1
|
Zeidler W, Egle C, Ribeiro S, Wagner A, Katunin V, Kreutzer R, Rodnina M, Wintermeyer W, Sprinzl M. Site-Directed Mutagenesis of Thermus thermophilus Elongation Factor Tu. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0596j.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Rutthard H, Banerjee A, Makinen MW. Mg2+ is not catalytically required in the intrinsic and kirromycin-stimulated GTPase action of Thermus thermophilus EF-Tu. J Biol Chem 2001; 276:18728-33. [PMID: 11274193 DOI: 10.1074/jbc.m102122200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The influence of divalent metal ions on the intrinsic and kirromycin-stimulated GTPase activity in the absence of programmed ribosomes and on nucleotide binding affinity of elongation factor Tu (EF-Tu) from Thermus thermophilus prepared as the nucleotide- and Mg(2+)-free protein has been investigated. The intrinsic GTPase activity under single turnover conditions varied according to the series: Mn(2+) (0.069 min(-1)) > Mg(2+) (0.037 min(-1)) approximately no Me(2+) (0.034 min(-1)) > VO(2+) (0.014 min(-1)). The kirromycin-stimulated activity showed a parallel variation. Under multiple turnover conditions (GTP/EF-Tu ratio of 10:1), Mg(2+) retarded the rate of hydrolysis in comparison to that in the absence of divalent metal ions, an effect ascribed to kinetics of nucleotide exchange. In the absence of added divalent metal ions, GDP and GTP were bound with equal affinity (K(d) approximately 10(-7) m). In the presence of added divalent metal ions, GDP affinity increased by up to two orders of magnitude according to the series: no Me(2+) < VO(2+) < Mn(2+) approximately Mg(2+) whereas the binding affinity of GTP increased by one order of magnitude: no Me(2+) < Mg(2+) < VO(2+) < Mn(2+). Estimates of equilibrium (dissociation) binding constants for GDP and GTP by EF-Tu on the basis of Scatchard plot analysis, together with thermodynamic data for hydrolysis of triphosphate nucleotides (Phillips, R. C., George, P., and Rutman, R. J. (1969) J. Biol. Chem. 244, 3330-3342), showed that divalent metal ions stabilize the EF-Tu.Me(2+).GDP complex over the protein-free Me(2+).GDP complex in solution, with the effect greatest in the presence of Mg(2+) by approximately 10 kJ/mol. These combined results show that Mg(2+) is not a catalytically obligatory cofactor in intrinsic and kirromycin-stimulated GTPase action of EF-Tu in the absence of programmed ribosomes, which highlights the differential role of Mg(2+) in EF-Tu function.
Collapse
Affiliation(s)
- H Rutthard
- Laboratorium für Biochemie, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | |
Collapse
|
3
|
Gaucher EA, Miyamoto MM, Benner SA. Function-structure analysis of proteins using covarion-based evolutionary approaches: Elongation factors. Proc Natl Acad Sci U S A 2001; 98:548-52. [PMID: 11209054 PMCID: PMC14624 DOI: 10.1073/pnas.98.2.548] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The divergent evolution of protein sequences from genomic databases can be analyzed by the use of different mathematical models. The most common treat all sites in a protein sequence as equally variable. More sophisticated models acknowledge the fact that purifying selection generally tolerates variable amounts of amino acid replacement at different positions in a protein sequence. In their "stationary" versions, such models assume that the replacement rate at individual positions remains constant throughout evolutionary history. "Nonstationary" covarion versions, however, allow the replacement rate at a position to vary in different branches of the evolutionary tree. Recently, statistical methods have been developed that highlight this type of variation in replacement rates. Here, we show how positions that have variable rates of divergence in different regions of a tree ("covarion behavior"), coupled with analyses of experimental three-dimensional structures, can provide experimentally testable hypotheses that relate individual amino acid residues to specific functional differences in those branches. We illustrate this in the elongation factor family of proteins as a paradigm for applications of this type of analysis in functional genomics generally.
