1
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
2
|
Brovarets’ OO, Hovorun DM. Key microstructural mechanisms of the 2-aminopurine mutagenicity: Results of extensive quantum-chemical research. J Biomol Struct Dyn 2019; 37:2716-2732. [DOI: 10.1080/07391102.2018.1495577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| |
Collapse
|
3
|
Kuzuya A, Machida K, Shi Y, Tanaka K, Komiyama M. Site-Selective RNA Activation by Acridine-Modified Oligodeoxynucleotides in Metal-Ion Catalyzed Hydrolysis: A Comprehensive Study. ACS OMEGA 2017; 2:5370-5377. [PMID: 31457805 PMCID: PMC6644747 DOI: 10.1021/acsomega.7b00966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/21/2017] [Indexed: 06/10/2023]
Abstract
Various types of acridine were conjugated to DNA and used for site-selective RNA scission together with another unmodified DNA and a Lu(III) ion. The target phosphodiester linkage in the substrate RNA was selectively and efficiently activated, and was hydrolyzed by the free Lu(III) ion. Among the investigated 14 conjugates, the conjugate bearing 9-amino-2-isopropoxy-6-nitroacridine was the best RNA-activator. Systematic evaluation of the RNA-activating ability of the acridines showed that (1) the acridines act as an acid catalyst within the RNA activation, (2) the amino-group at the 9-position of acridine is essential to modulate the acidity of acridine, (3) the electron-withdrawing group at the 3-position further enhances the acid catalysis, and (4) the substituent at the 2-position sterically modulates the orientation of acridine-intercalation favorably for the catalysis. Moreover, it is revealed that the opposite base of acridine does not inhibit direct interaction of acridine with the target phosphodiester linkage.
Collapse
Affiliation(s)
- Akinori Kuzuya
- Department
of Chemistry and Materials Engineering, Kansai University, 3-3-35
Yamate, Suita, Osaka 564-8680, Japan
| | - Kenzo Machida
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Yun Shi
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Keita Tanaka
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Makoto Komiyama
- International
Center for Materials Nanoarchitechtonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
4
|
Brovarets' OO, Voiteshenko IS, Pérez-Sánchez H, Hovorun DM. A QM/QTAIM detailed look at the Watson-Crick↔wobble tautomeric transformations of the 2-aminopurine·pyrimidine mispairs. J Biomol Struct Dyn 2017; 36:1649-1665. [PMID: 28514900 DOI: 10.1080/07391102.2017.1331864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This work is devoted to the careful QM/QTAIM analysis of the evolution of the basic physico-chemical parameters along the intrinsic reaction coordinate (IRC) of the biologically important 2AP·T(WC)↔2AP·T*(w) and 2AP·C*(WC)↔2AP·C(w) Watson-Crick(WC)↔wobble(w) tautomeric transformations obtained at each point of the IRC using original authors' methodology. Established profiles reflect the high similarity between the courses of these processes. Basing on the scrupulous analysis of the profiles of their geometric and electron-topological parameters, it was established that the dipole-active WC↔w tautomerizations of the Watson-Crick-like 2AP·T(WC)/2AP·C*(WC) mispairs, stabilized by the two classical N3H⋯N1, N2H⋯O2 and one weak C6H⋯O4/N4 H-bonds, into the wobble 2AP·T*(w)/2AP·C(w) base pairs, respectively, joined by the two classical N2H⋯N3 and O4/N4H⋯N1 H-bonds, proceed via the concerted stepwise mechanism through the sequential intrapair proton transfer and subsequent large-scale shifting of the bases relative each other, through the planar, highly stable, zwitterionic transition states stabilized by the participation of the four H-bonds - N1+H⋯O4-/N4-, N1+H⋯N3-, N2+H⋯N3-, and N2+H⋯O2-. Moreover, it was found out that the 2AP·T(WC)↔2AP·T*(w)/2AP·C*(WC)↔2AP·C(w) tautomerization reactions occur non-dissociatively and are accompanied by the consequent replacement of the 10 unique patterns of the specific intermolecular interactions along the IRC. Obtained data are of paramount importance in view of their possible application for the control and management of the proton transfer, e.g. by external electric or laser fields.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Ivan S Voiteshenko
