L(alpha)) and inverted hexagonal (H(II)) phase regions. However, the phosphatidylethanolamines (PEs), which are a common class of biomembrane phospholipids, typically display direct L(alpha)/H(II) phase transitions and may form intermediate Q(II) phases only after the temperature is cycled repeatedly across the L(alpha)/H(II) phase transition temperature, T(H), or when the H(II) phases are cooled from T > T(H). This raises the question of whether models of inverted phase stability, which are based on curvature energy alone, accurately predict the relative free energy of these phases. Here we demonstrate the important role of a noncurvature energy contribution, the unbinding energy of the L(alpha) phase bilayers, g(u), that serves to stabilize the L(alpha) phase relative to the nonlamellar phases. The planar L(alpha) phase bilayers must separate for a Q(II) phase to form and it turns out that the work of their unbinding can be larger than the curvature energy reduction on formation of Q(II) phase from L(alpha) at temperatures near the L(alpha)/Q(II) transition temperature (T(Q)). Using g(u) and elastic constant values typical of unsaturated PEs, we show that g(u) is sufficient to make T(Q) > T(H) for the latter lipids. Such systems would display direct L(alpha) --> H(II) transitions, and a Q(II) phase might only form as a metastable phase upon cooling of the H(II) phase. The g(u) values for methylated PEs and PE/phosphatidylcholine mixtures are significantly smaller than those for PEs and increase T(Q) by only a few degrees, consistent with observations of these systems. This influence of g(u) also rationalizes the effect of some aqueous solutes to increase the rate of Q(II) formation during temperature cycling of lipid dispersions. Finally, the results are relevant to protocols for determining the Gaussian curvature modulus, which substantially affects the energy of intermediates in membrane fusion and fission. Recently, two such methods were proposed based on measuring T(Q) and on measuring Q(II) phase unit cell dimensions, respectively. In view of the effect of g(u) on T(Q) that we describe here, the latter method, which does not depend on the value of g(u), is preferable.
Collapse
|
41
|
Mannock DA, Collins MD, Kreichbaum M, Harper PE, Gruner SM, McElhaney RN. The thermotropic phase behaviour and phase structure of a homologous series of racemic β-d-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction. Chem Phys Lipids 2007; 148:26-50. [PMID: 17524381 DOI: 10.1016/j.chemphyslip.2007.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 04/10/2007] [Indexed: 11/16/2022]
Abstract
The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.
Collapse
Affiliation(s)
- David A Mannock
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
42
|
Kim JH, Kim MW. Temperature effect on the transport dynamics of a small molecule through a liposome bilayer. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2007; 23:313-7. [PMID: 17665090 DOI: 10.1140/epje/i2006-10212-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 06/15/2007] [Indexed: 05/16/2023]
Abstract
An ion having hydrophobic parts can directly transport through the liposome bilayer without an ion channel and its transport mechanism can be explained by the free-volume theory. This was confirmed by investigating the temperature effect on the transport dynamics of organic cations through anionic liposome bilayers made of unsaturated and saturated lipids by using optical second-harmonic generation (SHG) technique. This study provides useful information to design practical temperature-controlled drug delivery systems.
