1
|
Losfeld ME, Scibona E, Lin CW, Villiger TK, Gauss R, Morbidelli M, Aebi M. Influence of protein/glycan interaction on site-specific glycan heterogeneity. FASEB J 2017; 31:4623-4635. [PMID: 28679530 DOI: 10.1096/fj.201700403r] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/19/2017] [Indexed: 01/23/2023]
Abstract
To study how the interaction between N-linked glycans and the surrounding amino acids influences oligosaccharide processing, we used protein disulfide isomerase (PDI), a glycoprotein bearing 5 N-glycosylation sites, as a model system and expressed it transiently in a Chinese hamster ovary (CHO)-S cell line. PDI was produced as both secreted Sec-PDI and endoplasmic reticulum-retained glycoprotein (ER)-PDI, to study glycan processing by ER and Golgi resident enzymes. Quantitative site-specific glycosylation profiles were obtained, and flux analysis enabled modeling site-specific glycan processing. By altering the primary sequence of PDI, we changed the glycan/protein interaction and thus the site-specific glycoprofile because of the improved enzymatic fluxes at enzymatic bottlenecks. Our results highlight the importance of direct interactions between N-glycans and surface-exposed amino acids of glycoproteins on processing in the ER and the Golgi and the possibility of changing a site-specific N-glycan profile by modulating such interactions and thus the associated enzymatic fluxes. Altering the primary protein sequence can therefore be used to glycoengineer recombinant proteins.-Losfeld, M.-E., Scibona, E., Lin, C.-W., Villiger, T. K., Gauss, R., Morbidelli, M., Aebi, M. Influence of protein/glycan interaction on site-specific glycan heterogeneity.
Collapse
Affiliation(s)
- Marie-Estelle Losfeld
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Ernesto Scibona
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Chia-Wei Lin
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Thomas K Villiger
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Robert Gauss
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology ETH Zürich, Zürich, Switzerland
| | - Markus Aebi
- Department of Biology, Institute of Microbiology, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland;
| |
Collapse
|
2
|
Crispin M, Chang VT, Harvey DJ, Dwek RA, Evans EJ, Stuart DI, Jones EY, Lord JM, Spooner RA, Davis SJ. A human embryonic kidney 293T cell line mutated at the Golgi alpha-mannosidase II locus. J Biol Chem 2009; 284:21684-95. [PMID: 19465480 PMCID: PMC2755891 DOI: 10.1074/jbc.m109.006254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 04/09/2009] [Indexed: 11/25/2022] Open
Abstract
Disruption of Golgi alpha-mannosidase II activity can result in type II congenital dyserythropoietic anemia and induce lupus-like autoimmunity in mice. Here, we isolated a mutant human embryonic kidney (HEK) 293T cell line called Lec36, which displays sensitivity to ricin that lies between the parental HEK 293T cells, in which the secreted and membrane-expressed proteins are dominated by complex-type glycosylation, and 293S Lec1 cells, which produce only oligomannose-type N-linked glycans. Stem cell marker 19A was transiently expressed in the HEK 293T Lec36 cells and in parental HEK 293T cells with and without the potent Golgi alpha-mannosidase II inhibitor, swainsonine. Negative ion nano-electrospray ionization mass spectra of the 19A N-linked glycans from HEK 293T Lec36 and swainsonine-treated HEK 293T cells were qualitatively indistinguishable and, as shown by collision-induced dissociation spectra, were dominated by hybrid-type glycosylation. Nucleotide sequencing revealed mutations in each allele of MAN2A1, the gene encoding Golgi alpha-mannosidase II: a point mutation that mapped to the active site was found in one allele, and an in-frame deletion of 12 nucleotides was found in the other allele. Expression of the wild type but not the mutant MAN2A1 alleles in Lec36 cells restored processing of the 19A reporter glycoprotein to complex-type glycosylation. The Lec36 cell line will be useful for expressing therapeutic glycoproteins with hybrid-type glycans and as a sensitive host for detecting mutations in human MAN2A1 causing type II congenital dyserythropoietic anemia.