- b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Horacio Pérez-Sánchez
- c Computer Science Department , Bioinformatics and High Performance Computing (BIO-HPC) Research Group, Universidad Católica San Antonio de Murcia (UCAM) , Guadalupe, Murcia 30107 , Spain
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| |
Collapse
|
5
|
Brovarets' OO, Pérez-Sánchez H. Whether 2-aminopurine induces incorporation errors at the DNA replication? A quantum-mechanical answer on the actual biological issue. J Biomol Struct Dyn 2016; 35:3398-3411. [PMID: 27794627 DOI: 10.1080/07391102.2016.1253504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper, we consider the mutagenic properties of the 2-aminopurine (2AP), which has intrigued molecular biologists, biophysicists and physical chemists for a long time and been widely studied by both experimentalists and theorists. We have shown for the first time using QM calculations, that 2AP very effectively produces incorporation errors binding with cytosine (C) into the wobble (w) C·2AP(w) mispair, which is supported by the N4H⋯N1 and N2H⋯N3 H-bonds and is tautomerized into the Watson-Crick (WC)-like base mispair C*·2AP(WC) (asterisk denotes the mutagenic tautomer of the base), that quite easily in the process of the thermal fluctuations acquires enzymatically competent conformation. 2AP less effectively produces transversions forming the wobble mispair with A base - A·2AP(w), stabilized by the participation of the N6H⋯N1 and N2H⋯N1 H-bonds, followed by further tautomerization A·2AP(w) → A*·2AP(WC) and subsequent conformational transition A*·2AP(WC) → A*·2APsyn thus acquiring enzymatically competent structure. In this case, incorporation errors occur only in those case, when 2AP belongs to the incoming nucleotide. Thus, answering the question posed in the title of the article, we affirm for certain that 2AP induces incorporation errors at the DNA replication. Obtained results are consistent well with numerous experimental data.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Horacio Pérez-Sánchez
- c Computer Science Department, Bioinformatics and High Performance Computing (BIO-HPC) Research Group , Universidad Católica San Antonio de Murcia (UCAM) , Murcia 30107 , Spain
| |
Collapse
|
6
|
Greiner VJ, Kovalenko L, Humbert N, Richert L, Birck C, Ruff M, Zaporozhets OA, Dhe-Paganon S, Bronner C, Mély Y. Site-Selective Monitoring of the Interaction of the SRA Domain of UHRF1 with Target DNA Sequences Labeled with 2-Aminopurine. Biochemistry 2015; 54:6012-20. [PMID: 26368281 DOI: 10.1021/acs.biochem.5b00419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UHRF1 plays a central role in the maintenance and transmission of epigenetic modifications by recruiting DNMT1 to hemimethylated CpG sites via its SET and RING-associated (SRA) domain, ensuring error-free duplication of methylation profiles. To characterize SRA-induced changes in the conformation and dynamics of a target 12 bp DNA duplex as a function of the methylation status, we labeled duplexes by the environment-sensitive probe 2-aminopurine (2-Ap) at various positions near or far from the central CpG recognition site containing either a nonmodified cytosine (NM duplex), a methylated cytosine (HM duplex), or methylated cytosines on both strands (BM duplex). Steady-state and time-resolved fluorescence indicated that binding of SRA induced modest conformational and dynamical changes in NM, HM, and BM duplexes, with only slight destabilization of base pairs, restriction of global duplex flexibility, and diminution of local nucleobase mobility. Moreover, significant restriction of the local motion of residues flanking the methylcytosine in the HM duplex suggested that these residues are more rigidly bound to SRA, in line with a slightly higher affinity of the HM duplex as compared to that of the NM or BM duplex. Our results are consistent with a "reader" role, in which the SRA domain scans DNA sequences for hemimethylated CpG sites without perturbation of the structure of contacted nucleotides.
