1
|
Engineered ribosomes with tethered subunits for expanding biological function. Nat Commun 2019; 10:3920. [PMID: 31477696 PMCID: PMC6718428 DOI: 10.1038/s41467-019-11427-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/10/2019] [Indexed: 01/01/2023] Open
Abstract
Ribo-T is a ribosome with covalently tethered subunits where core 16S and 23S ribosomal RNAs form a single chimeric molecule. Ribo-T makes possible a functionally orthogonal ribosome-mRNA system in cells. Unfortunately, use of Ribo-T has been limited because of low activity of its original version. Here, to overcome this limitation, we use an evolutionary approach to select new tether designs that are capable of supporting faster cell growth and increased protein expression. Further, we evolve new orthogonal Ribo-T/mRNA pairs that function in parallel with, but independent of, natural ribosomes and mRNAs, increasing the efficiency of orthogonal protein expression. The Ribo-T with optimized designs is able to synthesize a diverse set of proteins, and can also incorporate multiple non-canonical amino acids into synthesized polypeptides. The enhanced Ribo-T designs should be useful for exploring poorly understood functions of the ribosome and engineering ribosomes with altered catalytic properties.
Collapse
|
2
|
Dedkova LM, Hecht SM. Expanding the Scope of Protein Synthesis Using Modified Ribosomes. J Am Chem Soc 2019; 141:6430-6447. [PMID: 30901982 DOI: 10.1021/jacs.9b02109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ribosome produces all of the proteins and many of the peptides present in cells. As a macromolecular complex composed of both RNAs and proteins, it employs a constituent RNA to catalyze the formation of peptide bonds rapidly and with high fidelity. Thus, the ribosome can be argued to represent the key link between the RNA World, in which RNAs were the primary catalysts, and present biological systems in which protein catalysts predominate. In spite of the well-known phylogenetic conservation of rRNAs through evolutionary history, rRNAs can be altered readily when placed under suitable pressure, e.g. in the presence of antibiotics which bind to functionally critical regions of rRNAs. While the structures of rRNAs have been altered intentionally for decades to enable the study of their role(s) in the mechanism of peptide bond formation, it is remarkable that the purposeful alteration of rRNA structure to enable the elaboration of proteins and peptides containing noncanonical amino acids has occurred only recently. In this Perspective, we summarize the history of rRNA modifications, and demonstrate how the intentional modification of 23S rRNA in regions critical for peptide bond formation now enables the direct ribosomal incorporation of d-amino acids, β-amino acids, dipeptides and dipeptidomimetic analogues of the normal proteinogenic l-α-amino acids. While proteins containing metabolically important functional groups such as carbohydrates and phosphate groups are normally elaborated by the post-translational modification of nascent polypeptides, the use of modified ribosomes to produce such polymers directly is also discussed. Finally, we describe the elaboration of such modified proteins both in vitro and in bacterial cells, and suggest how such novel biomaterials may be exploited in future studies.
Collapse
Affiliation(s)
- Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
3
|
Daskalova SM, Bhattacharya C, Dedkova LM, Hecht SM. Probing the Flexibility of the Catalytic Nucleophile in the Lyase Catalytic Pocket of Human DNA Polymerase β with Unnatural Lysine Analogues. Biochemistry 2017; 56:500-513. [PMID: 28005340 DOI: 10.1021/acs.biochem.6b00807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
DNA polymerase β (Pol β) is a key enzyme in mammalian base excision repair (BER), contributing stepwise 5'-deoxyribose phosphate (dRP) lyase and "gap-filling" DNA polymerase activities. The lyase reaction is believed to occur via a β-elimination reaction following the formation of a Schiff base between the dRP group at the pre-incised apurinic/apyrimidinic site and the ε-amino group of Lys72. To probe the steric constraints on the formation and subsequent resolution of the putative Schiff base intermediate within the lyase catalytic pocket, Lys72 was replaced with each of several nonproteinogenic lysine analogues. The modified Pol β enzymes were produced by coupled in vitro transcription and translation from a modified DNA template containing a TAG codon at the position corresponding to Lys72. In the presence of a misacylated tRNACUA transcript, suppression of the UAG codon in the transcribed mRNA led to elaboration of full length Pol β having a lysine analogue at position 72. Replacement of the primary nucleophilic amine with a secondary amine in the form of N-methyllysine (4) affected mainly the stability of the Schiff base intermediate and resulted in relatively moderate inhibition of lyase activity and BER. Elongation of the side chain of the catalytic residue by one methylene group, achieved by introduction of homolysine (6) at position 72, apparently shifted the amino group to a position less favorable for Schiff base formation. Interestingly, this effect was attenuated when the side chain was elongated by replacing one side-chain methylene group with a bridging S atom (thialysine, 2). In comparison, replacement of lysine 72 with an analogue having a guanidine moiety in lieu of an ε-amino group (homoarginine, 5) or a sterically constrained secondary amine (piperidinylalanine, 3) led to almost complete suppression of dRP excision activity and the ability of Pol β to support BER. These results help to define the tolerance of Pol β to subtle local structural and functional alterations.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Chandrabali Bhattacharya
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
4
|
Maini R, Chowdhury SR, Dedkova LM, Roy B, Daskalova SM, Paul R, Chen S, Hecht SM. Protein Synthesis with Ribosomes Selected for the Incorporation of β-Amino Acids. Biochemistry 2015; 54:3694-706. [PMID: 25982410 PMCID: PMC4472090 DOI: 10.1021/acs.biochem.5b00389] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/16/2015] [Indexed: 02/04/2023]
Abstract
In an earlier study, β³-puromycin was used for the selection of modified ribosomes, which were utilized for the incorporation of five different β-amino acids into Escherichia coli dihydrofolate reductase (DHFR). The selected ribosomes were able to incorporate structurally disparate β-amino acids into DHFR, in spite of the use of a single puromycin for the selection of the individual clones. In this study, we examine the extent to which the structure of the β³-puromycin employed for ribosome selection influences the regio- and stereochemical preferences of the modified ribosomes during protein synthesis; the mechanistic probe was a single suppressor tRNA(CUA) activated with each of four methyl-β-alanine isomers (1-4). The modified ribosomes were found to incorporate each of the four isomeric methyl-β-alanines into DHFR but exhibited a preference for incorporation of 3(S)-methyl-β-alanine (β-mAla; 4), i.e., the isomer having the same regio- and stereochemistry as the O-methylated β-tyrosine moiety of β³-puromycin. Also conducted were a selection of clones that are responsive to β²-puromycin and a demonstration of reversal of the regio- and stereochemical preferences of these clones during protein synthesis. These results were incorporated into a structural model of the modified regions of 23S rRNA, which included in silico prediction of a H-bonding network. Finally, it was demonstrated that incorporation of 3(S)-methyl-β-alanine (β-mAla; 4) into a short α-helical region of the nucleic acid binding domain of hnRNP LL significantly stabilized the helix without affecting its DNA binding properties.