Collapse
Affiliation(s)
- Max Crispin
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, and
| | - Veronica T. Chang
- Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DS
| | - David J. Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, and
| | - Raymond A. Dwek
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, and
| | - Edward J. Evans
- Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DS
| | - David I. Stuart
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN
| | - E. Yvonne Jones
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN
| | - J. Michael Lord
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Robert A. Spooner
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Simon J. Davis
- Weatherall Institute of Molecular Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX3 9DS
| |
Collapse
|
3
|
Crystal structure and carbohydrate analysis of Nipah virus attachment glycoprotein: a template for antiviral and vaccine design. J Virol 2008; 82:11628-36. [PMID: 18815311 DOI: 10.1128/jvi.01344-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Two members of the paramyxovirus family, Nipah virus (NiV) and Hendra virus (HeV), are recent additions to a growing number of agents of emergent diseases which use bats as a natural host. Identification of ephrin-B2 and ephrin-B3 as cellular receptors for these viruses has enabled the development of immunotherapeutic reagents which prevent virus attachment and subsequent fusion. Here we present the structural analysis of the protein and carbohydrate components of the unbound viral attachment glycoprotein of NiV glycoprotein (NiV-G) at a 2.2-A resolution. Comparison with its ephrin-B2-bound form reveals that conformational changes within the envelope glycoprotein are required to achieve viral attachment. Structural differences are particularly pronounced in the 579-590 loop, a major component of the ephrin binding surface. In addition, the 236-245 loop is rather disordered in the unbound structure. We extend our structural characterization of NiV-G with mass spectrometric analysis of the carbohydrate moieties. We demonstrate that NiV-G is largely devoid of the oligomannose-type glycans that in viruses such as human immunodeficiency virus type 1 and Ebola virus influence viral tropism and the host immune response. Nevertheless, we find putative ligands for the endothelial cell lectin, LSECtin. Finally, by mapping structural conservation and glycosylation site positions from other members of the paramyxovirus family, we suggest the molecular surface involved in oligomerization. These results suggest possible pathways of virus-host interaction and strategies for the optimization of recombinant vaccines.
Collapse
|
4
|
Ioffe E, Stanley P. Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc Natl Acad Sci U S A 1994; 91:728-32. [PMID: 8290590 PMCID: PMC43022 DOI: 10.1073/pnas.91.2.728] [Citation(s) in RCA: 313] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Eukaryotic cells require N-linked carbohydrates for survival. However, the biosynthetic intermediate Man5GlcNAc2Asn, in place of mature N-linked structures, allows glycoprotein synthesis and somatic cell growth to proceed normally. To determine whether the same would be true in a complex biological situation, the gene Mgat-1 was disrupted by homologous recombination in embryonic stem cells and transmitted to the germ line. The Mgat-1 gene encodes N-acetylglucosaminyltransferase I [GlcNAc-TI; alpha-1,3-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase; UDP-N-acetyl-D-glucosamine:glycoprotein (N-acetyl-D-glucosamine to alpha-D-mannosyl-1,3-(R1)-beta-D-mannosyl-R2) beta-1,2-N-acetyl-D-glucosaminyltransferase, EC 2.4.1.101], the transferase that initiates synthesis of hybrid and complex N-linked carbohydrates from Man5GlcNAc2Asn. Mice lacking GlcNAc-TI activity did not survive to term. Biochemical and morphological analyses of embryos from 8.5 to 13.5 days of gestation showed that Mgat-1-/-embryos are developmentally retarded, most noticeably in neural tissue, and die between 9.5 and 10.5 days of development.
Collapse
Affiliation(s)
- E Ioffe
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461
| | | |
Collapse
|
5
|
Chawla D, Animashaun T, Hughes RC. Interactions of Bowringia mildbraedii agglutinin with complex- and hybrid-type glycans. FEBS Lett 1992; 298:291-6. [PMID: 1544463 DOI: 10.1016/0014-5793(92)80079-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Affinity chromatography on Bowringia mildbraedii agglutinin (BMA) Sepharose of glycopeptides confirmed a previous report using oligosaccharides (Animashaun, T. and Hughes, R. C. (1989) J. Biol. Chem. 264,4657-4663) that high affinity binding requires the sequence Man alpha 1---2 Man alpha 1----6 Man alpha 1----6 Man beta 1----4. However, moderate binding was still exhibited by structures lacking this sequence provided the oligosaccharide core sequence Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc was present. This moderate binding was not affected by substitution with N-acetylglucosamine at C2 and C4, respectively, of the Man alpha 1----3 and Man beta 1----4 residues and BMA Sepharose should prove to be a useful tool for the isolation of bisected or non-bisected hybrid-type glycans.