Collapse
Affiliation(s)
- Vanille J Greiner
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| | - Lesia Kovalenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France.,Analytical Chemistry Department, Taras Shevchenko National University of Kyiv , 64 Volodymyrska Street, 01033 Kyiv, Ukraine
| | - Nicolas Humbert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| | - Ludovic Richert
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg , 1 rue Laurent Fries, Illkirch, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg , 1 rue Laurent Fries, Illkirch, France
| | - Olga A Zaporozhets
- Analytical Chemistry Department, Taras Shevchenko National University of Kyiv , 64 Volodymyrska Street, 01033 Kyiv, Ukraine
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School , 360 Brookline Avenue, Boston, Massachusetts 02215, United States
| | - Christian Bronner
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964 CNRS UMR 7104, Université de Strasbourg , 1 rue Laurent Fries, Illkirch, France
| | - Yves Mély
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie , 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
7
|
2-aminopurine as a fluorescent probe of DNA conformation and the DNA–enzyme interface. Q Rev Biophys 2015; 48:244-79. [DOI: 10.1017/s0033583514000158] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractNearly 50 years since its potential as a fluorescent base analogue was first recognized, 2-aminopurine (2AP) continues to be the most widely used fluorescent probe of DNA structure and the perturbation of that structure by interaction with enzymes and other molecules. In this review, we begin by considering the origin of the dramatic and intriguing difference in photophysical properties between 2AP and its structural isomer, adenine; although 2AP differs from the natural base only in the position of the exocyclic amine group, its fluorescence intensity is one thousand times greater. We then discuss the mechanism of interbase quenching of 2AP fluorescence in DNA, which is the basis of its use as a conformational probe but remains imperfectly understood. There are hundreds of examples in the literature of the use of changes in the fluorescence intensity of 2AP as the basis of assays of conformational change; however, in this review we will consider in detail only a few intensity-based studies. Our primary aim is to highlight the use of time-resolved fluorescence measurements, and the interpretation of fluorescence decay parameters, to explore the structure and dynamics of DNA. We discuss the salient features of the fluorescence decay of 2AP when incorporated in DNA and review the use of decay measurements in studying duplexes, single strands and other structures. We survey the use of 2AP as a probe of DNA-enzyme interaction and enzyme-induced distortion, focusing particularly on its use to study base flipping and the enhanced mechanistic insights that can be gained by a detailed analysis of the decay parameters, rather than merely monitoring changes in fluorescence intensity. Finally we reflect on the merits and shortcomings of 2AP and the prospects for its wider adoption as a fluorescence-decay-based probe.
Collapse
|
8
|
Patro JN, Urban M, Kuchta RD. Role of the 2-amino group of purines during dNTP polymerization by human DNA polymerase alpha. Biochemistry 2009; 48:180-9. [PMID: 19072331 DOI: 10.1021/bi801823z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used a series of dNTP analogues in conjunction with templates containing modified bases to elucidate the role that N(2) of a purine plays during dNTP polymerization by human DNA polymerase alpha. Removing N(2) from dGTP had small effects during correct incorporation opposite C but specifically increased misincorporation opposite A. Adding N(2) to dATP and related analogues had small and variable effects on the efficiency of polymerization opposite T. However, the presence of N(2) greatly enhanced polymerization of these dATP analogues opposite a template C. The ability of N(2) to enhance polymerization opposite C likely results from formation of a hydrogen bond between the purine N(2) and pyrimidine O(2). Even in those cases where formation of a wobble base pair, tautomerization, and/or protonation of the base pair between the incoming dNTP and template base cannot occur (e.g., 2-pyridone.purine (or purine analogue) base pairs), N(2) enhanced formation of the base pair. Importantly, N(2) had similar effects on dNTP polymerization both when added to the incoming purine dNTP and when added to the template base being replicated. The mechanistic implications of these results regarding how pol alpha discriminates between right and wrong dNTPs are discussed.
