1
|
Paz MM, Champeil E. Insight Into Factors Governing Formation, Synthesis and Stereochemical Configuration of DNA Adducts Formed by Mitomycins. CHEM REC 2023; 23:e202200193. [PMID: 36251922 DOI: 10.1002/tcr.202200193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/19/2022] [Indexed: 01/24/2023]
Abstract
Mitomycin C, (MC), an antitumor drug used in the clinics, is a DNA alkylating agent. Inert in its native form, MC is reduced to reactive mitosenes in cellulo which undergo nucleophilic attack by DNA bases to form monoadducts as well as interstrand crosslinks (ICLs). These properties constitute the molecular basis for the cytotoxic effects of the drug. The mechanism of DNA alkylation by mitomycins has been studied for the past 30 years and, until recently, the consensus was that drugs of the mitomycins family mainly target CpG sequences in DNA. However, that paradigm was recently challenged. Here, we relate the latest research on both MC and dicarbamoylmitomycin C (DMC), a synthetic derivative of MC which has been used to investigate the regioselectivity of mitomycins DNA alkylation as well as the relationship between mitomycins reductive activation pathways and DNA adducts stereochemical configuration. We also review the different synthetic routes to access mitomycins nucleoside adducts and oligonucleotides containing MC/DMC DNA adducts located at a single position. Finally, we briefly describe the DNA structural modifications induced by MC and DMC adducts and how site specifically modified oligonucleotides have been used to elucidate the role each adduct plays in the drugs cytotoxicity.
Collapse
Affiliation(s)
- Manuel M Paz
- Instituto de Materiais (iMATUS), Departamento de Química Orgánica, Facultad de Química, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, 15782, Spain
| | - Elise Champeil
- Department of sciences, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, United States
| |
Collapse
|
2
|
Burby PE, Simmons LA. A bacterial DNA repair pathway specific to a natural antibiotic. Mol Microbiol 2018; 111:338-353. [PMID: 30379365 DOI: 10.1111/mmi.14158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2018] [Indexed: 12/17/2022]
Abstract
All organisms possess DNA repair pathways that are used to maintain the integrity of their genetic material. Although many DNA repair pathways are well understood, new pathways continue to be discovered. Here, we report an antibiotic specific DNA repair pathway in Bacillus subtilis that is composed of a previously uncharacterized helicase (mrfA) and exonuclease (mrfB). Deletion of mrfA and mrfB results in sensitivity to the DNA damaging agent mitomycin C, but not to any other type of DNA damage tested. We show that MrfAB function independent of canonical nucleotide excision repair, forming a novel excision repair pathway. We demonstrate that MrfB is a metal-dependent exonuclease and that the N-terminus of MrfB is required for interaction with MrfA. We determined that MrfAB failed to unhook interstrand cross-links in vivo, suggesting that MrfAB are specific to the monoadduct or the intrastrand cross-link. A phylogenetic analysis uncovered MrfAB homologs in diverse bacterial phyla, and cross-complementation indicates that MrfAB function is conserved in closely related species. B. subtilis is a soil dwelling organism and mitomycin C is a natural antibiotic produced by the soil bacterium Streptomyces lavendulae. The specificity of MrfAB suggests that these proteins are an adaptation to environments with mitomycin producing bacteria.
Collapse
Affiliation(s)
- Peter E Burby
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Aguilar W, Paz MM, Vargas A, Zheng M, Cheng SY, Champeil E. Interdependent Sequence Selectivity and Diastereoselectivity in the Alkylation of DNA by Decarbamoylmitomycin C. Chemistry 2018; 24:13278-13289. [PMID: 29958326 PMCID: PMC7152928 DOI: 10.1002/chem.201802038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/27/2018] [Indexed: 02/01/2023]
Abstract
Mitomycin C (MC), an antitumor drug, and decarbamoylmitomycin C (DMC), a derivative of MC, alkylate DNA and form deoxyguanosine monoadducts and interstrand crosslinks (ICLs). Interestingly, in mammalian culture cells, MC forms primarily deoxyguanosine adducts with a 1"-R stereochemistry at the guanine-mitosene bond (1"-α) whereas DMC forms mainly adducts with a 1"-S stereochemistry (1"-β). The molecular basis for the stereochemical configuration exhibited by DMC has been investigated using biomimetic synthesis. Here, we present the results of our studies on the monoalkylation of DNA by DMC. We show that the formation of 1"-β-deoxyguanosine adducts requires bifunctional reductive activation of DMC, and that monofunctional activation only produces 1"-α-adducts. The stereochemistry of the deoxyguanosine adducts formed is also dependent on the regioselectivity of DNA alkylation and on the overall DNA CG content. Additionally, we found that temperature plays a determinant role in the regioselectivity of duplex DNA alkylation by mitomycins: At 0 °C, both deoxyadenosine (dA) and deoxyguanosine (dG) alkylation occur whereas at 37 °C, mitomycins alkylate dG preferentially. The new reaction protocols developed in our laboratory to investigate DMC-DNA alkylation raise the possibility that oligonucleotides containing DMC 1"-β-deoxyguanosine adducts at a specific site may be synthesized by a biomimetic approach.