Collapse
Affiliation(s)
- D Chawla
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | |
Collapse
|
6
|
Chawla D, Hughes RC. Effects of brefeldin A on oligosaccharide processing. Evidence for decreased branching of complex-type glycans and increased formation of hybrid-type glycans. Biochem J 1991; 279 ( Pt 1):159-65. [PMID: 1930135 PMCID: PMC1151562 DOI: 10.1042/bj2790159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Brefeldin A (BFA), a drug that induces redistribution of Golgi-apparatus proteins into the endoplasmic reticulum, was used to determine the role of subcellular compartmentalization in the processing of asparagine-linked oligosaccharides. Baby-hamster kidney cells were pulse-labelled with [3H]mannose for 30-60 min and chased for up to several hours in the presence or in the absence of BFA or labelled continuously for several hours with and without the drug. Cellular glycoproteins were digested to glycopeptides with Pronase and either fractionated into glycan classes by lectin affinity chromatography or digested further by endoglycosidase H and endoglycosidase D. Released oligosaccharides obtained in the latter procedure were then separated from each other and from endoglycosidase-resistant glycopeptides by paper chromatography. The results show that BFA induces a very fast processing of protein-linked Glc3Man9GlcNAc2 oligosaccharide down to man5GlcNAc2 and conversion into complex-type and hybrid-type glycans. The major difference between untreated and BFA-treated cells is a large increase in bi-antennary and hybrid-type glycans in the latter cells. These results indicate that galactosylation of a mono-antennary GlcNAcMan5GlcNAc2 hybrid blocks subsequent action by mannosidase II and N-acetylglucosaminyl transferase II, producing galactosylated hybrid-type glycans. Similarly, galactosylation of the product of N-acetylglucosaminyltransferases I and II, i.e. a Man3GlcNAc2 core substituted with GlcNAc beta 1----2 on both alpha 1----3- and alpha 1----6-linked mannose residues, blocks branching N-acetylglucosaminyltransferases IV and V, thereby causing an increase in bi-antennary glycans and a decrease in tri- and tetra-antennary glycans.
Collapse
Affiliation(s)
- D Chawla
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, U.K
| | | |
Collapse
|
7
|
|
8
|
Nandan D, Cates GA, Ball EH, Sanwal BD. Partial characterization of a collagen-binding, differentiation-related glycoprotein from skeletal myoblasts. Arch Biochem Biophys 1990; 278:291-6. [PMID: 2158279 DOI: 10.1016/0003-9861(90)90263-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A 46-kDa glycoprotein, gp46, which binds collagen has been purified to homogeneity from L6 rat skeletal myoblasts. The procedure involves extraction of crude myoblast membranes with 1% sodium dodecyl sulfate followed by concanavalin A affinity chromatography and preparative gel electrophoresis. The sequence of 15 N-terminal amino acids had some resemblance to a sequence in myosin light chains. The oligosaccharide chains of the glycoprotein can be released by treatment with endoglycosidase H, suggesting that gp46 has high-mannose type of glycans. Galactose and sialic acid are not detected in the purified protein. gp46 is widely distributed and conserved in different cell lines as determined by immunoblotting using a monoclonal anti-gp46 antibody. High levels of gp46 were found in several fibroblastic and myogenic cell lines, but not in a hematopoietic cell line. Undifferentiated F9 embryonal carcinoma cells lacked gp46 but the glycoprotein was induced when the cells were made to differentiate in the presence of retinoic acid. Broad survey of gp46 in different cell lines also suggests that it is present mainly in those cell lines which attach to the substratum and produce collagens. Although the function of gp46 is not yet known, the evidence suggests that it is developmentally regulated and is probably involved in the synthesis or assembly of collagen in the endoplasmic reticulum.