Collapse
Affiliation(s)
- J H Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, 305-701 Daejeon, Korea
| | | |
Collapse
|
43
|
Mansour HM, Zografi G. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:3809-19. [PMID: 17323986 DOI: 10.1021/la063053o] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The intricate interplay between the bilayer and monolayer properties of phosphatidylcholine (PC), phosphatidylglycerol (PG), and phosphatidylethanolamine (PE) phospholipids, in relation to their polar headgroup properties, and the effects of chain permutations on those polar headgroup properties have been demonstrated for the first time with a set of time-independent bilayer-monolayer equilibria studies. Bilayer and monolayer phase behavior for PE is quite different than that observed for PC and PG. This difference is attributed to the characteristic biophysical PE polar headgroup property of favorable intermolecular hydrogen-bonding and electrostatic interactions in both the bilayer and monolayer states. This characteristic hydrogen-bonding ability of the PE polar headgroup is reflected in the condensed nature of PE monolayers and a decrease in equilibrium monolayer collapse pressure at temperatures below the monolayer critical temperature, T(c) (whether above or below the monolayer triple point temperature, T(t)). This interesting phenomena is compared to equilibrated PC and PG monolayers which collapse to form bilayers at 45 mN/m at temperatures both above and below monolayer T(c). Additionally, it has been demonstrated by measurements of the equilibrium spreading pressure, pie, that at temperatures above the bilayer main gel-to-liquid-crystalline phase-transition temperature, T(m), all liquid-crystalline phospholipid bilayers spread to form monolayers with pie around 45 mN/m, and spread liquid-expanded equilibrated monolayers collapse at 45 mN/m to form their respective thermodynamically stable liquid-crystalline bilayers. At temperatures below bilayer T(m), PC and PG gel bilayers exhibit a drop in bilayer pi(e) values < or =0.2 mN/m forming gaseous monolayers, whereas the value of pic of spread monolayers remains around 45 mN/m. This suggests that spread equilibrated PC and PG monolayers collapse to a metastable liquid-crystalline bilayer structure at temperatures below bilayer T(m) (where the thermodynamically stable bilayer liquid-crystalline phase does not exist) and with a surface pressure of 45 mN/m, a surface chemical property characteristically observed at temperatures above bilayer T(m) (monolayer T(c)). In contrast, PE gel bilayers, which exist at temperatures below bilayer T(m) but above bilayer T(s) (bilayer crystal-to-gel phase-transition temperature), exhibit gel bilayer spreading to form equilibrated monolayers with intermediate pie values in the range of 30-40 mN/m; however, bilayer pie and monolayer pic values remain equal in value to one another. Contrastingly, at temperatures below bilayer T(s), PE crystalline bilayers exhibit bilayer pie values < or =0.2 mN/m forming equilibrated gaseous monolayers, whereas spread monolayers collapse at a value of pic remaining around 30 mN/m, indicative of metastable gel bilayer formation.
Collapse
Affiliation(s)
- Heidi M Mansour
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA.
| | | |
Collapse
|
44
|
Marsh D. Comment on interpretation of mechanochemical properties of lipid bilayer vesicles from the equation of state or pressure-area measurement of the monolayer at the air-water or oil-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:2916-9; discussion 2920-2. [PMID: 16519504 DOI: 10.1021/la051216n] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für Biophysikalische Chemie, Abt. Spektroskopie, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
45
|
Chapter 2: Surface Properties of Liposomes Depending on Their Composition. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/s1554-4516(06)04002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Kaasgaard T, Drummond CJ. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys Chem Chem Phys 2006; 8:4957-75. [PMID: 17091149 DOI: 10.1039/b609510k] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphile lyotropic liquid crystalline self-assembly materials are being used for a diverse range of applications. Historically, the most studied lyotropic liquid crystalline phase is probably the one-dimensional (1-D) lamellar phase, which has been employed as a model system for biomembranes and for drug delivery applications. In recent years, the structurally more complex 2-D and 3-D ordered lyotropic liquid crystalline phases, of which reversed hexagonal (H(2)) and reversed cubic phases (v(2)) are two prominent examples, have received growing interest. As is the case for the lamellar phase, these phases are frequently stable in excess water, which facilitates the preparation of nanoparticle dispersions and makes them suitable candidates for the encapsulation and controlled release of drugs. Integral membrane protein crystallization media and templates for the synthesis of inorganic nanostructured materials are other applications for 2-D and 3-D amphiphile self-assembly materials. The number of amphiphiles identified as forming nanostructured reversed phases stable in excess solvent is rapidly growing. In this article, different classes of amphiphiles that form reversed phases in excess solvent are reviewed, with an emphasis on linking phase behavior to amphiphile structure. The different amphiphile classes include: ethylene oxide-, monoacylglycerol-, glycolipid-, phosphatidylethanolamine-, and urea-based amphiphiles.
Collapse
Affiliation(s)
- Thomas Kaasgaard
- CSIRO Molecular and Health Technologies (CMHT), PO Box 184, North Ryde, NSW 1670, Australia
| | | |
Collapse
|
47
|
Abstract
Amphiphilic block copolyethers assemble into membranes with thickness between 2.4 and 7.5 nm. The vesicular morphology has been confirmed by small-angle X-ray scattering combined with electron microscopy for diblock copolymers and triblock copolymers of both architectures. The scaling of the membrane thicknesses with the length of the hydrophobic block is in good agreement with the strong segregation theory for block copolymer melts, indicating a mixed and stretched conformation of the hydrophobic chain inside the vesicle membrane. This result is in contrast to previously published results where the hydrophobic membranes were observed to have bilayer geometry and polymer chains that are relatively unperturbed from their ideal Gaussian dimensions.
