1
|
Scheen AJ, Paquot N, Lefèbvre PJ. Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert Opin Investig Drugs 2017; 26:1373-1389. [PMID: 29052441 DOI: 10.1080/13543784.2017.1395020] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite type 2 diabetes (T2D) being recognized as a bihormonal pancreatic disease, current therapies are mainly focusing on insulin, while targeting glucagon has been long dismissed. However, glucagon receptor (GCGr) antagonists are currently investigated in clinical trials. Area covered: Following a brief description of the rationale for antagonizing GCGr in T2D, lessons from GCGr knock-out mice and pharmacological means to antagonize GCGr, a detailed description of the main results obtained with GCGr antagonists in Phase I-II clinical trials is provided. The development of several small molecules has been discontinued, while new ones are currently considered as well as innovative approaches such as monoclonal antibodies or antisense oligonucleotides inhibiting GCGr gene expression. Their potential benefits but also limitations are discussed. Expert opinion: The proof-of-concept that antagonizing GCGr improves glucose control in T2D has been confirmed in humans. Nevertheless, some adverse events led to stopping the development of some of these GCGr antagonists. New approaches seem to have a better benefit/risk balance, although none has progressed to Phase III clinical trials so far. Pharmacotherapy of T2D is becoming a highly competitive field so that GCGr antagonists should provide clear advantages over numerous existing glucose-lowering medications before eventually reaching clinical practice.
Collapse
Affiliation(s)
- André J Scheen
- a Division of Clinical Pharmacology , Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , Belgium.,b Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine , CHU , Liège , Belgium
| | - Nicolas Paquot
- b Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine , CHU , Liège , Belgium
| | - Pierre J Lefèbvre
- b Division of Diabetes, Nutrition and Metabolic Disorders, Department of Medicine , CHU , Liège , Belgium
| |
Collapse
|
2
|
Filipski KJ. Small molecule glucagon receptor antagonists: a patent review (2011 – 2014). Expert Opin Ther Pat 2015; 25:819-30. [DOI: 10.1517/13543776.2015.1032250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
3
|
Cho YM, Merchant CE, Kieffer TJ. Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol Ther 2012; 135:247-78. [DOI: 10.1016/j.pharmthera.2012.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
|
4
|
Burcelin R, Knauf C, Cani P. Pancreatic α-cell dysfunction in diabetes. DIABETES & METABOLISM 2008; 34 Suppl 2:S49-55. [DOI: 10.1016/s1262-3636(08)73395-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Gromada J, Franklin I, Wollheim CB. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 2007; 28:84-116. [PMID: 17261637 DOI: 10.1210/er.2006-0007] [Citation(s) in RCA: 424] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glucagon, a hormone secreted from the alpha-cells of the endocrine pancreas, is critical for blood glucose homeostasis. It is the major counterpart to insulin and is released during hypoglycemia to induce hepatic glucose output. The control of glucagon secretion is multifactorial and involves direct effects of nutrients on alpha-cell stimulus-secretion coupling as well as paracrine regulation by insulin and zinc and other factors secreted from neighboring beta- and delta-cells within the islet of Langerhans. Glucagon secretion is also regulated by circulating hormones and the autonomic nervous system. In this review, we describe the components of the alpha-cell stimulus secretion coupling and how nutrient metabolism in the alpha-cell leads to changes in glucagon secretion. The islet cell composition and organization are described in different species and serve as a basis for understanding how the numerous paracrine, hormonal, and nervous signals fine-tune glucagon secretion under different physiological conditions. We also highlight the pathophysiology of the alpha-cell and how hyperglucagonemia represents an important component of the metabolic abnormalities associated with diabetes mellitus. Therapeutic inhibition of glucagon action in patients with type 2 diabetes remains an exciting prospect.