Collapse
Affiliation(s)
- D Nandan
- Department of Biochemistry, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
9
|
Ralton JE, Jackson HJ, Zanoni M, Gleeson PA. Effect of glycosylation inhibitors on the structure and function of the murine transferrin receptor. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 186:637-47. [PMID: 2514095 DOI: 10.1111/j.1432-1033.1989.tb15254.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The murine transferrin receptor is a disulphide-linked dimer with three N-glycosylation sites. We have investigated the structural and functional properties of the transferrin receptor from murine plasmacytoma cells (NS-1 cells) treated with the glycosylation inhibitor, tunicamycin and the glycosylation-processing inhibitors, swainsonine and castanospermine. 1. Tunicamycin (1 microgram/ml) inhibited mannose incorporation in NS-1 cells by greater than 90%, but also inhibited methionine incorporation by up to 50%. Both swainsonine (1 microgram/ml) and castanospermine (50 micrograms/ml) resulted in mannose incorporation greater than 100% of untreated cells and neither drug affected methionine incorporation. 2. Incubation of NS-1 cells with tunicamycin resulted in a shift in the apparent molecular mass of the transferrin receptor from 96 kDa and 94 kDa to approximately 82 kDa. 3. Peptide N-glycosidase F digestion of the receptor from untreated cells resulted in the fully deglycosylated 82 kDa component as well as an 87 kDa component which represents partially deglycosylated receptor resistant to peptide N-glycosidase F digestion. 4. The receptor from swainsonine-treated cells was equally sensitive to peptide N-glycosidase F and endo-beta-N-acetylglucosaminidase H (endo H; resulting in both 87-kDa and 82-kDa components), whereas the receptor from castanospermine-treated cells was only partially sensitive to endo H. 5. Analysis of mannose- and fucose-labelled cellular glycopeptides by concanavalin-A--Sepharose chromatography showed that swainsonine (1 microgram/ml) treatment resulted in approximately 90% inhibition of the synthesis of complex N-glycans and an accumulation of fucosylated hybrid structures. In contrast, castanospermine (100 micrograms/ml) treatment resulted in only partial inhibition (60%) of the synthesis of complex N-glycans. 6. Analysis of the receptor from tunicamycin, swainsonine and castanospermine treated cells under nonreducing conditions showed a single component corresponding to the dimer, indicating that dimerisation of newly synthesised murine receptor is independent of carbohydrate. 7. The non-glycosylated receptor from tunicamycin-treated cells appears to bind transferrin as demonstrated by interaction with transferrin-Sepharose. 8. Surface expression of the receptor was not significantly altered in the presence of either swainsonine or castanospermine as judged by flow cytometry.
Collapse
Affiliation(s)
- J E Ralton
- Department of Pathology and Immunology, Monash University Medical School, Melbourne, Australia
| | | | | | | |
Collapse
|
10
|
Foddy L, Hughes RC. Assembly of asparagine-linked oligosaccharides in baby hamster kidney cells treated with castanospermine, an inhibitor of processing glucosidases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:291-9. [PMID: 3402456 DOI: 10.1111/j.1432-1033.1988.tb14196.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have shown previously that the processing of asparagine-linked oligosaccharides in baby hamster kidney (BHK) cells is blocked only partially by the glucosidase inhibitors, 1-deoxynojirimycin and N-methyl-1-deoxynojirimycin [Hughes, R. C., Foddy, L. & Bause, E. (1987) Biochem. J. 247, 537-544]. Similar results are now reported for castanospermine, another inhibitor of processing glucosidases, and a detailed study of oligosaccharide processing in the inhibited cells is reported. In steady-state conditions the major endo-H-released oligosaccharides contained glucose residues but non-glycosylated oligosaccharides, including Man9GlcNAc to Man5GlcNAc, were also present. To determine the processing sequences occurring in the presence of castanospermine, BHK cells were pulse-labelled for various times with [3H]mannose and the oligosaccharide intermediates, isolated by gel filtration and paper chromatography, characterized by acetolysis and sensitivity to jack bean alpha-mannosidase. The data show that Glc3Man9GlcNAc2 is transferred to protein and undergoes processing to produce Glc3Man8GlcNAc2 and Glc3Man7GlcNAc2 as major species as well as a smaller amount of Man9GlcNAc2. Glucosidase-processed intermediates, Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2, were also obtained as well as a Man7GlcNAc2 species derived from Glc1Man7GlcNAc2 and different from the Man7GlcNAc2 isomer formed in the usual processing pathway. No evidence for the direct transfer of non-glucosylated oligosaccharides to proteins was obtained and we conclude that the continued assembly of complex-type glycans in castanospermine-inhibited BHK cells results from residual activity of processing glucosidases.