Collapse
Affiliation(s)
- Jennifer N Patro
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, Colorado 80309
| | | | | |
Collapse
|
9
|
Kenfack CA, Piémont E, Ben Gaied N, Burger A, Mély Y. Time-resolved fluorescent properties of 8-vinyl-deoxyadenosine and 2-amino-deoxyribosylpurine exhibit different sensitivity to their opposite base in duplexes. J Phys Chem B 2008; 112:9736-45. [PMID: 18646799 DOI: 10.1021/jp8028243] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
8-Vinyl-deoxyadenosine (8VA) has been recently introduced as a fluorescent analogue of adenosine that is less perturbing and less quenched than the well-established 2-amino-deoxyribosylpurine (2AP) probe when inserted in oligonucleotides. To further validate 8VA as a fluorescent substitute of A, we compared the ability of 8VA and 2AP in sequences of the type d(CGT TTT XNX TTT TGC) (with N=8VA or 2AP and X=T and C) to discriminate the nature of the opposite base (Y) in duplexes. For both probes, systematic variations in the amplitudes of the short- and long-lived lifetimes of the fluorescence intensity decays as well as in the amplitude of the fast rotational correlation time of the fluorescence anisotropy decays were observed as a function of the nature of Y. From these parameters, we inferred a stability order 8VA-T > 8VA-G > 8VA-A > 8VA-C, similar to the stability order with the native A base, but different from the stability order with 2AP. Using a combination of molecular mechanics and ab initio calculations, we found that the time-resolved parameters of 8VA, but not the 2AP ones, correlate well with the geometry and the strength of the A-Y base-pairing interaction. This may be rationalized by the smaller structural and electronic perturbations induced by the vinyl group in position 8 as compared to the amino group at position 2. As a consequence, substitution of A by 8VA in a base pair was found to only minimally modify the structure and interaction energy of the base pair. Thus, 8VA can be used as a fluorescent substitute of the natural A, to straightforwardly discriminate the nature of the opposite base. This may find interesting applications notably in the elucidation of the mechanisms and dynamics of the DNA mismatch repair system.
Collapse
Affiliation(s)
- Cyril A Kenfack
- Photophysique des Interactions Biomoleculaires, UMR 7175 CNRS, Institut Gilbert Laustriat, Faculte de Pharmacie, Universite Louis Pasteur, Strasbourg 1, 74, Route du Rhin, 67401 Illkirch Cedex, France.
| | | | | | | | | |
Collapse
|
10
|
Yu Q, Carlsen P. Synthesis of polynucleotide analogs containing a polyvinyl alcohol backbone. Molecules 2008; 13:701-15. [PMID: 18463571 PMCID: PMC6245193 DOI: 10.3390/molecules13030701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 03/10/2008] [Indexed: 11/16/2022] Open
Abstract
Water soluble homo-base polynucleotide analogues were synthesized in which polyvinyl alcohol and partially phosphonated polyvinyl alcohol constituted the backbones,onto which were grafted uracil or adenine via 1,3-dioxane spacers formed by acetal formation with the 1,3-diol moieties in PVA. The resulting adenine-PVA polynucleotide analogs exhibited hyperchromic effects, which was not the case for the corresponding uracil compounds. Mixtures of the adenine- and aracil PVA-phosphate polynucleotide analogs in solutions exhibited characteristic S-shaped UV-absorbance vs temperature and melting curves with melting points at approximately 40 degrees C.
Collapse
Affiliation(s)
| | - Per Carlsen
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
11
|
Affiliation(s)
- Mark Lukin
- Department of Pharmacological Sciences, State University of New York at Stony Brook, School of Medicine, 11794-8651, USA
| | | |
Collapse
|
12
|
Folta-Stogniew E, O'Malley S, Gupta R, Anderson KS, Radding CM. Exchange of DNA base pairs that coincides with recognition of homology promoted by E. coli RecA protein. Mol Cell 2004; 15:965-75. [PMID: 15383285 DOI: 10.1016/j.molcel.2004.08.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 06/06/2004] [Accepted: 07/01/2004] [Indexed: 11/26/2022]
Abstract
The unresolved mechanism by which a single strand of DNA recognizes homology in duplex DNA is central to understanding genetic recombination and repair of double-strand breaks. Using stopped-flow fluorescence we monitored strand exchange catalyzed by E. coli RecA protein, measuring simultaneously the rate of exchange of A:T base pairs and the rates of formation and dissociation of the three-stranded intermediates called synaptic complexes. The rate of exchange of A:T base pairs was indistinguishable from the rate of formation of synaptic complexes, whereas the rate of displacement of a single strand from complexes was five to ten times slower. This physical evidence shows that a subset of bases exchanges at a rate that is fast enough to account for recognition of homology. Together, several studies suggest that a mechanism governed by the dynamic structure of DNA and catalyzed by diverse enzymes underlies both recognition of homology and initiation of strand exchange.