Collapse
Affiliation(s)
- Jesper Gromada
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
6
|
Pan CQ, Buxton JM, Yung SL, Tom I, Yang L, Chen H, MacDougall M, Bell A, Claus TH, Clairmont KB, Whelan JP. Design of a long acting peptide functioning as both a glucagon-like peptide-1 receptor agonist and a glucagon receptor antagonist. J Biol Chem 2006; 281:12506-15. [PMID: 16505481 DOI: 10.1074/jbc.m600127200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The closely related peptides glucagon-like peptide (GLP-1) and glucagon have opposing effects on blood glucose. GLP-1 induces glucose-dependent insulin secretion in the pancreas, whereas glucagon stimulates gluconeogenesis and glycogenolysis in the liver. The identification of a hybrid peptide acting as both a GLP-1 agonist and a glucagon antagonist would provide a novel approach for the treatment of type 2 diabetes. Toward this end a series of hybrid peptides made up of glucagon and either GLP-1 or exendin-4, a GLP-1 agonist, was engineered. Several peptides that bind to both the GLP-1 and glucagon receptors were identified. The presence of glucagon sequence at the N terminus removed the dipeptidylpeptidase IV cleavage site and increased plasma stability compared with GLP-1. Targeted mutations were incorporated into the optimal dual-receptor binding peptide to identify a peptide with the highly novel property of functioning as both a GLP-1 receptor agonist and a glucagon receptor antagonist. To overcome the short half-life of this mutant peptide in vivo, while retaining dual GLP-1 agonist and glucagon antagonist activities, site-specific attachment of long chained polyethylene glycol (PEGylation) was pursued. PEGylation at the C terminus retained the in vitro activities of the peptide while dramatically prolonging the duration of action in vivo. Thus, we have generated a novel dual-acting peptide with potential for development as a therapeutic for type 2 diabetes.
Collapse
Affiliation(s)
- Clark Q Pan
- Department of Biotechnology, Bayer HealthCare, California 94701, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sturm NS, Hutzler AM, David CS, Azizeh BY, Trivedi D, Hruby VJ. Structure-activity studies of hydrophobic amino acid replacements at positions 9, 11 and 16 of glucagon. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 49:293-9. [PMID: 9176812 DOI: 10.1111/j.1399-3011.1997.tb01129.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have designed and synthesized eight compounds 2-9 which incorporate neutral, hydrophobic amino acid residues in positions 9, 11 and 16 of the glucagon molecule: (2) [desHis1, Val9. Ile11,16] glucagon amide, (3) [desHis1, Val9,11,16] glucagon amide, (4) [desHis1, Val9, Leu11,16]glucagon amide, (5) [desHis1, Nle9, Ile11,16]glucagon amide, (6) [desHis1, Nle9, Val11,16] glucagon amide, (7) [desHis1,-Nle9, Leu11,16] glucagon amide, (8) [desHis1, Val9, Leu11,16, Lys17,18, Glu21] glucagon amide and (9) [desHis1, Nle9, Leu11,16, Lys17,18, Glu21] glucagon amide. The effect of neutral, hydrophobic residues at positions 9, 11 and 16 led to good binding to the glucagon receptor. Compared to glucagon (IC50 = 1.5 nM), analogues 2-9 were found to have IC50 values of 6.0, 6.0, 11.0, 9.0, 2.5, 2.8, 6.5 and 7.0 nM, respectively. When these compounds were tested for their ability to block adenylate cyclase (AC) activity, they were found to be antagonists having no stimulation of adenyl cyclase, with pA2 values of 6.15, 6.20, 6.30, 7.25, 6.10, 7.30, 6.25 and 7.25, respectively.