Collapse
Affiliation(s)
- William Aguilar
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Manuel M Paz
- Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782, Santiago, de Compostela, Spain
| | - Anayatzinc Vargas
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Maggie Zheng
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Shu-Yuan Cheng
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Elise Champeil
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City, University of New York, New York, NY, 10016, USA
| |
Collapse
|
4
|
Aguilar W, Paz MM, Vargas A, Clement CC, Cheng SY, Champeil E. Sequence-Dependent Diastereospecific and Diastereodivergent Crosslinking of DNA by Decarbamoylmitomycin C. Chemistry 2018; 24:6030-6035. [PMID: 29504661 PMCID: PMC7046179 DOI: 10.1002/chem.201705771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 11/08/2022]
Abstract
Mitomycin C (MC), a potent antitumor drug, and decarbamoylmitomycin C (DMC), a derivative lacking the carbamoyl group, form highly cytotoxic DNA interstrand crosslinks. The major interstrand crosslink formed by DMC is the C1'' epimer of the major crosslink formed by MC. The molecular basis for the stereochemical configuration exhibited by DMC was investigated using biomimetic synthesis. The formation of DNA-DNA crosslinks by DMC is diastereospecific and diastereodivergent: Only the 1''S-diastereomer of the initially formed monoadduct can form crosslinks at GpC sequences, and only the 1''R-diastereomer of the monoadduct can form crosslinks at CpG sequences. We also show that CpG and GpC sequences react with divergent diastereoselectivity in the first alkylation step: 1"S stereochemistry is favored at GpC sequences and 1''R stereochemistry is favored at CpG sequences. Therefore, the first alkylation step results, at each sequence, in the selective formation of the diastereomer able to generate an interstrand DNA-DNA crosslink after the "second arm" alkylation. Examination of the known DNA adduct pattern obtained after treatment of cancer cell cultures with DMC indicates that the GpC sequence is the major target for the formation of DNA-DNA crosslinks in vivo by this drug.
Collapse
Affiliation(s)
- William Aguilar
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Manuel M Paz
- Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Anayatzinc Vargas
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Cristina C Clement
- Pathology Department, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York, 10468, USA
| | - Shu-Yuan Cheng
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
| | - Elise Champeil
- Science Department, John Jay College of Criminal Justice, 524 West 59th street, New York, NY, 10019, USA
- The Graduate Center of the, City University of New York, New York, NY, 10016, USA
| |
Collapse
|
5
|
Napolitano T, Cheng SY, Nielsen B, Choi C, Aguilar W, Paz MM, Sapse AM, Champeil E. Acetone promoted 1,4-migration of an alkoxycarbonyl group on a syn-1,2-diamine. Tetrahedron Lett 2017; 58:597-601. [DOI: 10.1016/j.tetlet.2016.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Cheng SY, Seo J, Huang BT, Napolitano T, Champeil E. Mitomycin C and decarbamoyl mitomycin C induce p53-independent p21WAF1/CIP1 activation. Int J Oncol 2016; 49:1815-1824. [PMID: 27666201 PMCID: PMC5063421 DOI: 10.3892/ijo.2016.3703] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022] Open
Abstract
Mitomycin C (MC), a commonly used anticancer drug, induces DNA damage via DNA alkylation. Decarbamoyl mitomycin C (DMC), another mitomycin lacking the carbamate at C10, generates similar lesions as MC. Interstrand cross-links (ICLs) are believed to be the lesions primarily responsible for the cytotoxicity of MC and DMC. The major ICL generated by MC (α-ICL) has a trans stereochemistry at the guanine-drug linkage whereas the major ICL from DMC (β-ICL) has the opposite, cis, stereochemistry. In addition, DMC can provoke strong p53-independent cell death. Our hypothesis is that the stereochemistry of the major unique β-ICL generated by DMC is responsible for this p53-independent cell death signaling. p53 gene is inactively mutated in more than half of human cancers. p21WAF1/CIP1 known as a major effector of p53 is involved in p53-dependent and -independent control of cell proliferation and death. This study revealed the role of p21WAF1/CIP1 on MC and DMC triggered cell damage. MCF-7 (p53-proficient) and K562 (p53-deficient) cells were used. Cell cycle distributions were shifted to the G1/S phase in MCF-7 treated with MC and DMC, but were shifted to the S phase in K562. p21WAF1/CIP1 activation was observed in both cells treated with MC and DMC, and DMC triggered more significant activation. Knocking down p53 in MCF-7 did not attenuate MC and DMC induced p21WAF1/CIP1 activation. The α-ICL itself was enough to cause p21WAF1/CIP1 activation.