Collapse
MESH Headings
- Alanine/analogs & derivatives
- Alanine/chemistry
- Alanine/metabolism
- Escherichia coli/enzymology
- Escherichia coli/metabolism
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/chemistry
- Heterogeneous-Nuclear Ribonucleoprotein L/biosynthesis
- Heterogeneous-Nuclear Ribonucleoprotein L/chemistry
- Heterogeneous-Nuclear Ribonucleoprotein L/genetics
- Humans
- Hydrogen Bonding
- Models, Molecular
- Molecular Dynamics Simulation
- Mutant Proteins/biosynthesis
- Mutant Proteins/chemistry
- Mutant Proteins/genetics
- Nucleotide Motifs
- Peptidyl Transferases/genetics
- Peptidyl Transferases/metabolism
- Protein Conformation
- Protein Stability
- Puromycin/analogs & derivatives
- Puromycin/chemistry
- Puromycin/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Ribosomes/metabolism
- Stereoisomerism
- Substrate Specificity
- Tetrahydrofolate Dehydrogenase/biosynthesis
- Tetrahydrofolate Dehydrogenase/chemistry
Collapse
Affiliation(s)
- Rumit Maini
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Sandipan Roy Chowdhury
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M. Dedkova
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Basab Roy
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Sasha M. Daskalova
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Rakesh Paul
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Shengxi Chen
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M. Hecht
- Center for BioEnergetics,
Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
5
|
Achenbach J, Jahnz M, Bethge L, Paal K, Jung M, Schuster M, Albrecht R, Jarosch F, Nierhaus KH, Klussmann S. Outwitting EF-Tu and the ribosome: translation with d-amino acids. Nucleic Acids Res 2015; 43:5687-98. [PMID: 26026160 PMCID: PMC4499158 DOI: 10.1093/nar/gkv566] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
Key components of the translational apparatus, i.e. ribosomes, elongation factor EF-Tu and most aminoacyl-tRNA synthetases, are stereoselective and prevent incorporation of d-amino acids (d-aa) into polypeptides. The rare appearance of d-aa in natural polypeptides arises from post-translational modifications or non-ribosomal synthesis. We introduce an in vitro translation system that enables single incorporation of 17 out of 18 tested d-aa into a polypeptide; incorporation of two or three successive d-aa was also observed in several cases. The system consists of wild-type components and d-aa are introduced via artificially charged, unmodified tRNAGly that was selected according to the rules of ‘thermodynamic compensation’. The results reveal an unexpected plasticity of the ribosomal peptidyltransferase center and thus shed new light on the mechanism of chiral discrimination during translation. Furthermore, ribosomal incorporation of d-aa into polypeptides may greatly expand the armamentarium of in vitro translation towards the identification of peptides and proteins with new properties and functions.
Collapse
Affiliation(s)
- John Achenbach
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Michael Jahnz
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Lucas Bethge
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Krisztina Paal
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Maria Jung
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Maja Schuster
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Renate Albrecht
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Florian Jarosch
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Knud H Nierhaus
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
6
|
Lambert LJ, Miller MJ, Huber PW. Tetrahydrofuranyl and tetrahydropyranyl protection of amino acid side-chains enables synthesis of a hydroxamate-containing aminoacylated tRNA. Org Biomol Chem 2015; 13:2341-9. [PMID: 25562392 DOI: 10.1039/c4ob02212b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to specifically engineer metal binding sites into target proteins has far-reaching consequences ranging from the development of new biocatalysts and imaging reagents to the production of proteins with increased stability. We report the efficient tRNA-mediated incorporation of the hydroxamate containing amino acid, N(ε)-acetyl-N(ε)-hydroxy-L-lysine, into a transcription factor (TFIIIA). Because this amino acid is compact, hydrophilic, and uncharged at physiological pH, it should have little or no effect on protein folding or solubility. The N(ε)-hydroxy group of the hydroxamate is refractory to photodeprotection and required the identification of reagents for O-protection that are compatible with the synthesis of acylated tRNA. Tetrahydrofuranyl and tetrahydropyranyl O-protecting groups can be removed using mild acid conditions and allowed for an orthogonal protection strategy in which deprotection of the amino acid side chain precedes ligation of an acylated dinucleotide to a truncated suppressor tRNA. These protecting groups will provide a valuable alternative for O-protection, especially in cases where photodeprotection cannot be used.
Collapse
Affiliation(s)
- Lester J Lambert
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556.
| | | | | |
Collapse
|
7
|
Ma H, Liu N, Shi S, Wang S, Chen Y. Genetic incorporation of d-amino acids into green fluorescent protein based on polysubstrate specificity. RSC Adv 2015; 5:39580-39586. [DOI: 10.1039/c5ra02289d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024] Open
Abstract
A number of d-amino acids were genetically incorporated into green fluorescent protein, and the GFPuv mutant containing d-phenylalanine in the fluorophore at residue 66 was characterized.
Collapse
Affiliation(s)
- Hairong Ma
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Nan Liu
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Shaobo Shi
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Shuzhen Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology
- China Pharmaceutical University
- Nanjing
- People’s Republic of China
| |
Collapse
|
8
|
Kwiatkowski M, Wang J, Forster AC. Facile synthesis of N-acyl-aminoacyl-pCpA for preparation of mischarged fully ribo tRNA. Bioconjug Chem 2014; 25:2086-91. [PMID: 25338217 DOI: 10.1021/bc500441b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chemical synthesis of N-acyl-aminoacyl-pdCpA and its ligation to tRNA(minus CA) is widely used for the preparation of unnatural aminoacyl-tRNA substrates for ribosomal translation. However, the presence of the unnatural deoxyribose can decrease incorporation yield in translation and there is no straightforward method for chemical synthesis of the natural ribo version. Here, we show that pCpA is surprisingly stable to treatment with strong organic bases provided that anhydrous conditions are used. This allowed development of a facile method for chemical aminoacylation of pCpA. Preparative synthesis of pCpA was also simplified by using t-butyl-dithiomethyl protecting group methodology, and a more reliable pCpA postpurification treatment method was developed. Such aminoacyl-pCpA analogues ligated to tRNA(minus CA) transcripts are highly active in a purified translation system, demonstrating utility of our synthetic method.