Collapse
Affiliation(s)
- L Foddy
- National Institute for Medical Research, London, England
| | | |
Collapse
|
11
|
Hubbard SC. Differential effects of oncogenic transformation on N-linked oligosaccharide processing at individual glycosylation sites of viral glycoproteins. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)49270-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Hughes RC, Foddy L, Bause E. Asparagine-linked oligosaccharides of BHK cells treated with inhibitors of oligosaccharide processing. Biochem J 1987; 247:537-45. [PMID: 2962571 PMCID: PMC1148447 DOI: 10.1042/bj2470537] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Baby-hamster kidney (BHK) cells were labelled with [2-3H]mannose for 1-2 days in media containing 1-deoxynojirimycin, N-methyl-1-deoxynojirimycin or 1-deoxymannojirimycin. Glycopeptides obtained by Pronase digestion of disrupted cells were analysed by lectin affinity chromatography, by Bio-Gel P4 gel filtration and by paper chromatography of oligosaccharides released by endo-beta-N-acetylglucosaminidase H. Biosynthesis of complex-type oligosaccharides was diminished but not abolished, the greatest effect being obtained by continuous culture of cells with 1-deoxymannojirimycin. Under these conditions cells contained only 20-30% of the concentration of complex-type chains found in control cells and correspondingly increased amounts of oligomannose-type chains. Similar concentrations of asparagine-linked Man6-GlcNAc2 and Man5GlcNAc2 were present in 1-deoxymannojirimycin-treated cells and control cells, indicating that the inhibition of complex-type chain formation was not related simply to an inability of inhibitor-treated cells to carry out extensive mannosidase-catalysed processing. N-Methyl-1-deoxynojirimycin induced accumulation of oligomannose-type chains containing three glucose residues, and cells treated with 1-deoxynojirimycin contained oligosaccharides with one to three glucose residues. Cells cultured in the presence of the inhibitors retained sensitivity towards the galactose-binding lectins ricin and modeccin.
Collapse
Affiliation(s)
- R C Hughes
- National Institute for Medical Research, London, U.K
| | | | | |
Collapse
|
13
|
Monis E, Bonay P, Hughes RC. Characterization of a mannosidase acting on alpha 1----3- and alpha 1----6-linked mannose residues of oligomannosidic intermediates of glycoprotein processing. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 168:287-94. [PMID: 3665925 DOI: 10.1111/j.1432-1033.1987.tb13419.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Baby hamster kidney (BHK) cell extracts catalyze the conversion of [3H]mannose-labelled (Man)5GlcNAc and (Man)6GlcNAc oligosaccharides to a (Man)3GlcNAc species that retains affinity for concanavalin-A-Sepharose and appears to be Man alpha 1----3[Man alpha 1----6]Man beta 1----4GlcNAc. The properties of the (Man)5GlcNAc-hydrolase activity differ from lysosomal alpha-mannosidases as well as previously described processing mannosidases acting on oligosaccharide intermediates of N-glycan assembly. Mosquito cell extracts catalyze hydrolysis of (Man)6GlcNAc but lack the (Man)5GlcNAc hydrolase activity detected in BHK cell extracts. Glycopeptide analysis has been carried out on a ricin-resistant BHK mutant RicR14 that lacks N-acetylglucosaminyl transferase I and fails to convert oligomannosidic N-glycans to complex-type chains, and mosquito cells that constitutively lack N-acetylglucosaminyl transferase I. In both cell lines, the cellular glycoproteins contain (Man)5GlcNAc oligosaccharide as the major stable component equivalent to a 15-20-fold increase compared with normal BHK cells. Although containing very high amounts of asparagine-linked (Man)5(GlcNAc)2, RicR14 cells exhibit (Man)5GlcNAc hydrolase activity at levels similar to wild-type BHK cells. This result, together with previous work [Foddy, L., Feeney, J. & Hughes, R.C. (1986) Biochem. J. 233, 697-706] showing the complete inhibition of conversion of oligomannosidic intermediates to complex-type N-glycans in BHK cells treated with swainsonine, an inhibitor of mannosidase II but not the (Man)5GlcNAc hydrolase activity, argues against a major role for the (Man)5GlcNAc hydrolase activity in N-glycan assembly and suggesting other functions for the mannosidase activity in BHK cells.