Collapse
Affiliation(s)
- Shu-Yuan Cheng
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, NY 10019, USA
| | - Jiwon Seo
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, NY 10019, USA
| | - Bik Tzu Huang
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, NY 10019, USA
| | - Tanya Napolitano
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, NY 10019, USA
| | - Elise Champeil
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, NY 10019, USA
| |
Collapse
|
7
|
Champeil E, Cheng SY, Huang BT, Conchero-Guisan M, Martinez T, Paz MM, Sapse AM. Synthesis of Mitomycin C and Decarbamoylmitomycin C N(2) deoxyguanosine-adducts. Bioorg Chem 2016; 65:90-9. [PMID: 26894558 DOI: 10.1016/j.bioorg.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/19/2016] [Accepted: 02/11/2016] [Indexed: 01/06/2023]
Abstract
Mitomycin C (MC) and Decarbamoylmitomycin C (DMC) - a derivative of MC lacking the carbamate on C10 - are DNA alkylating agents. Their cytotoxicity is attributed to their ability to generate DNA monoadducts as well as intrastrand and interstrand cross-links (ICLs). The major monoadducts generated by MC and DMC in tumor cells have opposite stereochemistry at carbon one of the guanine-mitosene bond: trans (or alpha) for MC and cis (or beta) for DMC. We hypothesize that local disruptions of DNA structure from trans or cis adducts are responsible for the different biochemical responses produced by MC and DMC. Access to DNA substrates bearing cis and trans MC/DMC lesions is essential to verify this hypothesis. Synthetic oligonucleotides bearing trans lesions can be obtained by bio-mimetic methods. However, this approach does not yield cis adducts. This report presents the first chemical synthesis of a cis mitosene DNA adduct. We also examined the stereopreference exhibited by the two drugs at the mononucleotide level by analyzing the formation of cis and trans adducts in the reaction of deoxyguanosine with MC or DMC using a variety of activation conditions. In addition, we performed Density Functional Theory calculations to evaluate the energies of these reactions. Direct alkylation under autocatalytic or bifunctional conditions yielded preferentially alpha adducts with both MC and DMC. DFT calculations showed that under bifunctional activation, the thermodynamically favored adducts are alpha, trans, for MC and beta, cis, for DMC. This suggests that the duplex DNA structure may stabilize/oriente the activated pro-drugs so that, with DMC, formation of the thermodynamically favored beta products are possible in a cellular environment.
Collapse
Affiliation(s)
- Elise Champeil
- John Jay College of Criminal Justice, New York, 524 West 59th Street, New York, NY 10019, USA; The Graduate Center of the City University of New York, New York, NY 10016, USA.
| | - Shu-Yuan Cheng
- John Jay College of Criminal Justice, New York, 524 West 59th Street, New York, NY 10019, USA; The Graduate Center of the City University of New York, New York, NY 10016, USA.
| | - Bik Tzu Huang
- John Jay College of Criminal Justice, New York, 524 West 59th Street, New York, NY 10019, USA.
| | - Marta Conchero-Guisan
- John Jay College of Criminal Justice, New York, 524 West 59th Street, New York, NY 10019, USA.
| | - Thibaut Martinez
- John Jay College of Criminal Justice, New York, 524 West 59th Street, New York, NY 10019, USA.
| | - Manuel M Paz
- Departamento de Química Orgánica, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Anne-Marie Sapse
- John Jay College of Criminal Justice, New York, 524 West 59th Street, New York, NY 10019, USA.
| |
Collapse
|
8
|
Genome-Wide Mutational Signature of the Chemotherapeutic Agent Mitomycin C in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2015; 6:133-40. [PMID: 26564951 PMCID: PMC4704711 DOI: 10.1534/g3.115.021915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC). Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5'-CpG-3' sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA.