Collapse
Affiliation(s)
- Marek Kwiatkowski
- Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, Uppsala 75124, Sweden
| | | | | |
Collapse
|
9
|
Kossinova O, Malygin A, Krol A, Karpova G. A novel insight into the mechanism of mammalian selenoprotein synthesis. RNA (NEW YORK, N.Y.) 2013; 19:1147-58. [PMID: 23788723 PMCID: PMC3708534 DOI: 10.1261/rna.036871.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The amino acid selenocysteine is encoded by UGA, usually a stop codon, thus requiring a specialized machinery to enable its incorporation into selenoproteins. The machinery comprises the tRNA(Sec), a 3'-UTR mRNA stem-loop termed SElenoCysteine Insertion Sequence (SECIS), which is mandatory for recoding UGA as a Sec codon, the SECIS Binding Protein 2 (SBP2), and other proteins. Little is known about the molecular mechanism and, in particular, when, where, and how the SECIS and SBP2 contact the ribosome. Previous work by others used the isolated SECIS RNA to address this question. Here, we developed a novel approach using instead engineered minimal selenoprotein mRNAs containing SECIS elements derivatized with photoreactive groups. By cross-linking experiments in rabbit reticulocyte lysate, new information could be gained about the SBP2 and SECIS contacts with components of the translation machinery at various translation steps. In particular, we found that SBP2 was bound only to the SECIS in 48S pre-initiation and 80S pretranslocation complexes. In the complex where the Sec-tRNA(Sec) was accommodated to the A site but transpeptidation was blocked, SBP2 bound the ribosome and possibly the SECIS element as well, and the SECIS had flexible contacts with the 60S ribosomal subunit involving several ribosomal proteins. Altogether, our findings led to broadening our understanding about the unique mechanism of selenocysteine incorporation in mammals.
Collapse
Affiliation(s)
- Olga Kossinova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alain Krol
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 67084 Strasbourg, France
- Corresponding authorsE-mail E-mail
| | - Galina Karpova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Corresponding authorsE-mail E-mail
| |
Collapse
|
10
|
Maini R, Nguyen DT, Chen S, Dedkova LM, Chowdhury SR, Alcala-Torano R, Hecht SM. Incorporation of β-amino acids into dihydrofolate reductase by ribosomes having modifications in the peptidyltransferase center. Bioorg Med Chem 2013; 21:1088-96. [PMID: 23375097 DOI: 10.1016/j.bmc.2013.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 12/27/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
Ribosomes containing modifications in three regions of 23S rRNA, all of which are in proximity to the ribosomal peptidyltransferase center (PTC), were utilized previously as a source of S-30 preparations for in vitro protein biosynthesis experiments. When utilized in the presence of mRNAs containing UAG codons at predetermined positions+β-alanyl-tRNA(CUA), the modified ribosomes produced enhanced levels of full length proteins via UAG codon suppression. In the present study, these earlier results have been extended by the use of substituted β-amino acids, and direct evidence for β-amino acid incorporation is provided. Presently, five of the clones having modified ribosomes are used in experiments employing four substituted β-amino acids, including α-methyl-β-alanine, β,β-dimethyl-β-alanine, β-phenylalanine, and β-(p-bromophenyl)alanine. The β-amino acids were incorporated into three different positions (10, 18 and 49) of Escherichia coli dihydrofolate reductase (DHFR) and their efficiencies of suppression of the UAG codons were compared with those of β-alanine and representative α-l-amino acids. The isolated proteins containing the modified β-amino acids were subjected to proteolytic digestion, and the derived fragments were characterized by mass spectrometry, establishing that the β-amino acids had been incorporated into DHFR, and that they were present exclusively in the anticipated peptide fragments. DHFR contains glutamic acid in position 17, and it has been shown previously that Glu-C endoproteinase can hydrolyze DHFR between amino acids residues 17 and 18. The incorporation of β,β-dimethyl-β-alanine into position 18 of DHFR prevented this cleavage, providing further evidence for the position of incorporation of the β-amino acid.
Collapse
Affiliation(s)
- Rumit Maini
- Center for BioEnergetics, Biodesign Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Dedkova LM, Fahmi NE, Paul R, del Rosario M, Zhang L, Chen S, Feder G, Hecht SM. β-Puromycin Selection of Modified Ribosomes for in Vitro Incorporation of β-Amino Acids. Biochemistry 2011; 51:401-15. [DOI: 10.1021/bi2016124] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Larisa M. Dedkova
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Nour Eddine Fahmi
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Rakesh Paul
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Melissa del Rosario
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Liqiang Zhang
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Shengxi Chen
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Glen Feder
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign
Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| |
Collapse
|
13
|
Chen S, Zhang Y, Hecht SM. p-Thiophenylalanine-Induced DNA Cleavage and Religation Activity of a Modified Vaccinia Topoisomerase IB. Biochemistry 2011; 50:9340-51. [DOI: 10.1021/bi201291p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shengxi Chen
- Center for BioEnergetics, Biodesign
Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| | - Yi Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904,
United States
| | - Sidney M. Hecht
- Center for BioEnergetics, Biodesign
Institute, and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, United
States
| |
Collapse
|
14
|
|
15
|
Nandi N. Chiral discrimination in the confined environment of biological nanospace: reactions and interactions involving amino acids and peptides. INT REV PHYS CHEM 2009. [DOI: 10.1080/01442350902999682] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Goto Y, Suga H. Translation Initiation with Initiator tRNA Charged with Exotic Peptides. J Am Chem Soc 2009; 131:5040-1. [DOI: 10.1021/ja900597d] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuki Goto
- Research Center for Advanced Science and Technology and Department of Advanced Interdisciplinary Studies, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroaki Suga
- Research Center for Advanced Science and Technology and Department of Advanced Interdisciplinary Studies, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
17
|
Goto Y, Murakami H, Suga H. Initiating translation with D-amino acids. RNA (NEW YORK, N.Y.) 2008; 14:1390-8. [PMID: 18515548 PMCID: PMC2441986 DOI: 10.1261/rna.1020708] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/30/2008] [Indexed: 05/19/2023]
Abstract
Here we report experimental evidence that the translation initiation apparatus accepts D-amino acids ((D)aa), as opposed to only L-methionine, as initiators. Nineteen (D)aa, as the stereoisomers to their natural L-amino acids, were charged onto initiator tRNA(fMet)(CAU) using flexizyme technology and tested for initiation in a reconstituted Escherichia coli translation system lacking methionine, i.e., the initiator was reprogrammed from methionine to (D)aa. Remarkably, all (D)aa could initiate translation while the efficiency of initiation depends upon the type of side chain. The peptide product initiated with (D)aa was generally in a nonformylated form, indicating that methionyl-tRNA formyltransferase poorly formylated the corresponding (D)aa-tRNA(fMet)(CAU). Although the inefficient formylation of (D)aa-tRNA(fMet)(CAU) resulted in modest expression of the corresponding peptide, preacetylation of (D)aa-tRNA(fMet)(CAU) dramatically increased expression level, implying that the formylation efficiency is one of the critical determinants of initiation efficiency with (D)aa. Our findings provide not only the experimental evidence that translation initiation tolerates (D)aa, but also a new means for the mRNA-directed synthesis of peptides capped with (D)aa or acyl-(D)aa at the N terminus.