Collapse
Affiliation(s)
- N S Sturm
- Department of Chemistry, University of Arizona, Tucson, USA
| | | | | | | | | | | |
Collapse
|
8
|
Azizeh BY, Van Tine BA, Trivedi D, Hruby VJ. Pure glucagon antagonists: biological activities and cAMP accumulation using phosphodiesterase inhibitors. Peptides 1997; 18:633-41. [PMID: 9213355 DOI: 10.1016/s0196-9781(97)00131-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Five new glucagon analogues have been designed, synthesized, characterized and their biological activities tested. The investigation was centered on modifications in the N-terminal region in particular, residues at Thr5, Phe6 and Tyr10 positions, with the goal of obtaining pure glucagon antagonists in our newly developed high sensitivity cAMP accumulation assay. The structures of the designed compounds are: [des-His1, des-Phe6, Glu9] glucagon-NH2 (1); [des-His1, des-Phe6, Glu9, Phe10]glucagon-NH2 (2); [des-His1, Tyr5, des-Phe6, Glu9]glucagon-NH2 (3); [des-His1, Phe5, des-Phe6, Glu9]glucagon-NH2 (4) and [des-His1, des-Phe6, Glu9, D-Arg18]glucagon-NH2 (5). The binding potencies IC50 values in (nM) were 48.0, 27.4, 26.0, 20.0 and 416.0, respectively. All of these analogues when tested in the classical adenylate cyclase assay demonstrate antagonist properties, and in competition experiments, all caused a rightward-shift of the glucagon stimulated adenylate cyclase dose-response curve. The pA2 values for these analogues were 8.20 (1); 6.25 (2); 6.10 (3); 6.25 (4); and 6.08 (5), respectively. A newly revised assay has been developed to determine the intracellular cAMP accumulation levels in hepatocytes at the highest possible sensitivity. Four of the five glucagon analogues in this report (analogues 1, 2, 4 and 5), did not activate the adenylate cyclase in the presence of Rolipram up to a maximal physiological concentration of 1 microM, and thus are pure antagonists.
Collapse
Affiliation(s)
- B Y Azizeh
- Department of Chemistry, University of Arizona, Tucson 85721, USA
| | | | | | | |
Collapse
|
9
|
Dharanipragada R, Trivedi D, Bannister A, Siegel M, Tourwe D, Mollova N, Schram K, Hruby VJ. Synthetic linear and cyclic glucagon antagonists. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1993; 42:68-77. [PMID: 8396562 DOI: 10.1111/j.1399-3011.1993.tb00352.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The synthesis and biological activities of seven new glucagon analogues are reported. The design of compounds 2-5 is based on potent antagonists recently reported from this laboratory, where we have focused on modifications in the N-terminal region. In this report we have concentrated specifically on modifications to histidine-1. In addition we have prepared two cyclic compounds 7 and 8, related to a linear in vivo antagonist [Glu9]glucagon, reported by Merrifield (Unson et al. (1987) Proc. Natl. Acad. Sci. USA 84, 4083-4087). The N-terminal modifications involved substitution of His1 by the unnatural conformationally constrained residue (S)-5,6,7,8-tetrahydro-5-oxoimidazo(1,5-c)pyrimidine-7-carboxylic acid (Toc), desaminohistidine (dHis) and 3-(4-nitrobenzyl)histidine. The structures of the new compounds are as follows. [Toc1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (2); [Toc1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon amide (3); [3-(4-nitrobenzyl)His1,D-Phe4,Tyr5,Arg12,Lys17,18,G lu21]glucagon (4); [dHis1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (5); [dHis1,Glu9]glucagon (6); (desHis1)[Glu9,Lys12]glucagon amide (7); (desHis1)-[Glu9,Lys12,Asp15]glucagon amide (8). The binding potencies of the linear analogues, as expressed a percentage of glucagon binding, are 2.6 (2), 0.13 (3), 0.8 (4), 0.8 (5), 2.2 (6). Both cyclic analogues 7 and 8 show biphasic binding curves. The IC50 values for 7 at the high and low affinity sites are 1.5 and 167 nM, respectively (IC50 of glucagon = 1.3 nM). The IC50 values for 8 at the high and low affinity sites are 4.7 and 3451 nM, respectively. The cyclic analogues are characterized by fast atom bombardment mass spectrometry of endoproteinase ASP-N digests. The specificity of the enzyme used in these studies enables differentiation of isomers of the cyclic glucagon analogues which differ only in the position of cyclic amide bond. Analogues 2, 3 and 5-8 are glucagon receptor antagonists with respect to the glucagon receptor coupled to the adenylate cyclase (AC) system. Analogue 4 is a partial agonist (5.7% compared to glucagon) of AC. Introduction of unusual amino acids which do not contain a primary alpha-amino group such as Toc at the N-terminus is expected to increase in vivo metabolic stability by protecting against degradation by aminopeptidases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Glucagon/analogs & derivatives