Collapse
|
9
|
Puyo S, Montaudon D, Pourquier P. From old alkylating agents to new minor groove binders. Crit Rev Oncol Hematol 2014; 89:43-61. [DOI: 10.1016/j.critrevonc.2013.07.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/06/2013] [Accepted: 07/18/2013] [Indexed: 12/20/2022] Open
|
10
|
Bass PD, Gubler DA, Judd TC, Williams RM. Mitomycinoid alkaloids: mechanism of action, biosynthesis, total syntheses, and synthetic approaches. Chem Rev 2013; 113:6816-63. [PMID: 23654296 PMCID: PMC3864988 DOI: 10.1021/cr3001059] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Phillip D Bass
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | | | | | | |
Collapse
|
11
|
Silvestri C, Brodbelt JS. Tandem mass spectrometry for characterization of covalent adducts of DNA with anticancer therapeutics. MASS SPECTROMETRY REVIEWS 2013; 32:247-66. [PMID: 23150278 PMCID: PMC3578003 DOI: 10.1002/mas.21363] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/17/2012] [Accepted: 08/18/2012] [Indexed: 05/17/2023]
Abstract
The chemotherapeutic activities of many anticancer and antibacterial drugs arise from their interactions with nucleic acid substrates. Some of these ligands interact with DNA in a way that causes conformational changes or damage to the nucleic acid targets, ultimately altering recognition by key DNA-specific enzymes, interfering with DNA transcription or prohibiting replication, and terminating cell growth and proliferation. The design and synthesis of ligands that bind to nucleic acids remains a dynamic field in medicinal chemistry and pharmaceutical research. The quest for more selective and efficacious DNA-interactive anticancer chemotherapeutics has likewise catalyzed the need for sensitive analytical methods that can provide structural information about the nature of the resulting DNA adducts and provide insight into the mechanistic pathways of the DNA/drug interactions and the impact on the cellular processes in biological systems. This review focuses on the array of tandem mass spectrometric strategies developed and applied for characterization of covalent adducts formed between DNA and anticancer ligands.
Collapse
Affiliation(s)
- Catherine Silvestri
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
12
|
Synthesis of a major mitomycin C DNA adduct via a triaminomitosene. Bioorg Med Chem Lett 2012; 22:7198-200. [PMID: 23079525 DOI: 10.1016/j.bmcl.2012.09.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 11/23/2022]
Abstract
We report here the synthesis of two amino precursors for the production of mitomycin C and 10-decarbamoylmitomycin C DNA adducts with opposite stereochemistry at C-1. The triamino mitosene precursors were synthesized in 5 steps from mitomycin C. In addition synthesis of the major mitomycin C-DNA adduct has been accomplished via coupling of a triaminomitosene with 2-fluoro-O(6)-(2-p-nitrophenylethyl)deoxyinosine followed by deprotection at the N(2) and O(6) positions.
Collapse
|
13
|
Bueren-Calabuig JA, Negri A, Morreale A, Gago F. Rationale for the opposite stereochemistry of the major monoadducts and interstrand crosslinks formed by mitomycin C and its decarbamoylated analogue at CpG steps in DNA and the effect of cytosine modification on reactivity. Org Biomol Chem 2012; 10:1543-52. [PMID: 22222915 DOI: 10.1039/c1ob06675g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mitomycin C (MMC) is a potent antitumour agent that forms a covalent bond with the 2-amino group of selected guanines in the minor groove of double-stranded DNA following intracellular reduction of its quinone ring and opening of its aziridine moiety. At some 5'-CG-3' (CpG) steps the resulting monofunctional adduct can evolve towards a more deleterious bifunctional lesion, which is known as an interstrand crosslink (ICL). MMC reactivity is enhanced when the cytosine bases are methylated (5 MC) and decreased when they are replaced with 5-F-cytosine (5FC) whereas the stereochemical preference of alkylation changes upon decarbamoylation. We have studied three duplex oligonucleotides of general formula d(CGATAAXGCTAACG) in which X stands for C, 5MC or 5FC. Using a combination of molecular dynamics simulations in aqueous solution, quantum mechanics and continuum electrostatics, we have been able to (i) obtain a large series of snapshots that facilitate an understanding in atomic detail of the distinct stereochemistry of monoadduct and ICL formation by MMC and its decarbamoylated analogue, (ii) provide an explanation for the altered reactivity of MMC towards DNA molecules containing 5MC or 5FC, and (iii) show the distinct accommodation in the DNA minor groove of the different covalent modifications, particularly the most cytotoxic C1α and C1β ICLs.