Collapse
Affiliation(s)
- Yuki Goto
- Research Center of Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | | | | |
Collapse
|
18
|
Duca M, Chen S, Hecht SM. Aminoacylation of transfer RNAs with one and two amino acids. Methods 2008; 44:87-99. [PMID: 18241791 DOI: 10.1016/j.ymeth.2007.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 10/20/2007] [Accepted: 10/22/2007] [Indexed: 11/18/2022] Open
Abstract
The detailed synthesis of (bis)aminoacyl-pdCpAs and the corresponding singly and tandemly activated tRNAs is reported. The synthetic pathway leading to these compounds has been validated for simple amino acid residues as well as for amino acids bearing more complex side chains. Protection/deprotection strategies are described. For the bisaminoacylated tRNAs, both the synthesis of tRNAs bearing the same amino acid residue at the 2' and 3' positions and tRNAs bearing two different aminoacyl moieties are reported. Further, it is shown that the tandemly activated tRNAs are able to participate in protein synthesis.
Collapse
Affiliation(s)
- Maria Duca
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | | | | |
Collapse
|
19
|
Hartman MCT, Josephson K, Lin CW, Szostak JW. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS One 2007; 2:e972. [PMID: 17912351 PMCID: PMC1989143 DOI: 10.1371/journal.pone.0000972] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 09/12/2007] [Indexed: 11/23/2022] Open
Abstract
Background The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into peptides by ribosomal translation. We have previously shown that over 90 unnatural amino acids can be enzymatically loaded onto tRNA. Methodology/Principal Findings We have now used a competition assay to assess the efficiency of tRNA-aminoacylation of these analogs. We have also used a series of peptide translation assays to measure the efficiency with which these analogs are incorporated into peptides. The translation apparatus tolerates most side chain derivatives, a few α,α disubstituted, N-methyl and α-hydroxy derivatives, but no β-amino acids. We show that over 50 unnatural amino acids can be incorporated into peptides by ribosomal translation. Using a set of analogs that are efficiently charged and translated we were able to prepare individual peptides containing up to 13 different unnatural amino acids. Conclusions/Significance Our results demonstrate that a diverse array of unnatural building blocks can be translationally incorporated into peptides. These building blocks provide new opportunities for in vitro selections with highly modified drug-like peptides.
Collapse
Affiliation(s)
- Matthew C. T. Hartman
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kristopher Josephson
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Chi-Wang Lin
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
20
|
Duca M, Maloney DJ, Lodder M, Wang B, Hecht SM. Synthesis of bisaminoacylated pdCpAs and tandemly activated transfer RNAs. Bioorg Med Chem 2007; 15:4629-42. [PMID: 17490885 DOI: 10.1016/j.bmc.2007.03.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 03/28/2007] [Accepted: 03/29/2007] [Indexed: 10/23/2022]
Abstract
Described herein is the preparation of new bisacylated tRNAs and their participation in protein synthesis. It has been reported that Thermus thermophilus phenylalanyl-tRNA synthetase can introduce two phenylalanine moieties onto the 3'-terminal adenosine of its cognate tRNA. It is also possible to prepare bisactivated tRNAs in vitro; these participate in protein synthesis [Wang, B.; Zhou, J.; Lodder, M.; Anderson, R. D.; Hecht, S. M. J. Biol. Chem.2006, 281, 13865]. Presently, the chemical strategy used for the synthesis of the key intermediate bisacylated pdCpAs is described. Bis-S-alanyl- and bis-S-methionyl-pdCpAs were prepared initially. Further, S-threonine, S-allo-threonine, S-homoserine, and (S)-(+)-2-amino-3-hydroxy-3-methylbutyric acid were coupled with the dinucleotide to define preparative methods applicable to more complex amino acids bearing additional functionality in the form of an OH group.
Collapse
Affiliation(s)
- Maria Duca
- Department of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | | | |
Collapse
|
21
|
Fahmi NE, Dedkova L, Wang B, Golovine S, Hecht SM. Site-Specific Incorporation of Glycosylated Serine and Tyrosine Derivatives into Proteins. J Am Chem Soc 2007; 129:3586-97. [PMID: 17338522 DOI: 10.1021/ja067466n] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosylation of proteins can have a dramatic effect on their physical, chemical, and biological properties. Analogues of dihydrofolate reductase and firefly luciferase containing glycosylated amino acids at single, predetermined sites have been elaborated. Misacylated suppressor tRNAs activated with glycosylated serine and tyrosine derivatives were used for suppression of the nonsense codons in a cell-free protein biosynthesizing system, thereby permitting the preparation of the desired glycosylated proteins. In this fashion, it was possible to obtain proteins containing both mono- and diglycosylated amino acids, including glycosylated serine and tyrosine moieties. For the modified firefly luciferases, the effect of these substitutions on the wavelength of the light emitted by firefly luciferase was investigated. The maximum wavelength for mutants containing peracetylated glycosylated serine derivatives at position 284 showed a red shift in the emission spectra. For mutants containing glycosylated tyrosines, the red shift was observed only when the carbohydrate moiety was fully deacetylated.