Collapse
Affiliation(s)
- E Monis
- National Institute for Medical Research, London, England
| | | | | |
Collapse
|
14
|
A general strategy for the isolation of carbohydrate chains fromN-,O-glycoproteins and its application to human chorionic gonadotrophin. Glycoconj J 1987. [DOI: 10.1007/bf01049451] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Bendiak B, Schachter H. Control of glycoprotein synthesis. Kinetic mechanism, substrate specificity, and inhibition characteristics of UDP-N-acetylglucosamine:alpha-D-mannoside beta 1-2 N-acetylglucosaminyltransferase II from rat liver. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45643-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Hughes RC, Taylor A, Sage H, Hogan BL. Distinct patterns of glycosylation of colligin, a collagen-binding glycoprotein, and SPARC (osteonectin), a secreted Ca2+-binding glycoprotein. Evidence for the localisation of colligin in the endoplasmic reticulum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 163:57-65. [PMID: 3816803 DOI: 10.1111/j.1432-1033.1987.tb10736.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mouse parietal endoderm PYS cells were labelled with [2-3H]mannose for 16-24 h. Colligin, an Mr-47000 collagen-binding protein, and SPARC, a Mr-43000 protein, highly homologous to the Ca2+-binding protein osteonectin, were isolated from labelled cell extracts and culture medium respectively. Glycopeptides obtained by exhaustive digestion with pronase were analysed by lectin-affinity, ion-exchange, and gel-filtration chromatography and by paper chromatography of high-mannose oligosaccharides after endo H release. The results show that the N-linked carbohydrate chains of colligin are exclusively the high-mannose type, of which (Man)8(GlcNAc)2 and (Man)9(GlcNAc)2 make up 77%. This carbohydrate structure provides strong evidence that colligin is a component of the endoplasmic reticulum, and argues against a role in cell-surface interactions. By contrast to colligin, SPARC secreted by PYS cells contains predominantly a diantennary complex type of chain containing a variable number of sialic acid and core-substituted fucose residues. Similar glycosylation patterns to those discussed above were seen in colligin isolated from primary mouse embryonic parietal endoderm cells and the murine 3T3 cell line, and in SPARC secreted by bovine corneal endothelial cells. Unlike the type-IV-collagen-binding glycoprotein studied by Dennis, J., Waller, C. and Schirrmacher, V. [J. Cell Biol. 99, 1416-1423 (1984)], removal of N-linked oligosaccharides from colligin had no effect on its binding to native type IV collagen.
Collapse
|
17
|
Foddy L, Hughes RC. Interactions of lectins with normal, swainsonine-treated and ricin-resistant baby hamster kidney BHK cells. Carbohydr Res 1986; 151:293-304. [PMID: 3094937 DOI: 10.1016/s0008-6215(00)90349-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The aggregation of single-cell suspensions of normal and four ricin-resistant cell lines of baby hamster kidney (BHK) cells by several lectins has been studied by particle counting. Normal BHK cells were aggregated by concanavalin A, Ricinus communis agglutinin and ricin, Abrus precatorius agglutinin, wheat germ agglutinin, and Erythrina cristagalli and Erythrina corallodendron agglutinins. Neuraminidase treatment increased 4-13 fold the aggregation of BHK cells by the latter two lectins, as reported earlier for ricin. After long-term culture of normal BHK cells with swainsonine, an inhibitor of complex N-glycan assembly, the aggregation of cells by each lectin except concanavalin A was much decreased or totally abolished. The lectin-induced aggregation of ricin-resistant cell lines RicR 14, 15, 19, and 21 was very similar to swainsonine treated BHK cells. Aggregation of RicR 15, 19, and 21 cells by Erythrina lectins was increased markedly by neuraminidase treatment of the cells. A smaller effect was obtained with Ric 14 cells. The data reported are consistent with similar hybrid N-glycans being present in swainsonine-treated BHK cells and the ricin-resistant cells. The hybrid structures bind lectins of Ricinus, Abrus, and Erythrina species after desialylation.