Collapse
Affiliation(s)
- Juan A Bueren-Calabuig
- Departamento de Farmacología, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Paz MM, Pritsos CA. The Molecular Toxicology of Mitomycin C. ADVANCES IN MOLECULAR TOXICOLOGY VOLUME 6 2012. [DOI: 10.1016/b978-0-444-59389-4.00007-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Pierce SE, Guziec LJ, Guziec FS, Brodbelt JS. Characterization of aziridinylbenzoquinone DNA cross-links by liquid chromatography-infrared multiphoton dissociation-mass spectrometry. Chem Res Toxicol 2010; 23:1097-104. [PMID: 20369834 PMCID: PMC2891125 DOI: 10.1021/tx1000738] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA cross-linking was evaluated by liquid chromatography-tandem mass spectrometry to determine the relative cross-linking abilities of two aziridinylbenzoquinones. Reactivities of RH1 (2,5-diaziridinyl-3-[hydroxymethyl]-6-methyl-1,4-benzoquinone), a clinically studied antitumor cross-linking agent, and an analogue containing a phenyl group (2,5-diaziridinyl-3-[hydroxymethyl]-6-phenyl-1,4-benzoquinone, PhRH1) rather than a methyl group were compared. The bulky phenyl substituent was added to determine the impact of steric hindrance on the formation of cross-links within a double helical structure. Cross-links formed by RH1 and PhRH1 were observed at 5'-dGNC sites as well as 5'-dGAAC/dGTTC sites. RH1 was more effective at forming cross-links than PhRH1 for a variety of duplexes. Infrared multiphoton dissociation (IRMPD) and collision-induced dissociation results confirmed the presence and the location of the cross-links within the duplexes, and IRMPD was used to identify the dissociation pathways of the cross-linked duplexes.
Collapse
Affiliation(s)
- Sarah E. Pierce
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712
| | - Lynn J. Guziec
- Department of Chemistry, Southwestern University, Georgetown, TX, 79626
| | - Frank S. Guziec
- Department of Chemistry, Southwestern University, Georgetown, TX, 79626
| | - Jennifer S. Brodbelt
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
16
|
Smith SI, Brodbelt JS. Rapid characterization of cross-links, mono-adducts, and non-covalent binding of psoralens to deoxyoligonucleotides by LC-UV/ESI-MS and IRMPD mass spectrometry. Analyst 2010; 135:943-52. [PMID: 20419242 PMCID: PMC2890229 DOI: 10.1039/b924023c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upon UV photoactivation, psoralen analogs form covalent mono-adducts and cross-links with DNA at thymine residues. Electrospray ionization mass spectrometric analysis allowed rapid and efficient determination of the reaction percentages of each psoralen analog with DNA duplexes containing different binding sites after exposure to UV irradiation. The distribution of cross-linked products and mono-adducts was monitored by both LC-UV and IRMPD-MS methods with the highest ratio of cross-linked products to mono-adducts obtained for 8-methoxypsoralen (8-MOP), psoralen (P), and 5-methoxypsoralen (5-MOP). Reactions at 5'-TA sites were favored over 5'-AT sites, and duplexes containing two and three binding sites showed extensive binding by the psoralens. 4'-Aminomethyl-4,5',8-trimethylpsoralen (AMP) bound non-selectively via non-covalent interactions and was the only psoralen analog to show significant binding in the absence of UV irradiation. 8-MOP binding displayed the greatest sequence selectivity among the psoralen analogs. The sites of interstrand cross-linking were determined by fragmentation of the duplex/psoralen complexes by infrared multiphoton dissociation (IRMPD), which produced cross-linked product ions containing an intact single strand, the psoralen analog, and either a w(n) or a(n)-B portion of the complementary strand. IRMPD of DNA/AMP complexes after UV irradiation also produced high abundances of the intact single strands with the AMP ligand attached, products indicative of a significant population of mono-adducts.