- Glucagon/antagonists & inhibitors
- Glucagon/chemical synthesis
- In Vitro Techniques
- Kinetics
- Liver/metabolism
- Male
- Molecular Sequence Data
- Peptides/chemical synthesis
- Peptides/chemistry
- Peptides/pharmacology
- Peptides, Cyclic/chemical synthesis
- Peptides, Cyclic/chemistry
- Peptides, Cyclic/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Gastrointestinal Hormone/antagonists & inhibitors
- Receptors, Gastrointestinal Hormone/drug effects
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Glucagon
- Spectrometry, Mass, Fast Atom Bombardment
- Structure-Activity Relationship
Collapse
Affiliation(s)
- R Dharanipragada
- Department of Chemistry, College of Pharmacy, University of Arizona, Tucson
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mollova NN, Schram KH, Lin Y, Dharanipragada R, Hruby VJ. Characterization of linear and cyclic glucagon analogs by fast atom bombardment mass spectrometry. BIOLOGICAL MASS SPECTROMETRY 1993; 22:267-76. [PMID: 8507672 DOI: 10.1002/bms.1200220502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Fast atom bombardment mass spectral mapping of endoproteinase Asp-N digest mixtures is used for characterization of new synthetic linear and cyclic glucagon analogs. The results allow rapid identification of sequence modifications in linear glucagon analogs. For the cyclic compounds, the technique allows confirmation of the presence and position of the cyclic amide bond, as well as verification of the sequence of the modified glucagon analogs. The specificity of the Asp-N enables differentiation of isometric glucagon analogs which differ only in the position of the cyclic amide bond. Important information concerning the purity of the synthetic analogs is also available.
Collapse
Affiliation(s)
- N N Mollova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arizona, Tucson 85721
| | | | | | | | | |
Collapse
|
11
|
Hruby VJ. Chapter 18 Strategies in the development of peptide antagonists. PROGRESS IN BRAIN RESEARCH 1992; 92:215-24. [PMID: 1363847 DOI: 10.1016/s0079-6123(08)61177-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- V J Hruby
- Department of Chemistry, University of Arizona, Tucson 85721
| |
Collapse
|
12
|
Zechel C, Trivedi D, Hruby VJ. Synthetic glucagon antagonists and partial agonists. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1991; 38:131-8. [PMID: 1664420 DOI: 10.1111/j.1399-3011.1991.tb01420.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This paper reports the synthesis and the biological activities of six new glucagon analogues. In these compounds N-terminal modifications of the glucagon sequence were made, in most cases combined with changes in the C-terminal region which had been shown previously to enhance receptor affinity. The design of these analogues was based on [Lys17,18,Glu21]glucagon,1 a superagonist, which binds five times better than glucagon to the glucagon receptor, and on the potent glucagon antagonist [D-Phe4,Tyr5,Arg12]glucagon, which does not stimulate adenylate cyclase system even at very high concentrations. The N-terminal modifications involved substitution of His1 by the unnatural conformationally constrained residue, 4,5,6,7-tetrahydro-1H-imidazo[c]pyridine-6-carboxylic acid (Tip) and by desaminohistidine (dHis). In addition we prepared two analogues (6 and 7), in which we deleted the Phe6 residue, which was suggested to be part of a hydrophobic patch and involved in receptor binding. The following compounds were synthesized: [Tip1, Lys17,18,Glu21]glucagon (2); [Tip1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (3); [dHis1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (4); [dHis1,Asp3,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21+ ++]glucagon (5); des-Phe6-[Tip1,D-Phe4,Tyr5,Arg12,Glu21]glucagon (6); des-Phe6-[Asp3,D-Phe4,Tyr5,Arg12,Glu21]glucagon (7). The binding potencies of these new analogues relative to glucagon (= 100) are 3.2 (2), 2.9 (3), 10.0 (4), 1.0 (5), 8.5 (6), and 1.7 (7). Analogue 2 is a partial agonist (maximum stimulation of adenylate cyclase (AC) approximately 15% and a potency 8.9% that of glucagon, while the remaining compounds 3-7 are antagonists unable to activate the AC system even at concentrations as high as 10(-5) M. In addition, in competition experiments, analogues 3-7 caused a right-shift of the glucagon stimulated adenylate cyclase dose-response curve.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Zechel