Collapse
Affiliation(s)
- Nour Eddine Fahmi
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | | | | | | | | |
Collapse
|
22
|
Cui Z, Zhang B. Semisynthesis of 3′(2′)-O-(Aminoacyl)-tRNA Derivatives as Ribosomal Substrate. Helv Chim Acta 2007. [DOI: 10.1002/hlca.200790034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Maloney DJ, Ghanem N, Zhou J, Hecht SM. Positional assignment of differentially substituted bisaminoacylated pdCpAs. Org Biomol Chem 2007; 5:3135-8. [PMID: 17878972 DOI: 10.1039/b708786a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis and NMR analysis of a 2'-O-alanyl, 3'-O-[1-(13)C]valyl-pdCpA derivative has permitted the definitive assignment of the positions of acylation of tandemly activated pdCpAs, and the bisaminoacylated transfer RNAs derived therefrom.
Collapse
Affiliation(s)
- David J Maloney
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
24
|
Hartman MCT, Josephson K, Szostak JW. Enzymatic aminoacylation of tRNA with unnatural amino acids. Proc Natl Acad Sci U S A 2006; 103:4356-61. [PMID: 16537388 PMCID: PMC1450175 DOI: 10.1073/pnas.0509219103] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Indexed: 11/18/2022] Open
Abstract
The biochemical flexibility of the cellular translation apparatus offers, in principle, a simple route to the synthesis of drug-like modified peptides and novel biopolymers. However, only approximately 75 unnatural building blocks are known to be fully compatible with enzymatic tRNA acylation and subsequent ribosomal synthesis of modified peptides. Although the translation system can reject substrate analogs at several steps along the pathway to peptide synthesis, much of the specificity resides at the level of the aminoacyl-tRNA synthetase (AARS) enzymes that are responsible for charging tRNAs with amino acids. We have developed an AARS assay based on mass spectrometry that can be used to rapidly identify unnatural monomers that can be enzymatically charged onto tRNA. By using this assay, we have found 59 previously unknown AARS substrates. These include numerous side-chain analogs with useful functional properties. Remarkably, many beta-amino acids, N-methyl amino acids, and alpha,alpha-disubstituted amino acids are also AARS substrates. These previously unidentified AARS substrates will be useful in studies of the specificity of subsequent steps in translation and may significantly expand the number of analogs that can be used for the ribosomal synthesis of modified peptides.
Collapse
Affiliation(s)
- Matthew C. T. Hartman
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| | - Kristopher Josephson
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| | - Jack W. Szostak
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| |
Collapse
|
25
|
Röhrig CH, Retz OA, Hareng L, Hartung T, Schmidt RR. A new strategy for the synthesis of dinucleotides loaded with glycosylated amino acids--investigations on in vitro non-natural amino acid mutagenesis for glycoprotein synthesis. Chembiochem 2005; 6:1805-16. [PMID: 16142818 DOI: 10.1002/cbic.200500079] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The in vitro non-natural amino acid mutagenesis method provides the opportunity to introduce non-natural amino acids site-specifically into proteins. To this end, a chemically synthesised aminoacylated dinucleotide is enzymatically ligated to a truncated suppressor transfer RNA. The loaded suppressor tRNA is then used in translation reactions to read an internal stop codon. Here we report an advanced and general strategy for the synthesis of the aminoacyl dinucleotide. The protecting group pattern developed for the dinucleotide facilitates highly efficient aminoacylation, followed by one-step global deprotection. The strategy was applied to the synthesis of dinucleotides loaded with 2-acetamido-2-deoxy-glycosylated amino acids, including N- and O-beta-glycosides and O- and C-alpha-glycosides of amino acids, thus enabling the extension of in vitro non-natural amino acid mutagenesis towards the synthesis of natural glycoproteins of high biological interest. We demonstrate the incorporation of the glycosylamino acids--although with low suppression efficiency--into the human interleukin granulocyte-colony stimulating factor (hG-CSF), as verified by the ELISA technique.
Collapse
Affiliation(s)
- Christoph H Röhrig
- Department of Chemistry, University of Konstanz, Fach M 725, 78457 Konstanz, Germany
| | | | | | | | | |
Collapse
|
26
|
Gao R, Zhang Y, Choudhury AK, Dedkova LM, Hecht SM. Analogues of vaccinia virus DNA topoisomerase I modified at the active site tyrosine. J Am Chem Soc 2005; 127:3321-31. [PMID: 15755148 DOI: 10.1021/ja044182z] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of type IB topoisomerase-mediated DNA relaxation was studied by modification of vaccinia topoisomerase I at the active site tyrosine (position 274) with several tyrosine analogues. These analogues had varied steric, electronic, and stereochemical features to permit assessment of those structural elements required to support topoisomerase function. Eleven tyrosine analogues were successfully incorporated into the active site of vaccinia topoisomerase I. It was found that only tyrosine analogues having the phenolic -OH group in the normal position relative to the protein backbone were active. Modifications that replaced the nucleophilic tyrosine OH (pKa approximately 10.0) group with NH2 (pKa 4.6), SH (pKa approximately 7.0), or I groups or that changed the orientation of the nucleophilic OH group essentially eliminated topoisomerase I function. For the active analogues, the electronic effects and H-bonding characteristics of substituents in the meta-position of the aromatic ring may be important in modulating topoisomerase I function. The pH profile for the functional analogues revealed a small shift toward lower pH when compared with wild-type topoisomerase I.