Collapse
Affiliation(s)
- Suncerae I Smith
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
17
|
Minko IG, Kozekov ID, Harris TM, Rizzo CJ, Lloyd RS, Stone MP. Chemistry and biology of DNA containing 1,N(2)-deoxyguanosine adducts of the alpha,beta-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxynonenal. Chem Res Toxicol 2009; 22:759-78. [PMID: 19397281 PMCID: PMC2685875 DOI: 10.1021/tx9000489] [Citation(s) in RCA: 327] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Indexed: 11/28/2022]
Abstract
The alpha,beta-unsaturated aldehydes (enals) acrolein, crotonaldehyde, and trans-4-hydroxynonenal (4-HNE) are products of endogenous lipid peroxidation, arising as a consequence of oxidative stress. The addition of enals to dG involves Michael addition of the N(2)-amine to give N(2)-(3-oxopropyl)-dG adducts, followed by reversible cyclization of N1 with the aldehyde, yielding 1,N(2)-dG exocyclic products. The 1,N(2)-dG exocyclic adducts from acrolein, crotonaldehyde, and 4-HNE exist in human and rodent DNA. The enal-induced 1,N(2)-dG lesions are repaired by the nucleotide excision repair pathway in both Escherichia coli and mammalian cells. Oligodeoxynucleotides containing structurally defined 1,N(2)-dG adducts of acrolein, crotonaldehyde, and 4-HNE were synthesized via a postsynthetic modification strategy. Site-specific mutagenesis of enal adducts has been carried out in E. coli and various mammalian cells. In all cases, the predominant mutations observed are G-->T transversions, but these adducts are not strongly miscoding. When placed into duplex DNA opposite dC, the 1,N(2)-dG exocyclic lesions undergo ring opening to the corresponding N(2)-(3-oxopropyl)-dG derivatives. Significantly, this places a reactive aldehyde in the minor groove of DNA, and the adducted base possesses a modestly perturbed Watson-Crick face. Replication bypass studies in vitro indicate that DNA synthesis past the ring-opened lesions can be catalyzed by pol eta, pol iota, and pol kappa. It also can be accomplished by a combination of Rev1 and pol zeta acting sequentially. However, efficient nucleotide insertion opposite the 1,N(2)-dG ring-closed adducts can be carried out only by pol iota and Rev1, two DNA polymerases that do not rely on the Watson-Crick pairing to recognize the template base. The N(2)-(3-oxopropyl)-dG adducts can undergo further chemistry, forming interstrand DNA cross-links in the 5'-CpG-3' sequence, intrastrand DNA cross-links, or DNA-protein conjugates. NMR and mass spectrometric analyses indicate that the DNA interstand cross-links contain a mixture of carbinolamine and Schiff base, with the carbinolamine forms of the linkages predominating in duplex DNA. The reduced derivatives of the enal-mediated N(2)-dG:N(2)-dG interstrand cross-links can be processed in mammalian cells by a mechanism not requiring homologous recombination. Mutations are rarely generated during processing of these cross-links. In contrast, the reduced acrolein-mediated N(2)-dG peptide conjugates can be more mutagenic than the corresponding monoadduct. DNA polymerases of the DinB family, pol IV in E. coli and pol kappa in human, are implicated in error-free bypass of model acrolein-mediated N(2)-dG secondary adducts, the interstrand cross-links, and the peptide conjugates.