- Department of Chemistry, University of Arizona, Tucson
| | | | | |
Collapse
|
13
|
Bharucha DB, Tager HS. Analysis of glucagon-receptor interactions on isolated canine hepatocytes. Formation of reversibly and irreversibly cell-associated hormone. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39735-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Glucagon Antagonists: Contribution to Binding and Activity of the Amino-terminal Sequence 1–5, Position 12, and the Putative α-Helical Segment 19–27. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)85011-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Krstenansky JL, Zechel C, Trivedi D, Hruby VJ. Importance of the C-terminal alpha-helical structure for glucagon's biological activity. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1988; 32:468-75. [PMID: 2854536 DOI: 10.1111/j.1399-3011.1988.tb01377.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The synthetic glucagon analogues [Glu21]glucagon, 2, and [Lys17,18,Glu21]glucagon, 3, were designed using Chou-Fasman calculations for the purpose of enhancing the probability for the formation of a C-terminal amphipathic alpha-helical conformation. Circular dichroism indicates increased alpha-helical content for these analogues in solution relative to glucagon. Analogues 2 and 3 also exhibit a 3-fold and 5-fold increase in receptor binding potency, respectively. The adenylate cyclase stimulating potencies of 2 and 3 relative to glucagon are 2.1 and 7 times greater, respectively. Attempts were made at further alpha-helical enhancement by further substitutions in the 10-13 region of glucagon, as represented by the glucagon analogues [Phe13,Lys17,18 Glu21]glucagon, 4, and [Phe10,13,Lys17,18,Glu21]glucagon, 5. These latter substitutions resulted in lowered receptor binding and adenylate cyclase potencies for 4 and 5 relative to 3 despite increased alpha-helical content in solution as observed by circular dichroism spectroscopy.
Collapse
|
16
|
Robberect P, Damien C, Moroder L, Coy DH, Wünsch E, Christophe J. Receptor occupancy and adenylate cyclase activation in rat liver and heart membranes by 10 glucagon analogs modified in position 2,3, 4, 25, 27 and/or 29. REGULATORY PEPTIDES 1988; 21:117-28. [PMID: 2839870 DOI: 10.1016/0167-0115(88)90096-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Rat liver and heart membranes were tested for adenylate cyclase activation by glucagon and 10 glucagon analogs mono- or polysubstituted in positions 2-4, 25, 27 and/or 29. The first membranes were, in addition, examined for the capacity of glucagon analogs to inhibit the binding of [125I]iodoglucagon. The monophasic slope of dose-effect curves suggested interaction with one class of glucagon receptors in both tissues, receptors in liver being more sensitive to the ligands and more efficiently coupled to adenylate cyclase than heart receptors. Structure-activity studies on liver membranes revealed that modifications of the beta-turn potential in the 2-4 region by single residue substitutions could lead to partial agonists (with D-Gln3 or Phe4) or to a superagonist (with D-Phe4). The importance of a proper alpha-helix conformation in the C-terminal part of glucagon for binding affinity was also obvious: replacing Trp25, Met27 and Thr29 in combination by Phe25, Leu27 and Thr29-NH2 increased the affinity while single or combined substitutions with Gly25 and/or Nle27 sharply decreased the affinity. Similar trends were less evident but still obvious on heart membranes.
Collapse
Affiliation(s)
- P Robberect
- Department of Biochemistry and Nutrition, Medical School, Free University of Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Hagopian WA, Tager HS, Gysin B, Trivedi D, Hruby VJ. Interactions of glucagon and glucagon analogs with isolated canine hepatocytes. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47755-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
|