Collapse
Affiliation(s)
- Ewa Folta-Stogniew
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
13
|
Tippin B, Kobayashi S, Bertram JG, Goodman MF. To slip or skip, visualizing frameshift mutation dynamics for error-prone DNA polymerases. J Biol Chem 2004; 279:45360-8. [PMID: 15339923 DOI: 10.1074/jbc.m408600200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three models describing frameshift mutations are "classical" Streisinger slippage, proposed for repetitive DNA, and "misincorporatation misalignment" and "dNTP-stabilized misalignment," proposed for non-repetitive DNA. We distinguish between models using pre-steady state fluorescence kinetics to visualize transiently misaligned DNA intermediates and nucleotide incorporation products formed by DNA polymerases adept at making small frameshift mutations in vivo. Human polymerase (pol) mu catalyzes Streisinger slippage exclusively in repetitive DNA, requiring as little as a dinucleotide repeat. Escherichia coli pol IV uses dNTP-stabilized misalignment in identical repetitive DNA sequences, revealing that pol mu and pol IV use different mechanisms in repetitive DNA to achieve the same mutational end point. In non-repeat sequences, pol mu switches to dNTP-stabilized misalignment. pol beta generates -1 frameshifts in "long" repeats and base substitutions in "short" repeats. Thus, two polymerases can use two different frameshift mechanisms on identical sequences, whereas one polymerase can alternate between frameshift mechanisms to process different sequences.
Collapse
Affiliation(s)
- Brigette Tippin
- Departments of Biological Sciences and Chemistry, Hedco Molecular Biology Laboratories, University of Southern California, Los Angeles, California 90089-1340, USA
| | | | | | | |
Collapse
|
14
|
Daujotyte D, Serva S, Vilkaitis G, Merkiene E, Venclovas C, Klimasauskas S. HhaI DNA methyltransferase uses the protruding Gln237 for active flipping of its target cytosine. Structure 2004; 12:1047-55. [PMID: 15274924 DOI: 10.1016/j.str.2004.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/25/2004] [Accepted: 04/13/2004] [Indexed: 11/22/2022]
Abstract
Access to a nucleotide by its rotation out of the DNA helix (base flipping) is used by numerous DNA modification and repair enzymes. Despite extensive studies of the paradigm HhaI methyltransferase, initial events leading to base flipping remained elusive. Here we demonstrate that the replacement of the target C:G pair with the 2-aminopurine:T pair in the DNA or shortening of the side chain of Gln237 in the protein severely perturb base flipping, but retain specific DNA binding. Kinetic analyses and molecular modeling suggest that a steric interaction between the protruding side chain of Gln237 and the target cytosine in B-DNA reduces the energy barrier for flipping by 3 kcal/mol. Subsequent stabilization of an open state by further 4 kcal/mol is achieved through specific hydrogen bonding of the side chain to the orphan guanine. Gln237 thus plays a key role in actively opening the target C:G pair by a "push-and-bind" mechanism.
Collapse
Affiliation(s)
- Dalia Daujotyte
- Laboratory of Biological DNA Modification, Institute of Biotechnology, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
15
|
Bhattacharya PK, Cha J, Barton JK. 1H NMR determination of base-pair lifetimes in oligonucleotides containing single base mismatches. Nucleic Acids Res 2002; 30:4740-50. [PMID: 12409465 PMCID: PMC135820 DOI: 10.1093/nar/gkf601] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Proton nuclear magnetic resonance (NMR) spectroscopy is employed to characterize the kinetics of base-pair opening in a series of 9mer duplexes containing different single base mismatches. The imino protons from the different mismatched, as well as fully matched, duplexes are assigned from the imino-imino region in the WATERGATE NOESY spectra. The exchange kinetics of the imino protons are measured from selective longitudinal relaxation times. In the limit of infinite exchange catalyst concentration, the exchange times of the mismatch imino protons extrapolate to much shorter lifetimes than are commonly observed for an isolated GC base pair. Different mismatches exhibit different orders of base-pair lifetimes, e.g. a TT mismatch has a shorter base-pair lifetime than a GG mismatch. The effect of the mismatch was observed up to a distance of two neighboring base pairs. This indicates that disruption in the duplex caused by the mismatch is quite localized. The overall order of base-pair lifetimes in the selected sequence context of the base pair is GC > GG > AA > CC > AT > TT. Interestingly, the fully matched AT base pair has a shorter base-pair lifetime relative to many of the mismatches. Thus, in any given base pair, the exchange lifetime can exhibit a strong dependence on sequence context. These findings may be relevant to the way mismatch recognition is accomplished by proteins and small molecules.