Collapse
Affiliation(s)
- E A Gaucher
- Department of Chemistry and Molecular Cell Biology Program, College of Medicine, University of Florida, Gainesville, FL 32611-7200, USA.
| | | | | |
Collapse
|
4
|
Szkaradkiewicz K, Zuleeg T, Limmer S, Sprinzl M. Interaction of fMet-tRNAfMet and fMet-AMP with the C-terminal domain of Thermus thermophilus translation initiation factor 2. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4290-9. [PMID: 10866834 DOI: 10.1046/j.1432-1033.2000.01480.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two polypeptides resistant against proteolytic digestion were identified in Thermus thermophilus translation initiation factor 2 (IF2): the central part of the protein (domains II/III), and the C-terminal domain (domain IV). The interaction of intact IF2 and the isolated proteolytic fragments with fMet-tRNAfMet was subsequently characterized. The isolated C-terminal domain was as effective in binding of the 3' end of fMet-tRNAf Met as intact IF2. N-Formylation of Met-tRNAfMet was required for its efficient binding to the C-terminal domain. This suggests that the interaction between the C-terminal domain and the 3' end of fMet-tRNAfMet is responsible for the recognition of fMet-tRNAfMet by IF2 during translation initiation. Moreover, it was demonstrated that fMet-AMP is a minimal ligand of IF2. fMet-AMP inhibits fMet-tRNAfMet binding to IF2 as well as the activity of IF2 in the stimulation of ApUpG-dependent ribosomal binding of fMet-tRNAf Met. Specific interaction of fMet-AMP with IF2 was demonstrated by 1H-NMR spectroscopy. These findings indicate that fMet-AMP and the 3' terminal fMet-adenosine of fMet-tRNAfMet use the same binding site on the C-terminal domain of IF2 and imply that the interaction between the C-terminal domain and the 3' end of fMet-tRNAfMet is primarily responsible for the fMet-tRNAfMet binding and recognition by IF2.
Collapse
|
5
|
Bullard JM, Cai YC, Zhang Y, Spremulli LL. Effects of domain exchanges between Escherichia coli and mammalian mitochondrial EF-Tu on interactions with guanine nucleotides, aminoacyl-tRNA and ribosomes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1446:102-14. [PMID: 10395923 DOI: 10.1016/s0167-4781(99)00077-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Escherichia coli elongation factor (EF-Tu) and the corresponding mammalian mitochondrial factor, EF-Tumt, show distinct differences in their affinities for guanine nucleotides and in their interactions with elongation factor Ts (EF-Ts) and mitochondrial tRNAs. To investigate the roles of the three domains of EF-Tu in these differences, six chimeric proteins were prepared in which the three domains were systematically switched. E. coli EF-Tu binds GDP much more tightly than EF-Tumt. This difference does not reside in domain I alone but is regulated by interactions with domains II and III. All the chimeric proteins formed ternary complexes with GTP and aminoacyl-tRNA although some had an increased or decreased activity in this assay. The activity of E. coli EF-Tu but not of EF-Tumt is stimulated by E. coli EF-Ts. The presence of any one of the domains of EF-Tumt in the prokaryotic factor reduced its interaction with E. coli EF-Ts 2-3-fold. In contrast, the presence of any of the three domains of E. coli EF-Tu in EF-Tumt allowed the mitochondrial factor to interact with bacterial EF-Ts. This observation indicates that even domain II which is not in contact with EF-Ts plays an important role in the nucleotide exchange reaction. EF-Tsmt interacts with all of the chimeras produced. However, with the exception of domain III exchanges, it inhibits the activities of the chimeras indicating that it could not be productively released to allow formation of the ternary complex. The unique ability of EF-Tumt to promote binding of mitochondrial Phe-tRNAPhe to the A-site of the ribosome resides in domains I and II. These studies indicate that the interactions of EF-Tu with its ligands is a complex process involving cross-talk between all three domains.
Collapse
Affiliation(s)
- J M Bullard
- Department of Chemistry, Campus Box 3290, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | | | | | |
Collapse
|
6
|
Abstract
This review is concerned with the structures and mechanisms of a superfamily of regulatory GTP hydrolases (G proteins). G proteins include Ras and its close homologs, translation elongation factors, and heterotrimeric G proteins. These proteins share a common structural core, exemplified by that of p21ras (Ras), and significant sequence identity, suggesting a common evolutionary origin. Three-dimensional structures of members of the G protein superfamily are considered in light of other biochemical findings about the function of these proteins. Relationships among G protein structures are discussed, and factors contributing to their low intrinsic rate of GTP hydrolysis are considered. Comparison of GTP- and GDP-bound conformations of G proteins reveals how specific contacts between the gamma-phosphate of GTP and the switch II region stabilize potential effector-binding sites and how GTP hydrolysis results in collapse (or reordering) of these surfaces. A GTPase-activating protein probably binds to and stabilizes the conformation of its cognate G protein that recognizes the transition state for hydrolysis, and may insert a catalytic residue into the G protein active site. Inhibitors of nucleotide release, such as the beta gamma subunit of a heterotrimeric G protein, bind selectively to and stabilize the GDP-bound state. Release factors, such as the translation elongation factor, Ts, also recognize the switch regions and destabilize the Mg(2+)-binding site, thereby promoting GDP release. G protein-coupled receptors are expected to operate by a somewhat different mechanism, given that the GDP-bound form of many G protein alpha subunits does not contain bound Mg2+.