Collapse
MESH Headings
- Amino Acid Sequence
- Binding Sites
- DNA Topoisomerases, Type I/chemistry
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- Hydrogen-Ion Concentration
- Kinetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Plasmids/genetics
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- Structure-Activity Relationship
- Tyrosine/chemistry
- Tyrosine/genetics
- Tyrosine/metabolism
- Vaccinia virus/enzymology
- Vaccinia virus/genetics
Collapse
Affiliation(s)
- Rong Gao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, USA
| | | | | | | | | |
Collapse
|
27
|
Röhrig CH, Retz OA, Meergans T, Schmidt RR. In vitro non-natural amino acid mutagenesis using a suppressor tRNA generated by the cis-acting hepatitis delta virus ribozyme. Biochem Biophys Res Commun 2005; 325:731-8. [PMID: 15541351 DOI: 10.1016/j.bbrc.2004.10.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Indexed: 10/26/2022]
Abstract
In vitro non-natural amino acid mutagenesis requires aminoacyl-charged suppressor transfer RNAs which read an internal stop codon. For the synthesis of aminoacyl-tRNAs loaded with non-natural amino acids, T4 RNA ligase is used to ligate a chemically synthesised aminoacyl-dinucleotide to a truncated 74mer tRNA(-CA) lacking the two 3' end nucleotides. The 74mer tRNA(-CA) in turn is generated by run-off transcription from a linearised plasmid encoding the tRNA sequence under control of the T7 promoter. Transcripts with heterogeneous ends are commonly obtained, which interfere with subsequent reactions such as ligation or translation. Here we report an improved procedure for the generation and chromatographic purification of large amounts of homogeneous 3' end tRNA(-CA) by hepatitis delta virus ribozyme cis-cleavage and the first application of this tRNA to in vitro non-natural amino acid mutagenesis. Stop codon suppression is increased compared to conventionally synthesised suppressor tRNA; 2.5 microg of mutated protein was synthesised in a 50 microl batch reaction.
Collapse
Affiliation(s)
- Christoph H Röhrig
- Department of Chemistry, University of Konstanz, Fach M 725, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
28
|
Soutourina O, Soutourina J, Blanquet S, Plateau P. Formation of d-Tyrosyl-tRNATyr Accounts for the Toxicity of d-Tyrosine toward Escherichia coli. J Biol Chem 2004; 279:42560-5. [PMID: 15292242 DOI: 10.1074/jbc.m402931200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-Tyr-tRNATyr deacylase cleaves the ester bond between a tRNA molecule and a D-amino acid. In Escherichia coli, inactivation of the gene (dtd) encoding this deacylase increases the toxicity of several D-amino acids including D-tyrosine, D-tryptophan, and D-aspartic acid. Here, we demonstrate that, in a Deltadtd cell grown in the presence of 2.4 mm D-tyrosine, approximately 40% of the total tRNATyr pool is converted into D-Tyr-tRNATyr. No D-Tyr-tRNATyr is observed in dtd+ cells. In addition, we observe that overproduction of tRNATyr, tRNATrp, or tRNAAsp protects a Deltadtd mutant strain against the toxic effect of D-tyrosine, D-tryptophan, or D-aspartic acid, respectively. In the case of D-tyrosine, we show that the protection is accounted for by an increase in the concentration of L-Tyr-tRNATyr proportional to that of overproduced tRNATyr. Altogether, these results indicate that, by accumulating in vivo, high amounts of D-Tyr-tRNATyr cause a starvation for L-Tyr-tRNATyr. The deacylase prevents the starvation by hydrolyzing D-Tyr-tRNATyr. Overproduction of tRNATyr also relieves the starvation by increasing the amount of cellular L-Tyr-tRNATyr available for translation.
Collapse
Affiliation(s)
- Olga Soutourina
- Laboratoire de Biochimie, Unité Mixte de Recherche 7654, CNRS-Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | | | |
Collapse
|
29
|
Tan Z, Forster AC, Blacklow SC, Cornish VW. Amino Acid Backbone Specificity of the Escherichia coli Translation Machinery. J Am Chem Soc 2004; 126:12752-3. [PMID: 15469251 DOI: 10.1021/ja0472174] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a pure Escherichia coli translation system, we tested the intrinsic specificity of the protein biosynthetic machinery by determining the relative yields of peptide synthesis for incorporation of a series of acyl-%@mt;sys@%tRNA%@sx@%GAC%@be@%AsnB%@sxx@%%@mx@% 's with varied backbone structures at the sense codon GUU (Val). The results showed that different amino acids on the same tRNA adaptor give significantly different peptide yields and the potential for cross-talk between the amino acid and tRNA body/anticodon in aa-tRNA decoding by the ribosome. They further support the substrate plasticity of the ribosomal biosynthetic machinery and provide immediate candidates for ribosomally encoded polymer synthesis.
Collapse
Affiliation(s)
- Zhongping Tan
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA
| | | | | | | |
Collapse
|
30
|
Strømgaard A, Jensen AA, Strømgaard K. Site-Specific Incorporation of Unnatural Amino Acids into Proteins. Chembiochem 2004; 5:909-16. [PMID: 15239046 DOI: 10.1002/cbic.200400060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anne Strømgaard
- Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10C, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
31
|
Abstract
The genetic code is established by the aminoacylation of transfer RNA, reactions in which each amino acid is linked to its cognate tRNA that, in turn, harbors the nucleotide triplet (anticodon) specific to the amino acid. The accuracy of aminoacylation is essential for building and maintaining the universal tree of life. The ability to manipulate and expand the code holds promise for the development of new methods to create novel proteins and to understand the origins of life. Recent efforts to manipulate the genetic code have fulfilled much of this potential. These efforts have led to incorporation of nonnatural amino acids into proteins for a variety of applications and have demonstrated the plausibility of specific proposals for early evolution of the code.
Collapse
Affiliation(s)
- Tamara L Hendrickson
- Department of Chemistry, 1Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
32
|
Starck SR, Qi X, Olsen BN, Roberts RW. The puromycin route to assess stereo- and regiochemical constraints on peptide bond formation in eukaryotic ribosomes. J Am Chem Soc 2003; 125:8090-1. [PMID: 12837064 DOI: 10.1021/ja034817e] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We synthesized a series of puromycin analogues to probe the chemical specificity of the ribosome in an intact eukaryotic translation system. These studies reveal that both d-enantiomers and beta-amino acid analogues can be incorporated into protein, and provide a quantitative means to rank natural and unnatural residues. Modeling of a d-amino acid analogue into the 50S ribosomal subunit indicates that steric clash may provide part of the chiral discrimination. The data presented provide one metric of the chiral and regiospecificity of mammalian ribosomes.