Collapse
Affiliation(s)
- Pratip K Bhattacharya
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
16
|
Stivers JT. 2-Aminopurine fluorescence studies of base stacking interactions at abasic sites in DNA: metal-ion and base sequence effects. Nucleic Acids Res 1998; 26:3837-44. [PMID: 9685503 PMCID: PMC147768 DOI: 10.1093/nar/26.16.3837] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Metal-ion and sequence dependent changes in the stacking interactions of bases surrounding abasic (AB) sites in 10 different DNA duplexes were examined by incorporating the fluorescent nucleotide probe 2-aminopurine (2-AP), opposite to the site (AB-APopp) or adjacent to the site (AB-APadj) on either strand. A detailed study of the fluorescence emission and excitation spectra of these AB duplexes and their corresponding parent duplexes indicates that AB-APoppis significantly less stacked than 2-AP in the corresponding normal duplex. In general, AB-APadjon the AB strand is stacked, but AB-APadjon the opposite strand shows destabilized stacking interactions. The results also indicate that divalent cation binding to the AB duplexes contributes to destabilizaton of the base stacking interactions of AB-APopp, but has little or no effect on the stacking interactions of AB-APadj. Consistent with these results, the fluorescence of AB-APoppis 18-30-fold more sensitive to an externally added quenching agent than the parent normal duplex. When uracil DNA glycosylase binds to AB-APoppin the presence of 2.5 mM MgCl2, a 3-fold decrease in fluorescence is observed ( K d = 400 +/- 90 nM) indicating that the unstacked 2-APoppbecomes more stacked upon binding. On the basis of these fluorescence studies a model for the local base stacking interactions at these AB sites is proposed.
Collapse
Affiliation(s)
- J T Stivers
- Center for Advanced Research in Biotechnology, University of Maryland, Biotechnology Institute and theNational Institute for Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| |
Collapse
|
17
|
Luyten I, Herdewijn P. Hybridization properties of base-modified oligonucleotides within the double and triple helix motif. Eur J Med Chem 1998. [DOI: 10.1016/s0223-5234(98)80016-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Hochstrasser RA, Carver TE, Sowers LC, Millar DP. Melting of a DNA helix terminus within the active site of a DNA polymerase. Biochemistry 1994; 33:11971-9. [PMID: 7918416 DOI: 10.1021/bi00205a036] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Accurate synthesis of DNA by polymerase is due in part to the selective removal of misincorporated nucleotides by a 3'-5' exonuclease activity (proofreading). Proofreading by an exonuclease domain containing a single-stranded DNA binding site may involve local melting of a duplex DNA substrate. Here we use time-resolved fluorescence spectroscopy to analyze the local melting of a DNA duplex terminus induced by the Klenow fragment of DNA polymerase I. Four oligodeoxynucleotide primer/templates were prepared, each containing the fluorescent adenine analog 2-aminopurine (A*) at the primer 3' terminus, and one of the common DNA bases opposite the A* residue. Fluorescence decays of the duplex DNAs and the single primer oligonucleotide were jointly analyzed using global analysis procedures. Four lifetime components were resolved in the duplex DNAs, representing distinct conformational states of the terminal A* residue: paired A* bases, partially stacked A* bases, and extended A* bases. The variation of the apparent fraction of paired A* bases with temperature was in accord with optical melting data, and the extent of base pairing observed in each duplex was consistent with the base-pairing preferences of A* established in other studies. These results establish that the fluorescence decay characteristics of A* can be used to examine base-pairing interactions at a DNA duplex terminus. Since the fluorescence of A* can be observed without interference from protein amino acid residues, unlike existing methods for monitoring DNA melting transitions, this method was used to examine the extent to which Klenow fragment could induce fraying at each duplex terminus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R A Hochstrasser
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | |
Collapse
|
19
|