Collapse
Affiliation(s)
- S R Sprang
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas 75235-9050, USA.
| |
Collapse
|
7
|
Zeidler W, Schirmer NK, Egle C, Ribeiro S, Kreutzer R, Sprinzl M. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 239:265-71. [PMID: 8706729 DOI: 10.1111/j.1432-1033.1996.0265u.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effector region of the elongation factor Tu (EF-Tu) from Thermus thermophilus was modified by limited proteolysis or via site-directed mutagenesis. The biochemical properties of the obtained EF-Tu variants were investigated with respect to partial reactions of the functional cycle of EF-Tu. EF-Tu that was cleaved at the Arg59-Gly60 peptide bond [EF-Tu-(1-59)/EF-Tu-(60-405)] bound GDP, EF-Ts and aminoacyl-tRNA, had normal intrinsic GTPase activity and was active in poly(U)-dependent poly(Phe) synthesis. However, the GTPase activity of EF-Tu-(1-59)/EF-Tu-(60-405) was not stimulated by T. thermophilus 70S ribosomes, and its GTP-dissociation rate was increased compared with that of intact EF-Tu. EF-Tu cleaved at the Lys52-Ala53 peptide bond has properties similar to EF-Tu-(1-59)/EF-Tu-(60-405). By means of site-directed mutagenesis, Glu55 was replaced by Leu, Glu56 by Ala and Arg59 by Thr in T. thermophilus EF-Tu. These amino acid substitutions did not substantially affect either the affinity of EF-Tu. GTP for aminoacyl-tRNA or the interactions with GDP, GTP or EF-Ts. Similarly the intrinsic GTPase activity is not influenced. Replacement of Glu56 by Ala led to strong reduction in the ribosome-induced GTPase activity. This effect is specific since replacement of the neighbouring Glu55 by Leu did not affect the ribosome-induced GTPase activity. The results demonstrate that the structure of the effector region of EF-Tu in the vicinity of Arg59 is important for the control of the GTPase activity by ribosomes.
Collapse
Affiliation(s)
- W Zeidler
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Hilgenfeld R, Böck A, Wilting R. Structural model for the selenocysteine-specific elongation factor SelB. Biochimie 1996; 78:971-8. [PMID: 9150874 DOI: 10.1016/s0300-9084(97)86719-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A structural model was established for the N-terminal part of translation factor SelB which shares sequence similarity with EF-Tu, taking into account the coordinates of the EF-Tu 3D structure and the consensus of SelB sequences from four bacteria. The model showed that SelB is homologous in its N-terminal domains over all three domains of EF-Tu. The guanine nucleotide binding site and the residues involved in GTP hydrolysis are similar to those of EF-Tu, but with some subtle differences possibly responsible for the higher affinity of SelB for GTP compared to GDP. In accordance, the EF-Tu epitopes interacting with EF-Ts are lacking in SelB. Information on the formation of the selenocysteyl-binding pocket is presented. A phylogenetic comparison of the SelB domains homologous to EF-Tu with those from EF-Tu and initiation factor 2 indicated that SelB forms a separate class of translation factors.
Collapse
Affiliation(s)
- R Hilgenfeld
- Institut für Molekulare Biotechnologie eV, Jena, Germany
| | | | | |
Collapse
|
9
|
Ahmadian MR, Kreutzer R, Blechschmidt B, Sprinzl M. Site-directed mutagenesis of Thermus thermophilus EF-Tu: the substitution of threonine-62 by serine or alanine. FEBS Lett 1995; 377:253-7. [PMID: 8543062 DOI: 10.1016/0014-5793(95)01354-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The invariant threonine-62, which occurs in the effector region of all GTP/GDP-binding regulatory proteins, was substituted via site-directed mutagenesis by alanine and serine in the elongation factor Tu from Thermus thermophilus. The altered proteins were overproduced in Escherichia coli, purified and characterized. The EF-Tu T62S variant had similar properties with respect to thermostability, aminoacyl-tRNA binding, GTPase activity and in vitro translation as the wild-type EF-Tu. In contrast, EF-Tu T62A is severely impaired in its ability to sustain polypeptide synthesis and has only very low intrinsic and ribosome-induced GTPase activity. The affinity of aminoacyl-tRNA to the EF-Tu T62A.GTP complex is almost 40 times lower as compared to the native EF-Tu.GTP. These observations are in agreement with the tertiary structure of EF-Tu.GTP, in which threonine-62 is interacting with the Mg2+ ion, gamma-phosphate of GTP and a water molecule, which is presumably involved in the GTP hydrolysis.