Collapse
Affiliation(s)
- Shelley R Starck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
33
|
Dedkova LM, Fahmi NE, Golovine SY, Hecht SM. Enhanced D-amino acid incorporation into protein by modified ribosomes. J Am Chem Soc 2003; 125:6616-7. [PMID: 12769555 DOI: 10.1021/ja035141q] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By overexpression of modified Escherichia coli 23S rRNAs from multicopy plasmids, ribosomes were prepared that contained mutations in two regions (2447-2450 and 2457-2462) of 23S rRNA. Following mutagenesis and selection, two clones with mutations in the 2447-2450 region (peptidyltransferase center) and six with mutations in the 2457-2462 region (helix 89) were characterized. The mutations were shown to exhibit a high level of homology. Cell-free protein synthesizing systems prepared from these clones were found to exhibit significantly enhanced incorporation of d-methionine and d-phenylalanine into protein. The incorporations involved positions 10, 22, and 54 of E. coli dihydrofolate reductase and positions 247 and 250 of Photinus pyralis firefly luciferase. Interestingly, some of the derived proteins containing the d-amino acids (notably DHFR analogues altered at position 10) functioned as well as those containing the respective l-amino acids, while substitution at other positions resulted in proteins having greatly diminished activity.
Collapse
MESH Headings
- Amino Acids/chemistry
- Amino Acids/metabolism
- Cell-Free System
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Luciferases/chemistry
- Luciferases/genetics
- Luciferases/metabolism
- Mutation
- Protein Biosynthesis
- Proteins/chemical synthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/genetics
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Tetrahydrofolate Dehydrogenase/chemistry
- Tetrahydrofolate Dehydrogenase/genetics
- Tetrahydrofolate Dehydrogenase/metabolism
Collapse
Affiliation(s)
- Larisa M Dedkova
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
34
|
Petersson EJ, Brandt GS, Zacharias NM, Dougherty DA, Lester HA. Caging proteins through unnatural amino acid mutagenesis. Methods Enzymol 2003; 360:258-73. [PMID: 12622154 DOI: 10.1016/s0076-6879(03)60114-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The caging of specific residues of proteins is a powerful tool. This discussion attempts to alert the reader to the considerations that must be made in preparing and analyzing a caged protein through nonsense suppression. Although the suppression methodology is conceptually straightforward, it not possible to provide a failsafe "cook book" method for using caged unnaturals. We have emphasized the preparation of caged receptors expressed in Xenopus oocytes, but these approaches can clearly be adapted to many other systems.
Collapse
Affiliation(s)
- E James Petersson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | |
Collapse
|
35
|
Zhu XF, Scott AI. An improved synthesis of the dinucleotides pdCpA and pdCpdA. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2001; 20:197-211. [PMID: 11393397 DOI: 10.1081/ncn-100002081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An improved route was developed for the preparation of the dinucleotide hybrid 5'-O-phosphoryl-2'-deoxycytidylyl-(3'--> 5')adenosine (pdCpA) 7. This simple and concise synthesis involves the successive coupling of 2-cyanoethyl N, N, N', N'-tetra- isopropylphosphorodiamidite with 4-N-benzoyl-5'-O-(4, 4'-dimethoxytrityl)-2'-deoxy-cytidine 1 and 6-N,6-N,2'-O,3'-O-tetrabenzoyladenosine 2 as the key step. Some dinucleotide derivatives bearing different protecting groups were also synthesized and the selective deprotection conditions were studied in detail. The utility and efficiency of this approach has been further demonstrated by its application to the synthesis of total DNA dinucleotide pdCpdA 17 and total RNA dinucleotide 21.
Collapse
Affiliation(s)
- X F Zhu
- Center for Biological NMR, Department of Chemistry, Texas A&M University, College Station 77842-3012, USA
| | | |
Collapse
|
36
|
Fahmi NE, Golovine S, Wang B, Hecht SM. Studies toward the site specific incorporation of sugars into proteins: synthesis of glycosylated aminoacyl-tRNAs. Carbohydr Res 2001; 330:149-64. [PMID: 11217968 DOI: 10.1016/s0008-6215(00)00289-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A series of glycosylated serine derivatives was synthesized from peracetylated sugars and Fmoc-protected serine; these were chemically esterified with the tris-(tetrabutylammonium) salt of pdCpA. The fully protected and deprotected glycosylated aminoacyl pdCpAs were ligated enzymatically to an abbreviated tRNA (tRNA-C(OH)) to provide the title compounds that are key intermediates in the elaboration of glycoproteins using readthrough of a nonsense codon.
Collapse
Affiliation(s)
- N E Fahmi
- Department of Chemistry, University of Virginia, Charlottesville 22901, USA
| | | | | | | |
Collapse
|
37
|
|
38
|
Lodder M, Crasto CF, Laikhter AL, An H, Arslan T, Karginov VA, Short III GF, Hecht SM. Synthesis of aspartic acid derivatives useful for the preparation of misacylated transfer RNAs. CAN J CHEM 2000. [DOI: 10.1139/v99-246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several derivatives of aspartic acid were protected on Nα as their NVOC derivatives, and on the side chain carboxylates as nitroveratryl esters. Following activation as the cyanomethyl esters, these fully protected aspartate derivatives were converted to the respective pdCpA esters. The protected aspartyl-pdCpA esters were then utilized as substrates for T4 RNA ligase in the presence of in vitro transcripts of tRNA lacking the pCpA dinucleotide normally found at the 3'-end. In this fashion, several misacylated tRNAs were prepared; following photolytic deprotection, these were employed successfully for incorporation into proteins at predetermined positions.Key words: aminoacylated nucleotides, amino acid protection, protein synthesis, tRNA activation.
Collapse
|
39
|
|
40
|
Karginov AV, Lodder M, Hecht SM. Facile characterization of translation initiation via nonsense codon suppression. Nucleic Acids Res 1999; 27:3283-90. [PMID: 10454635 PMCID: PMC148561 DOI: 10.1093/nar/27.16.3283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new strategy for studying the mechanism of translation initiation in eukaryotes has been developed. The strategy involves the use of an in vitro translation system to incorporate a non-natural fluorescent amino acid into a protein from a suppressor tRNAPheCUA misacylated with that amino acid. It is thereby possible to monitor translation initiation efficiency at an AUG codon in different contexts; this is illustrated for three constructs encoding Escherichia coli dihydrofolate reductase mRNA with different translation initiation regions. Fluorescence measurements after in vitro translation of the mRNAs in rabbit reticulocyte lysate reflected differences in the position and efficiency of translation initiation and, therefore, can be used for characterization of the translation initiation process.