Bloom LB, Otto MR, Eritja R, Reha-Krantz LJ, Goodman MF, Beechem JM. Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3'-exonuclease activity of bacteriophage T4 DNA polymerase. Biochemistry 1994; 33:7576-86. [PMID: 8011623 DOI: 10.1021/bi00190a010] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of local DNA sequence on the proofreading efficiency of wild-type T4 DNA polymerase were examined by measuring the kinetics of removal of the fluorescent nucleotide analog 2-aminopurine deoxynucleoside monophosphate (dAPMP) from primer/templates of defined sequences. The effects of (1) interactions with the 5'-neighboring bases, (2) base pair stability, and (3) G.C content of the surrounding sequences on the pre-steady-state kinetics of dAPMP excision were measured. Rates of excision dAPMP from a primer 3'-terminus located opposite a template T (AP.T base pair) increased, over a 3-fold range, with the 5'-neighbor to AP in the order C < G < T < A. Rates of removal of dAPMP from AP.X base pairs located in the same surrounding sequence increased as AP.T < AP.A < AP.C < AP.G, which correlates with the decrease in the stabilities of these base pairs predicted by Tm measurements. A key finding was that AP was excised at a slower rate when mispaired opposite C located next to four G.C base pairs than when correctly paired opposite T next to four A.T base pairs, suggesting that exonuclease mismatch removal specificities may be enhanced to a much greater extent by instabilities of local primer termini than by specific recognition of incorrect base pairs. In polymerase-initiated reactions, biphasic reaction kinetics were observed for the excision of AP within most but not all sequence contexts. Rates of the rapid phases (30-40 s-1) were relatively insensitive to sequence context. Rapid-phase rates reflect the rate constants for exonucleolytic excision of dAPMP from melted primer termini for both correct and incorrect base pairs and were roughly comparable to rates of removal of dAPMP from single-stranded DNA (65-80 s-1). Rates of the slow phases (3-13 s-1) were dependent on sequence context; the slow phase may reflect the rate of switching from the polymerase to the exonuclease active site, or perhaps the conversion of a primer/template terminus from an annealed to a melted state in the exonuclease active site. These data, using wild-type T4 DNA polymerase and two exonuclease-deficient T4 polymerases, support a model in which exonuclease excision occurs on melted primer 3'-termini for both mismatched and correctly matched primer termini, and where specificity favoring removal of terminally mismatched base pairs is determined by the much larger fraction of melted-out primer 3'-termini for mispairs compared to that for correct pairs.
Collapse
Affiliation(s)
- L B Bloom
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340
| | | | | | | | | | | |
Collapse
|
20
|
Borden KL, Jenkins TC, Skelly JV, Brown T, Lane AN. Conformational properties of the G.G mismatch in d(CGCGAATTGGCG)2 determined by NMR. Biochemistry 1992; 31:5411-22. [PMID: 1606167 DOI: 10.1021/bi00138a024] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The conformational properties of the DNA duplex d(CGCGAATTGGCG)2, which contains two noncomplementary G.G base pairs, have been examined in aqueous solution by 1H and 31P NMR as a function of temperature. The G.G mismatch is highly destabilizing, with a Tm value 35 K below that observed for the native EcoRI dodecamer. The dodecamer appears symmetric in the NMR spectra and exists largely as an average B-type DNA conformation. However, the 1H and 31P NMR spectra give evidence of considerable conformational heterogeneity at the mismatched nucleotides and their nearest neighbors, which increases with increasing temperature. There is no evidence for a significant population of the syn purine conformation. The imino protons of the mispaired bases G4 and G9 are degenerate, resonate at high field, and exchange readily with solvent. These results indicate that the mispaired bases are only weakly hydrogen-bonded and are only partially stacked into the helix. On raising the temperature, the duplex shows increasing exchange between two or more conformations originating from the mismatch sites. However, these additional conformations maintain their Watson-Crick hydrogen bonding. The increase in chemical exchange is consistent with a quasimelting process for which the G.G sites provide local nuclei. Extensive modeling studies by dynamic annealing have confirmed that the G(anti).G(anti) conformation is favored and that the mispairs are poorly stacked within the helix. The results explain both the poor thermal stability and low hypochromicity of this duplex.