Collapse
Affiliation(s)
- M R Ahmadian
- Laboratorium für Biochemie Universität Bayreuth, Germany
| | | | | | | |
Collapse
|
10
|
Nock S, Grillenbeck N, Ahmadian MR, Ribeiro S, Kreutzer R, Sprinzl M. Properties of isolated domains of the elongation factor Tu from Thermus thermophilus HB8. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:132-9. [PMID: 8529632 DOI: 10.1111/j.1432-1033.1995.00132.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The relative contributions of the three domains of elongation factor Tu (EF-Tu) to the factor's function and thermal stability were established by dissecting the domains apart with recombination techniques. Domain I (EF-TuI), domains I/II (EF-TuI/II) and domain III (EF-TuIII) of the EF-Tu from Thermus thermophilus HB8 comprising the amino acids 1-211, 1-312 and 317-405, respectively, were overproduced in Escherichia coli and purified. A polypeptide consisting of domain II and III (EF-TuII/III) was prepared by limited proteolysis of native EF-Tu with V8 protease from Staphylococcus aureus [Peter, M. E., Reiser, C. O. A., Schirmer, N. K., Kiefhaber, T., Ott, G., Grillenbeck, N. W. & Sprinzl, M. (1990) Nucleic Acids Res. 18, 6889-6893]. As determined by circular dichroism spectrometry, the isolated domains have the secondary structure elements found in the native EF-Tu. GTP and GDP binding as well as GTPase activity are maintained by the EF-TuI and EF-TuI/II; however, the rate of GDP dissociation from EF-TuI . GDP and EF-TuI/II . GDP complex is increased as compared to native EF-Tu . GDP, reflecting a constraint imposed by domain III on the ability to release the nucleotide from its binding pocket located in domain I. A weak interaction of Tyr-tRNATyr with the EF-TuI . GTP suggests that domain I provides a part of the structure interacting with aminoacyl-tRNA. The domain III is capable of regulating the rate of GTPase in EF-Tu, since the polypeptide consisting only of domains I/II has a 39-fold higher intrinsic GTPase compared to the native EF-Tu. No in vitro poly(U)-dependent poly(Phe) synthesis was detectable with a mixture of equimolar amounts of domains I/II and domain III, demonstrating the necessity of covalent linkage between the domains of EF-Tu for polypeptide synthesis. In contrast to native EF-Tu and EF-TuII/III, EF-TuI and, to a lesser extent the polypeptide consisting of domains I/II, are unstable at elevated temperatures. This indicates that domains II/III strongly contribute to the thermal stability of this T. thermophilus EF-Tu. Deletion of amino acid residues 181-190 from domain I of T. thermophilus EF-Tu decreases the thermostability to that of EF-Tu from E. coli, which does not have these residues. Interdomain interactions must be important for the stabilisation of the structure of domain I, since isolated T. thermophilus EF-TuI is thermolabile despite the presence of the 181-190 loop.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Nock
- Lehrstuhl für Biochemie, Universität Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Zeidler W, Egle C, Ribeiro S, Wagner A, Katunin V, Kreutzer R, Rodnina M, Wintermeyer W, Sprinzl M. Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:596-604. [PMID: 7758452 DOI: 10.1111/j.1432-1033.1995.tb20503.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
His85 in Thermus thermophilus elongation factor Tu (EF-Tu) was replaced by glutamine, leucine and glycine residues, leading to [H85Q]EF-Tu, [H85L] EF-Tu and [H85G]EF-Tu, respectively. Asp81 was replaced by alanine leading to [D81A]EF-Tu, and replacement of Arg300 provided [R300I]EF-Tu. Glycine in position 85 of domain I induces a protease-sensitive site in domain II and causes complete protein degradation in vivo. A similar effect was observed when Asp81 was replaced by alanine or Arg300 by isoleucine. Degradation is probably due to disturbed interactions between the domains of EF-Tu.GTP, inducing a protease-sensitive cleavage site in domain II. [H85Q]EF-Tu, which can be effectively overproduced in Escherichia coli, is slower in poly(U)-dependent poly(Phe) synthesis, has lower affinity to aminoacyl-tRNA but shows only a slightly reduced rate of intrinsic GTP hydrolysis compared to the native protein. The GTPase of this protein variant is not efficiently stimulated by aminoacyl-tRNA and ribosomes. The slow GTPase of [H85Q]EF-Tu increases the fidelity of translation as measured by leucine incorporation into poly(Phe) in in vitro poly(U)-dependent ribosomal translation. Replacement of His85 in T. thermophilus EF-Tu by leucine completely deactivates the GTPase activity but does not substantially influence the aminoacyl-tRNA binding. [H85L]EF-Tu is inactive in poly(U)-dependent poly(Phe)-synthesis. The rate of nucleotide dissociation is highest for [H85L]EF-Tu, followed by [H85Q]EF-Tu and native T. thermophilus EF-Tu. Mutation of His85, a residue which is not directly involved in the nucleotide binding, thus influences the interaction of EF-Tu domains, nucleotide binding and the efficiency and rate of GTPase activity.