Collapse
Affiliation(s)
- Giuseppe Battaglia
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, U.K
| | | |
Collapse
|
48
|
Tanaka M, Rehfeldt F, Schneider MF, Gege C, Schmidt RR, Funari SS. Oligomer-to-polymer transition in short ethylene glycol chains connected to mobile hydrophobic anchors. Chemphyschem 2005; 6:101-9. [PMID: 15688653 DOI: 10.1002/cphc.200400336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We studied the structure of short ethylene glycol (EG) chains with N repeating units (EGN, N = 3, 6, 9, 12, and 15) connected to hydrophobic dihexadecyl chains by means of a combination of differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS/WAXS). These synthetic amphiphiles dispersed in water form planar lamellar stacks and hexagonal cylinders confining the EG chains to restricted geometries. Owing to the self-assembly of the anchoring points, the lateral density of EG chains in planar lamella can be quantitatively controlled. Furthermore, the chain-melting phase transition of the anchors enables us to "switch" the intermolecular distance reversibly. SAXS/WAXS results suggest that the shorter EG chains (N = 3, 6, and 9) assume a helical conformation in stacks of planar lamella. When the EG chains are further elongated (N = 12 and 15), the lamellar periodicities cannot be explained by a linear extrapolation of shorter oligomers, but can be interpreted well as polymer brushes following the scaling theorem. Such rich phase behaviors of EGN molecules can be used as a simple model of oligo/poly-saccharide chains on cell surfaces, which act not only as flexible repellers between neighboring cells but also as stable spacers for functional ligands.
Collapse
Affiliation(s)
- Motomu Tanaka
- Lehrstuhl für Biophysik, Technische Universität München, 85748 Garching, Germany.
| | | | | | | | | | | |
Collapse
|
49
|
Rüdiger M, Tölle A, Meier W, Rüstow B. Naturally derived commercial surfactants differ in composition of surfactant lipids and in surface viscosity. Am J Physiol Lung Cell Mol Physiol 2005; 288:L379-83. [PMID: 15501950 DOI: 10.1152/ajplung.00176.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant biophysical properties are best described by surface tension and surface viscosity. Besides lecithin, surfactant contains a variety of minor lipids, such as plasmalogens, polyunsaturated fatty acid-containing phospholipids (PUFA-PL), and cholesterol. Plasmalogens and cholesterol improve surface properties of lipid mixtures significantly. High PUFA-PL and plasmalogen content in tracheal aspirate of preterm infants reduces the risk of developing chronic lung disease. Different preparations are available for exogenous surfactant substitution; however, little is known about lipid composition and surface viscosity. Thus lipid composition and surface properties (measured by oscillating drop surfactometer) of three commercial surfactant preparations (Alveofact, Curosurf, Survanta) were compared. Lipid composition exhibited strong differences: Survanta had the highest proportion of disaturated PL and total neutral lipids and the lowest proportion of PUFA-PL. Highest plasmalogen and PUFA-PL concentrations were found in Curosurf (3.8 ± 0.1 vs. 26 ± 1 mol%) compared with Alveofact (0.9 ± 0.3 vs. 11 ± 1) and Survanta (1.5 ± 0.2 vs. 6 ± 1). In Survanta samples, viscosity increased >8 × 10−6kg/s at surface tension of 30 mN/m. Curosurf showed only slightly increased surface viscosity below surface tensions of 25 mN/m, and viscosity did not reach 5 × 10−6kg/s. By adding defined PL to Survanta, we obtained a Curosurf-like lipid mixture (without plasmalogens) that exhibited biophysical properties like Curosurf. Different lipid compositions could explain some of the differences in surface viscosity. Therefore, PL pattern and minor surfactant lipids are important for biophysical activity and should be considered when designing synthetic surfactant preparations.
Collapse
Affiliation(s)
- Mario Rüdiger
- Clinic for Neonatology, Charité-Mitte; Schumannstr. 21, 10098 Berlin, Germany
| | | | | | | |
Collapse
|
50
|
Hull MC, Sauer DB, Hovis JS. Influence of Lipid Chemistry on the Osmotic Response of Cell Membranes: Effect of Non-Bilayer Forming Lipids. J Phys Chem B 2004. [DOI: 10.1021/jp049845d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marshall C. Hull
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2018
| | - David B. Sauer
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2018
| | - Jennifer S. Hovis
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907-2018
| |
Collapse
|