Collapse
Affiliation(s)
| | | | | | - Carmelo J. Rizzo
- To whom correspondence should be addressed. (C.J.R.) Tel: 615-322-6100. Fax: 615-343-1234. E-mail: . (R.S.L.) Tel: 503-494-9957. Fax: 503-494-6831. E-mail: . (M.P.S.) Tel: 615-322-2589. Fax: 615-322-7591. E-mail:
| | - R. Stephen Lloyd
- To whom correspondence should be addressed. (C.J.R.) Tel: 615-322-6100. Fax: 615-343-1234. E-mail: . (R.S.L.) Tel: 503-494-9957. Fax: 503-494-6831. E-mail: . (M.P.S.) Tel: 615-322-2589. Fax: 615-322-7591. E-mail:
| | - Michael P. Stone
- To whom correspondence should be addressed. (C.J.R.) Tel: 615-322-6100. Fax: 615-343-1234. E-mail: . (R.S.L.) Tel: 503-494-9957. Fax: 503-494-6831. E-mail: . (M.P.S.) Tel: 615-322-2589. Fax: 615-322-7591. E-mail:
| |
Collapse
|
18
|
Champeil E, Paz MM, Ladwa S, Clement CC, Zatorski A, Tomasz M. Synthesis of an oligodeoxyribonucleotide adduct of mitomycin C by the postoligomerization method via a triamino mitosene. J Am Chem Soc 2008; 130:9556-65. [PMID: 18588303 PMCID: PMC2562617 DOI: 10.1021/ja802118p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cancer chemotherapeutic agent mitomycin C (MC) alkylates and cross-links DNA monofunctionally and bifunctionally in vivo and in vitro, forming six major MC-deoxyguanosine adducts of known structures. The synthesis of one of the monoadducts (8) by the postoligomerization method was accomplished both on the nucleoside and oligonucleotide levels, the latter resulting in the site-specific placement of 8 in a 12-mer oligodeoxyribonucleotide 26. This is the first application of this method to the synthesis of a DNA adduct of a complex natural product. Preparation of the requisite selectively protected triaminomitosenes 14 and 24 commenced with removal of the 10-carbamoyl group from MC, followed by reductive conversion to 10-decarbamoyl-2,7-diaminomitosene 10. This substance was transformed to 14 or 24 in several steps. Both were successfully coupled to the 2-fluoro-O(6)-(2-trimethylsilylethyl)deoxyinosine residue of the 12-mer oligonucleotide. The N(2)-phenylacetyl protecting group of 14 after its coupling to the 12-mer oligonucleotide could not be removed by penicillinamidase as expected. Nevertheless, the Teoc protecting group of 24 after coupling to the 12-mer oligonucleotide was removed by treatment with ZnBr2 to give the adducted oligonucleotide 26. However, phenylacetyl group removal was successful on the nucleoside-level synthesis of adduct 8. Proof of the structure of the synthetic nucleoside adduct included HPLC coelution and identical spectral properties with a natural sample, and (1)H NMR. Structure proof of the adducted oligonucleotide 26 was provided by enzymatic digestion to nucleosides and authentic adduct 8, as well as MS and MS/MS analysis.
Collapse
Affiliation(s)
- Elise Champeil
- Department of Science, John Jay College, City University of New York, New York 10019, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Stone MP, Cho YJ, Huang H, Kim HY, Kozekov ID, Kozekova A, Wang H, Minko IG, Lloyd RS, Harris TM, Rizzo CJ. Interstrand DNA cross-links induced by alpha,beta-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc Chem Res 2008; 41:793-804. [PMID: 18500830 PMCID: PMC2785109 DOI: 10.1021/ar700246x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant levels of the 1, N(2)-gamma-hydroxypropano-dG adducts of the alpha,beta-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxy-2E-nonenal (HNE) have been identified in human DNA, arising from both exogenous and endogenous exposures. They yield interstrand DNA cross-links between guanines in the neighboring C.G and G.C base pairs located in 5'-CpG-3' sequences, as a result of opening of the 1,N(2)-gamma-hydroxypropano-dG adducts to form reactive aldehydes that are positioned within the minor groove of duplex DNA. Using a combination of chemical, spectroscopic, and computational methods, we have elucidated the chemistry of cross-link formation in duplex DNA. NMR spectroscopy revealed that, at equilibrium, the acrolein and crotonaldehyde cross-links consist primarily of interstrand carbinolamine linkages between the exocyclic amines of the two guanines located in the neighboring C.G and G.C base pairs located in 5'-CpG-3' sequences, that maintain the Watson-Crick hydrogen bonding of the cross-linked base pairs. The ability of crotonaldehyde and HNE to form interstrand cross-links depends upon their common relative stereochemistry at the C6 position of the 1,N(2)-gamma-hydroxypropano-dG adduct. The stereochemistry at this center modulates the orientation of the reactive aldehyde within the minor groove of the double-stranded DNA, either facilitating or hindering the cross-linking reactions; it also affects the stabilities of the resulting diastereoisomeric cross-links. The presence of these cross-links in vivo is anticipated to interfere with DNA replication and transcription, thereby contributing to the etiology of human disease. Reduced derivatives of these cross-links are useful tools for studying their biological processing.