Collapse
Affiliation(s)
- W Zeidler
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Several elongation factors involved in protein synthesis are GTPases that share structural and mechanistic homology with the large family of proteins including Ras and heterotrimeric receptor-coupled G proteins. The structure of elongation factor Tu (EF-Tu) from thermophilic bacteria, in its 'active' GTP-bound form, has recently been solved by X-ray crystallography. Comparison of this structure with the structure of Escherichia coli EF-Tu bound to GDP reveals a dramatic conformational change that is dependent on GTPase activity. The mechanism of this conformational change and of GTPase activation are discussed, and a model for the EF-Tu-GTP complex with aminoacyl-tRNA is presented.
Collapse
Affiliation(s)
- M Sprinzl
- Laboratorium für Biochemie, Universität Bayreuth, Germany
| |
Collapse
|
13
|
Jonák J, Anborgh PH, Parmeggiani A. Histidine-118 of elongation factor Tu: its role in aminoacyl-tRNA binding and regulation of the GTPase activity. FEBS Lett 1994; 343:94-8. [PMID: 8163025 DOI: 10.1016/0014-5793(94)80614-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The function of His118 in elongation factor (EF)-Tu from Escherichia coli was investigated by its substitution with glycine. The substitution had a differential effect on individual functions of the protein. The affinity for aminoacyl (aa)-tRNA and the intrinsic GTPase activity of the mutant EF-Tu were decreased whereas the response of its GTPase center to aa-tRNA was strongly increased. These results suggest that the region around His118 is involved in the binding of aa-tRNA and in the transmission of a turn-off signal generated by the interaction with aa-tRNA and directed to the GTPase center of EF-Tu.
Collapse
Affiliation(s)
- J Jonák
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | | | |
Collapse
|
14
|
Berchtold H, Reshetnikova L, Reiser CO, Schirmer NK, Sprinzl M, Hilgenfeld R. Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 1993; 365:126-32. [PMID: 8371755 DOI: 10.1038/365126a0] [Citation(s) in RCA: 442] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The crystal structure of intact elongation factor Tu (EF-Tu) from Thermus thermophilus has been determined and refined at an effective resolution of 1.7 A, with incorporation of data extending to 1.45 A. The effector region, including interaction sites for the ribosome and for transfer RNA, is well defined. Molecular mechanisms are proposed for transduction and amplification of the signal induced by GTP binding as well as for the intrinsic and effector-enhanced GTPase activity of EF-Tu. Comparison of the structure with that of EF-Tu-GDP reveals major mutual rearrangements of the three domains of the molecule.
Collapse
Affiliation(s)
- H Berchtold
- Central Research G 865A, Hoechst Aktiengesellschaft, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Tubulekas I, Hughes D. A single amino acid substitution in elongation factor Tu disrupts interaction between the ternary complex and the ribosome. J Bacteriol 1993; 175:240-50. [PMID: 8416899 PMCID: PMC196119 DOI: 10.1128/jb.175.1.240-250.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Elongation factor Tu (EF-Tu).GTP has the primary function of promoting the efficient and correct interaction of aminoacyl-tRNA with the ribosome. Very little is known about the elements in EF-Tu involved in this interaction. We describe a mutant form of EF-Tu, isolated in Salmonella typhimurium, that causes a severe defect in the interaction of the ternary complex with the ribosome. The mutation causes the substitution of Val for Gly-280 in domain II of EF-Tu. The in vivo growth and translation phenotypes of strains harboring this mutation are indistinguishable from those of strains in which the same tuf gene is insertionally inactivated. Viable cells are not obtained when the other tuf gene is inactivated, showing that the mutant EF-Tu alone cannot support cell growth. We have confirmed, by partial protein sequencing, that the mutant EF-Tu is present in the cells. In vitro analysis of the natural mixture of wild-type and mutant EF-Tu allows us to identify the major defect of this mutant. Our data shows that the EF-Tu is homogeneous and competent with respect to guanine nucleotide binding and exchange, stimulation of nucleotide exchange by EF-Ts, and ternary complex formation with aminoacyl-tRNA. However various measures of translational efficiency show a significant reduction, which is associated with a defective interaction between the ribosome and the mutant EF-Tu.GTP.aminoacyl-tRNA complex. In addition, the antibiotic kirromycin, which blocks translation by binding EF-Tu on the ribosome, fails to do so with this mutant EF-Tu, although it does form a complex with EF-Tu. Our results suggest that this region of domain II in EF-Tu has an important function and influences the binding of the ternary complex to the codon-programmed ribosome during protein synthesis. Models involving either a direct or an indirect effect of the mutation are discussed.