Collapse
Affiliation(s)
- K L Borden
- Laboratory for Molecular Structure, National Institute for Medical Research, Mill Hill, London, U.K
| | | | | | | | | |
Collapse
|
21
|
Kido K, Inoue H, Ohtsuka E. Sequence-dependent cleavage of DNA by alkylation with antisense oligodeoxyribonucleotides containing a 2-(N-iodoacetylaminoethyl)thio-adenine. Nucleic Acids Res 1992; 20:1339-44. [PMID: 1561091 PMCID: PMC312180 DOI: 10.1093/nar/20.6.1339] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Antisense oligodeoxyribonucleotides (15mers), containing a 2-(N-iodoacetylaminoethyl)thio-adenine, were synthesized and tested for their ability to cleave complementary DNAs (21mers). Cleavage of the target DNAs was done by alkylation followed by treatment with piperidine, and the positions of the alkylated sites were estimated by identification of the cleaved products. By using several combinations of the modified strands and their target DNAs, it was determined that alkylation occurred at adenine or guanine, depending on the torsion angle of the modified nucleoside.
Collapse
Affiliation(s)
- K Kido
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
22
|
Eschenmoser A, Dobler M. Warum Pentose- und nicht Hexose-Nucleins�uren?? Teil I. Einleitung und Problemstellung, Konformationsanalyse f�r Oligonucleotid-Ketten aus 2?,3?-Dideoxyglucopyranosyl-Bausteinen (?Homo-DNS?) sowie Betrachtungen zur Konformation von A- und B-DNS. Helv Chim Acta 1992. [DOI: 10.1002/hlca.19920750120] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Janion C. Base-pairing models to account for the mutagenicity and specificity of the purine analog 2-amino-N6-hydroxyadenine. Mutat Res 1991; 253:17-20. [PMID: 1870607 DOI: 10.1016/0165-1161(91)90341-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Potential base-pairing mechanisms of the purine analog, 2-amino-N6-hydroxyadenine (AHA), with the natural bases of DNA are presented. Base-pairing properties of this analog indicate that AHA may induce transitions and transversions of base pairs in DNA.
Collapse
Affiliation(s)
- C Janion
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw
| |
Collapse
|
24
|
|
25
|
Abstract
The structural dynamics of mismatched base pairs in duplex DNA have been studied by time-resolved fluorescence anisotropy decay measurements on a series of duplex oligodeoxynucleotides of the general type d[CGG(AP)GGC].d[GCCXCCG], where AP is the fluorescent adenine analogue 2-aminopurine and X = T, A, G, or C. The anisotropy decay is caused by internal rotations of AP within the duplex, which occur on the picosecond time scale, and by overall rotational diffusion of the duplex. The correlation time and angular range of internal rotation of AP vary among the series of AP.X mismatches, showing that the native DNA bases differ in their ability to influence the motion of AP. These differences are correlated with the strength of base-pairing interactions in the various AP.X mismatches. The interactions are strongest with X = T or C. The ability to discern differences in the strength of base-pairing interactions at a specific site in DNA by observing their effect on the dynamics of base motion is a novel aspect of the present study. The extent of AP stacking within the duplex is also determined in this study since it influences the excited-state quenching of AP. AP is thus shown to be extrahelical in the AP.G mismatch. The association state of the AP-containing oligodeoxynucleotide strand is determined from the temperature-dependent tumbling correlation time. An oligodeoxynucleotide triplex is formed with a particular base sequence in a pH-dependent manner.
Collapse
Affiliation(s)
- C R Guest
- Department of Molecular Biology, Research Institute of Scripps Clinic, La Jolla, California 92037
| | | | | | | |
Collapse
|
26
|
Van de Ven FJ, Hilbers CW. Nucleic acids and nuclear magnetic resonance. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 178:1-38. [PMID: 3060357 DOI: 10.1111/j.1432-1033.1988.tb14425.x] [Citation(s) in RCA: 209] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- F J Van de Ven
- Department of Biophysical Chemistry, University of Nijmegen, The Netherlands
| | | |
Collapse
|