Collapse
Affiliation(s)
- A V Karginov
- Department of Chemistry and Department of Biology, University of Virginia, Charlottesville, VA 22901, USA
| | | | | |
Collapse
|
41
|
Short GF, Lodder M, Laikhter AL, Arslan T, Hecht SM. Caged HIV-1 Protease: Dimerization Is Independent of the Ionization State of the Active Site Aspartates. J Am Chem Soc 1999. [DOI: 10.1021/ja9838054] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Glenn F. Short
- Departments of Chemistry and Biology University of Virginia, Charlottesville, Virginia 22901
| | - Michiel Lodder
- Departments of Chemistry and Biology University of Virginia, Charlottesville, Virginia 22901
| | - Andrei L. Laikhter
- Departments of Chemistry and Biology University of Virginia, Charlottesville, Virginia 22901
| | - Tuncer Arslan
- Departments of Chemistry and Biology University of Virginia, Charlottesville, Virginia 22901
| | - Sidney M. Hecht
- Departments of Chemistry and Biology University of Virginia, Charlottesville, Virginia 22901
| |
Collapse
|
42
|
Killian JA, Van Cleve MD, Shayo YF, Hecht SM. Ribosome-Mediated Incorporation of Hydrazinophenylalanine into Modified Peptide and Protein Analogues. J Am Chem Soc 1998. [DOI: 10.1021/ja974066e] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jennifer A. Killian
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Mark D. Van Cleve
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Yuda F. Shayo
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Sidney M. Hecht
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| |
Collapse
|
43
|
Lodder M, Golovine S, Laikhter AL, Karginov VA, Hecht SM. Misacylated Transfer RNAs Having a Chemically Removable Protecting Group. J Org Chem 1998; 63:794-803. [PMID: 11672075 DOI: 10.1021/jo971692l] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 4-pentenoyl group and a number of derivatives have been studied as protecting groups for N(alpha) of the aminoacyl moiety in misacylated tRNAs. The unsubstituted 4-pentenoyl group itself was found to function as efficiently as any of the derivatives studied. Four different N-(4-pentenoyl)aminoacyl-tRNA(CUA)s were prepared and shown to undergo deprotection readily upon admixture of aqueous iodine; the derived misacylated tRNAs all functioned well as suppressors of a nonsense codon in an in vitro protein biosynthesizing system. Also prepared were four N(alpha)-(4-pentenoyl)aspartyl-tRNA(CUA)s that were protected on the side chain carboxylate as the nitroveratryl ester. Following treatment with aqueous iodine, the misacylated suppressor tRNAs incorporated the aspartate derivatives into position 27 of dihydrofolate reductase by suppression of a UAG codon in the mRNA. The suppression yields were significantly better than those obtained when side chain protection was absent. The resulting "caged proteins" were inactive, but full catalytic potential was restored by irradiation under conditions sufficient to effect deprotection of the side chain carboxylate moiety.
Collapse
Affiliation(s)
- Michiel Lodder
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | | | | | | | | |
Collapse
|
44
|
Arslan T, Mamaev SV, Mamaeva NV, Hecht SM. Structurally Modified Firefly Luciferase. Effects of Amino Acid Substitution at Position 286. J Am Chem Soc 1997. [DOI: 10.1021/ja971927a] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tuncer Arslan
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Sergey V. Mamaev
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Natalia V. Mamaeva
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| | - Sidney M. Hecht
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901
| |
Collapse
|
45
|
Karginov VA, Mamaev SV, Hecht SM. In vitro suppression as a tool for the investigation of translation initiation. Nucleic Acids Res 1997; 25:3912-6. [PMID: 9380516 PMCID: PMC146976 DOI: 10.1093/nar/25.19.3912] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An in vitro protein synthesizing system that employs rabbit reticulocyte lysates has been employed for protein production from mRNAs containing nonsense (UAG) codons in the presence of misacylated suppressor tRNAs.The system includes a misacylated Escherichia coli tRNAAlaCUA that functions at least as efficiently as any suppressor tRNA transcript reported to date and which has been shown not to be a substrate for (re)activation by alanyl-tRNA synthetase. Application of the optimized system for preparation of dihydrofolate analogs has also permitted analysis of competing mechanisms that control the sites(s) of translation initiation.
Collapse
Affiliation(s)
- V A Karginov
- Departments of Chemistry and Biology, University of Virginia, Charlottesville, VA 22901, USA
| | | | | |
Collapse
|
46
|
Karginov VA, Mamaev SV, An H, Van Cleve MD, Hecht SM, Komatsoulis GA, Abelson JN. Probing the Role of an Active Site Aspartic Acid in Dihydrofolate Reductase. J Am Chem Soc 1997. [DOI: 10.1021/ja971099l] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vladimir A. Karginov
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia, 22901, and Division of Biology, California Institute of Technology, Pasadena, California, 91125
| | - Sergey V. Mamaev
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia, 22901, and Division of Biology, California Institute of Technology, Pasadena, California, 91125
| | - Haoyun An
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia, 22901, and Division of Biology, California Institute of Technology, Pasadena, California, 91125
| | - Mark D. Van Cleve
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia, 22901, and Division of Biology, California Institute of Technology, Pasadena, California, 91125
| | - Sidney M. Hecht
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia, 22901, and Division of Biology, California Institute of Technology, Pasadena, California, 91125
| | - George A. Komatsoulis
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia, 22901, and Division of Biology, California Institute of Technology, Pasadena, California, 91125
| | - John N. Abelson
- Contribution from the Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia, 22901, and Division of Biology, California Institute of Technology, Pasadena, California, 91125
| |
Collapse
|
47
|
Efficient preparation of aminoacylated dinucleoside phosphates with N-FMOC amino acid fluorides. Tetrahedron Lett 1997. [DOI: 10.1016/s0040-4039(97)00820-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Lodder M, Golovine S, Hecht SM. Chemical Deprotection Strategy for the Elaboration of Misacylated Transfer RNA's. J Org Chem 1997. [DOI: 10.1021/jo962170t] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Oliver JS, Oyelere A. Aminoacylation of Nucleosides with FMOC Amino Acid Fluorides(1). J Org Chem 1996; 61:4168-4171. [PMID: 11667303 DOI: 10.1021/jo9601674] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J. S. Oliver
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| | | |
Collapse
|
50
|
Mamaev SV, Laikhter AL, Arslan T, Hecht SM. Firefly Luciferase: Alteration of the Color of Emitted Light Resulting from Substitutions at Position 286. J Am Chem Soc 1996. [DOI: 10.1021/ja961053c] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|