Collapse
Affiliation(s)
- I Tubulekas
- Department of Molecular Biology, Uppsala University, Sweden
| | | |
Collapse
|
16
|
van Damme HT, Amons R, Möller W. Identification of the sites in the eukaryotic elongation factor 1 alpha involved in the binding of elongation factor 1 beta and aminoacyl-tRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:1025-34. [PMID: 1499548 DOI: 10.1111/j.1432-1033.1992.tb17139.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this article we report the identification of the sites which are involved in the binding of the GDP-exchange factor EF-1 beta and aminoacyl tRNA to the alpha-subunit of the eukaryotic elongation factor 1 (EF-1) from Artemia. For this purpose the polypeptide chain of EF-1 alpha, having 461 amino acid residues, was proteolytically cleaved into large fragments by distinct proteases. Under well defined conditions, a mixture of two large fragments, free from intact EF-1 alpha and with molecular masses of 37 kDa and 43 kDa, was obtained. The 37-kDa and 43-kDa fragments comprise the residues 129-461 and 69-461, respectively. However, in aqueous solution and under non-denaturing conditions, the mixture still contained a short amino-terminal peptide, encompassing the residues 1-36, that remained tightly bound. The ability of the mixture of the 37+43-kDa fragments, including this amino-terminal peptide 1-36, to bind GDP or to facilitate aminoacyl tRNA binding to salt-washed ribosomes was severely reduced, compared to intact EF-1 alpha. However, both of these complexes were able to bind to the GDP-exchange-stimulating subunit EF-1 beta. A 30-kDa fragment, comprising the residues 1-287, was generated after treatment of the protein with endoproteinase Glu-C. This fragment contained the complete guanine nucleotide binding pocket. Although it was able to bind GDP and to transport aminoacyl tRNA to the ribosome, no affinity towards EF-1 beta was observed. We propose that the guanine-nucleotide-exchange stimulation by EF-1 beta is induced through binding of this factor to the carboxy-terminal part of EF-1 alpha. As a result, a decreased susceptibility towards trypsin of the guanine-nucleotide-binding pocket of EF-1 alpha, especially in the region of its presumed effector loop is induced.
Collapse
Affiliation(s)
- H T van Damme
- Department of Medical Biochemistry, Sylvius Laboratory, University of Leiden, The Netherlands
| | | | | |
Collapse
|
17
|
Voss RH, Hartmann RK, Lippmann C, Alexander C, Jahn O, Erdmann VA. Sequence of the tufA gene encoding elongation factor EF-Tu from Thermus aquaticus and overproduction of the protein in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:839-46. [PMID: 1499561 DOI: 10.1111/j.1432-1033.1992.tb17115.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The sequence of the tufA gene from the extreme thermophilic eubacterium Thermus aquaticus EP 00276 was determined. The GC content in third positions of codons is 89.5%, with an unusual predominance of guanosine (60.7%). The derived protein sequence differs from tufA- and tufB-encoded sequences for elongation factor Tu (EF-Tu) of Thermus thermophilus HB8, another member of the genus Thermus, in 10 of the 405 amino acid residues. Three exchanges are located in the additional loop of ten amino acids (182-191). The loop, probably involved in nucleotide binding, is absent in EF-Tu of the mesophile Escherichia coli. Since EF-Tu from E. coli is quite unstable, the protein is well-suited for analyzing molecular changes that lead to thermostabilization. Comparison of the EF-Tu domain I from E. coli and Thermus strains revealed clustered amino acid exchanges in the C-terminal part of the first helix and in adjacent residues of the second loop inferred to interact with the ribosome. Most other exchanges in the guanine nucleotide binding domain are located in loops or nearest vicinity of loops suggesting their importance for thermostability. The T. aquaticus EF-Tu was overproduced in E. coli using the tac expression system. Identity of the recombinant T. aquaticus EF-Tu was verified by Western blot analysis, N-terminal sequencing and GDP binding assays.