Collapse
|
18
|
Hughes RC, Feeney J. Ricin-resistant mutants of baby-hamster-kidney cells deficient in alpha-mannosidase-II-catalyzed processing of asparagine-linked oligosaccharides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 158:227-37. [PMID: 3732270 DOI: 10.1111/j.1432-1033.1986.tb09742.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previous work has shown that two ricin-resistant mutants of baby hamster kidney (BHK) cells, RicR15 and RicR19, synthesize only hybrid and oligomannose-type asparagine-linked oligosaccharides [Hughes, R. C. and Mills, G. (1985) Biochem. J. 226, 487-498]. In the present report glycopeptides were released from disrupted cells by exhaustive digestion with pronase, fractionated by chromatography on concanavalin-A--Sepharose, DEAE-Sephacel and lentil-lectin--Sepharose and characterized by 500-MHz 1H-NMR spectroscopy. The major hybrid structure identified in both cell lines contains five mannose residues and the sequence NeuNAc alpha 2----3Gal beta 1----4GlcNAc beta 1----2 linked to the alpha 1----3 arm mannose of the core pentasaccharide. Analysis of extracts of normal or mutant cells has shown in the mutants a deficiency in alpha-mannosidase activity measured with p-nitrophenyl alpha-mannoside. This activity is swainsonine-sensitive and exhibits a pH optimum at about 6-6.5. Assays using a specific substrate for alpha-mannosidase II, a terminal processing glycosidase in conversion of penta-mannose hybrid intermediates to complex N-glycans, reveals a reduced activity in RicR15 cells. Analysis of glycopeptides obtained from cells labelled with [3H]fucose or [3H]galactose revealed a small proportion of branched complex N-glycans of normal structure in mutant cells.
Collapse
|
19
|
Foddy L, Feeney J, Hughes RC. Properties of baby-hamster kidney (BHK) cells treated with Swainsonine, an inhibitor of glycoprotein processing. Comparison with ricin-resistant BHK-cell mutants. Biochem J 1986; 233:697-706. [PMID: 3085652 PMCID: PMC1153088 DOI: 10.1042/bj2330697] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Baby-hamster kidney (BHK) cells were grown continuously in long-term monolayer culture in the presence of Swainsonine, an inhibitor of alpha-mannosidase II, a processing enzyme involved in glycoprotein biosynthesis. The asparagine-linked oligosaccharides (N-glycans) were isolated from Pronase-digested cells by gel filtration, ion-exchange chromatography and affinity chromatography on concanavalin A--Sepharose and lentil lectin--Sepharose. The major N-glycans, analysed by 500 MHz 1H-n.m.r. spectroscopy, were identified as hybrid structures containing five mannose residues and neutral high-mannose N-glycans. The major hybrid species contained a core-substituted fucose alpha(1----6) residue and a NeuNAc alpha(2----3)Gal beta(1----4)GlcNAc terminal sequence; smaller amounts of non-sialylated and non-fucosylated hybrid structures were also detected. Swainsonine-treated cells also produced neutral oligosaccharides containing a single reducing N-acetylglucosamine residue substituted with polymannose sequences. The glycopeptide composition of Swainsonine-treated BHK cells resembles closely that of the ricin-resistant BHK cell mutant, RicR21 [P. A. Gleeson, J. Feeney and R. C. Hughes (1985) Biochemistry 24, 493-503], except the hybrid structures of RicR21 cells contain three, not five, mannose residues. Like RicR21 cells, Swainsonine-treated BHK cells showed a greatly increased resistance to ricin cytotoxicity, but not to modeccin, another galactose-binding lectin. These effects were readily reversed on removal of Swainsonine and growth in normal medium.
Collapse
|