Collapse
Affiliation(s)
- R H Voss
- Institut für Biochemie, Freie Universität Berlin, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
18
|
Park HJ, Kreutzer R, Reiser CO, Sprinzl M. Molecular cloning and nucleotide sequence of the gene encoding a H2O2-forming NADH oxidase from the extreme thermophilic Thermus thermophilus HB8 and its expression in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 205:875-9. [PMID: 1577004 DOI: 10.1111/j.1432-1033.1992.tb16852.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The sequence of the 32 N-terminal amino acids of the NADH oxidase from the extreme thermophile, Thermus thermophilus HB8, was used to synthesize oligonucleotides to probe for the respective gene in a genomic library of T. thermophilus HB8. The gene encoding the NADH oxidase, designated nox, was cloned, its nucleotide sequence was determined and found to be colinear with the N-terminal sequence of the enzyme. The molecular mass of 26835 Da, as deduced from the nox gene, agrees with that of the purified NADH oxidase from T. thermophilus HB8 (25,000 Da), as estimated by polyacrylamide gel electrophoresis under denaturing conditions. The nox gene was overexpressed in Escherichia coli and a protocol for the rapid purification of the enzyme was developed. The E. coli-borne T. thermophilus HB8 NADH oxidase has properties identical to those of the authentic T. thermophilus HB8 enzyme and possesses a high thermal stability.
Collapse
Affiliation(s)
- H J Park
- Laboratorium für Biochemie, Universität Bayreuth, Federal Republic of Germany
| | | | | | | |
Collapse
|
19
|
Reshetnikova LS, Reiser CO, Schirmer NK, Berchtold H, Storm R, Hilgenfeld R, Sprinzl M. Crystals of intact elongation factor Tu from Thermus thermophilus diffracting to high resolution. J Mol Biol 1991; 221:375-7. [PMID: 1920424 DOI: 10.1016/0022-2836(91)80058-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The intact elongation factor Tu from the extreme thermophile Thermus thermophilus has been crystallized as a complex with the GTP analogue guanosine-5'-(beta,gamma-imido)triphosphate. The crystals are very stable in the X-ray beam and diffract to 1.9 A resolution. They exhibit space group C2, with a = 150.3(6) A, b = 99.6(3) A, c = 40.1(1) A, beta = 95.4(2) degrees, and contain one elongation factor Tu molecule per asymmetric unit.
Collapse
|
20
|
Schirmer NK, Reiser CO, Sprinzl M. Effect of Thermus thermophilus elongation factor Ts on the conformation of elongation factor Tu. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 200:295-300. [PMID: 1889399 DOI: 10.1111/j.1432-1033.1991.tb16185.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Affinity labeling in situ of the Thermus thermophilus elongation factor Tu (EF-Tu) nucleotide binding site was achieved with periodate-oxidized GDP (GDPoxi) or GTP (GTPoxi) in the absence and presence of elongation factor Ts (EF-Ts). Lys52 and Lys137, both reacting with GDPoxi and GTPoxi, are located in the nucleotide binding region. In the absence of EF-Ts Lys137 and to a lesser extent Lys52 were accessible to the reaction with GTPoxi. GDPoxi reacted much more efficiently with Lys52 than with Lys137 under these conditions [Peter, M. E., Wittman-Liebold, B. & Sprinzl, M. (1988) Biochemistry 27, 9132-9138]. In the presence of EF-Ts, GDPoxi reacted more efficiently with Lys137 than with Lys52, indicating that the interaction of EF-Ts with EF-Tu.GDPoxi induces a conformation resembling that of the EF-Tu.GDPoxi complex in the absence of EF-Ts. Binding of EF-Ts to EF-Tu.GDP enhances the accessibility of the Arg59-Gly60 peptide bond of EF-Tu to trypsin cleavage. Hydrolysis of this peptide bond does not interfere with the ability of EF-Ts to bind to EF-Tu. EF-Ts is protected against trypsin cleavage by interaction with EF-Tu.GDP. High concentrations of EF-Ts did not interfere significantly with aminoacyl-tRNA.EF-Tu.GTP complex formation.
Collapse
Affiliation(s)
- N K Schirmer
- Laboratorium für Biochemie, Universität Bayreuth, Federal Republic of Germany
| | | | | |
Collapse
|
21
|
Anborgh PH, Cool RH, Gümüsel F, Harmark K, Jacquet E, Weijland A, Mistou MY, Parmeggiani A. Structure-function relationships of elongation factor Tu as studied by mutagenesis. Biochimie 1991; 73:1051-9. [PMID: 1742350 DOI: 10.1016/0300-9084(91)90147-s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have modified elongation factor Tu (EF-Tu) from Escherichia coli via mutagenesis of its encoding tufA gene to study its function-structure relationships. The isolation of the N-terminal half molecule of EF-Tu (G domain) has facilitated the analysis of the basic EF-Tu activities, since the G domain binds the substrate GTP/GDP, catalyzes the GTP hydrolysis and is not exposed to the allosteric constraints of the intact molecule. So far, the best studied region has been the guanine nucleotide-binding pocket defined by the consensus elements typical for the GTP-binding proteins. In this area most substitutions were carried out in the G domain and were found to influence GTP hydrolysis. In particular, the mutation VG20 (in both G domain and EF-Tu) decreases this activity and enhances the GDP to GTP exchange; PT82 induces autophosphorylation of Thr82 and HG84 strongly affects the GTPase without altering the interaction with the substrate. SD173, a residue interacting with (O)6 of the guanine, abolishes the GTP and GDP binding activity. Substitution of residues Gln114 and Glu117, located in the proximity of the GTP binding pocket, influences respectively the GTPase and the stability of the G domain, whereas the double replacement VD88/LK121, located on alpha-helices bordering the GTP-binding pocket, moderately reduces the stability of the G domain without greatly affecting GTPase and interaction with GTP(GDP). Concerning the effect of ligands, EF-TuVG20 supports a lower poly(Phe) synthesis but is more accurate than wild-type EF-Tu, probably due to a longer pausing on the ribosome.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P H Anborgh
- Unité SDI n. 61840 du CNRS, Laboratoire de Biochimie, Ecole Polytechnique, Palaiseau, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
A short personal recollection of HG Wittmann is given with emphasis on his basic contribution to the structure of the ribosome, in particular the ribosomal proteins. With these considerations in mind, two interrelated problems are reviewed here. The first relates to the internal symmetry both in tRNA and in the tetrameric L12-protein complex. The second problem to be addressed relates to the dynamics of transfer RNA in the ribosome and the role of L12 proteins in this process. The importance of electrostatic repulsion in the maintenance of the mutual spatial orientation of tRNAs and L12 in the ribosome is emphasized in relation to a pendulum model for how L12 may steer translocation.
Collapse
Affiliation(s)
- W Möller
- Department of Medical Biochemistry, Sylvius Laboratory, Faculty of Medicine, University of Leiden, The Netherlands
| |
Collapse
|
23
|
Nilsson L, Nygård O. Altered sensitivity of eukaryotic elongation factor 2 for trypsin after phosphorylation and ribosomal binding. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99262-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
24
|
Kinzy TG, Merrick WC. Characterization of a limited trypsin digestion form of eukaryotic elongation factor 1 α. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)64291-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
25
|
Abstract
The molecular events responsible for controlling cell growth and development, as well as their coordinate interaction is only beginning to be revealed. At the basis of these controlling events are hormones, growth factors and mitogens which, through transmembrane signalling trigger an array of cellular responses, initiated by receptor-associated tyrosine kinases, which in turn either directly or indirectly mediate their effects through serine/threonine protein kinases. Utilizing the obligatory response of activation of protein synthesis in cell growth and development, we describe efforts to work backwards along the regulatory pathway to the receptor, identifying those molecular components involved in modulating the rate of translation. We begin by describing the components and steps of protein synthesis and then discuss in detail the regulatory pathways involved in the mitogenic response of eukaryotic cells and during meiotic maturation of oocytes. Finally we discuss possible future work which will further our understanding of these systems.
Collapse
Affiliation(s)
- S J Morley
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
26
|
Peter ME, Reiser CO, Schirmer NK, Kiefhaber T, Ott G, Grillenbeck NW, Sprinzl M. Interaction of the isolated domain II/III of Thermus thermophilus elongation factor Tu with the nucleotide exchange factor EF-Ts. Nucleic Acids Res 1990; 18:6889-93. [PMID: 2263451 PMCID: PMC332746 DOI: 10.1093/nar/18.23.6889] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The middle and C-terminal domain (domain II/III) of elongation factor Tu from Thermus thermophilus lacking the GTP/GDP binding domain have been prepared by treating nucleotide-free protein with Staphylococcus aureus V8 protease. The isolated domain II/III of EF-Tu has a compact structure and high resistance against tryptic treatment and thermal denaturation. As demonstrated by circular dichroism spectroscopy, the isolated domain II/III does not contain any alpha-helical structure. Nucleotide exchange factor, EF-Ts, was found to interact with domain II/III, whereas the binding of aminoacyl-tRNA, GDP and GTP to this EF-Tu fragment could not be detected.
Collapse
Affiliation(s)
- M E Peter
- Laboratorium für Biochemie, Universität Bayreuth, FRG
| | | | | | | | | | | | | |
Collapse
|