Collapse
Affiliation(s)
- Michael P Stone
- Department of Chemistry, Center in Molecular Toxicology, and Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This protocol presents a simple and general means of modifying nucleic acids with disulfide cross-links. These cross-links serve as powerful tools to probe the structure, dynamics, thermodynamics, folding, and function of DNA and RNA, much in the way that cystine cross-links have been used to study proteins. The chemistry described has been used to synthesize disulfide-cross-linked hairpins and duplexes, higher-order structures such as triplexes, non-ground-state conformations, and tRNAs. since the cross-links form quantitatively by mild air oxidation and do not purturb either secondary or tertiary structure, this modification should prove quite useful for the study of nucleic acids.
Collapse
Affiliation(s)
- Gary D Glick
- University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
21
|
Lage C, Alencar TD, Vidal LS, Wilmart-Gonçalves TC, Borba-Santos L, Alves AM, Paula-Pereira-Jr MV, Felicio DL, Irineu R, Cardoso JS, Leitão AC. Targeting DNA in therapies: using damages to design strategies on cell sensitisation. ACTA ACUST UNITED AC 2008. [DOI: 10.1088/1742-6596/101/1/012013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Abdel-Halim HI, Mullenders LHF, Boei JJWA. Pairing of heterochromatin in response to cellular stress. Exp Cell Res 2006; 312:1961-9. [PMID: 16626698 DOI: 10.1016/j.yexcr.2006.02.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 01/27/2006] [Accepted: 02/24/2006] [Indexed: 12/16/2022]
Abstract
We previously reported that exposure of human cells to DNA-damaging agents (X-rays and mitomycin C (MMC)) induces pairing of the homologous paracentromeric heterochromatin of chromosome 9 (9q12-13). Here, we show that UV irradiation and also heat shock treatment of human cells lead to similar effects. Since the various agents induce very different types and frequencies of damage to cellular constituents, the data suggest a general stress response as the underlying mechanism. Moreover, local UV irradiation experiments revealed that pairing of heterochromatin is an event that can be triggered without induction of DNA damage in the heterochromatic sequences. The repair deficient xeroderma pigmentosum cells (group F) previously shown to fail pairing after MMC displayed elevated pairing after heat shock treatment but not after UV exposure. Taken together, the present results indicate that pairing of heterochromatin following exposure to DNA-damaging agents is initiated by a general stress response and that the sensing of stress or the maintenance of the paired status of the heterochromatin might be dependent on DNA repair.
Collapse
Affiliation(s)
- H I Abdel-Halim
- Department of Toxicogenetics, Leiden University Medical Center, PO Box 9503, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
23
|
Abdel-Halim HI, Natarajan AT, Mullenders LHF, Boei JJWA. Mitomycin C-induced pairing of heterochromatin reflects initiation of DNA repair and chromatid exchange formation. J Cell Sci 2005; 118:1757-67. [PMID: 15797924 DOI: 10.1242/jcs.02306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chromatid interchanges induced by the DNA cross-linking agent mitomycin C (MMC) are over-represented in human chromosomes containing large heterochromatic regions. We found that nearly all exchange breakpoints of chromosome 9 are located within the paracentromeric heterochromatin and over 70% of exchanges involving chromosome 9 are between its homologues. We provide evidence that the required pairing of chromosome 9 heterochromatic regions occurs in G(0)/G(1) and S-phase cells as a result of an active cellular process initiated upon MMC treatment. By contrast, no pairing was observed for a euchromatic paracentromeric region of the equal-sized chromosome 8. The MMC-induced pairing of chromosome 9 heterochromatin is observed in a subset of cells; its percentage closely mimics the frequency of homologous interchanges found at metaphase. Moreover, the absence of pairing in cells derived from XPF patients correlates with an altered spectrum of MMC-induced exchanges. Together, the data suggest that the heterochromatin-specific pairing following MMC treatment reflects the initiation of DNA cross-link repair and the formation of exchanges.
Collapse
MESH Headings
- Cells, Cultured
- Chromosome Pairing/drug effects
- Chromosome Pairing/physiology
- Chromosomes, Human, Pair 8/drug effects
- Chromosomes, Human, Pair 8/physiology
- Chromosomes, Human, Pair 9/drug effects
- Chromosomes, Human, Pair 9/physiology
- Cross-Linking Reagents/pharmacology
- DNA Damage/drug effects
- DNA Damage/physiology
- DNA Repair/drug effects
- DNA Repair/physiology
- G1 Phase/drug effects
- G1 Phase/physiology
- Heterochromatin/drug effects
- Heterochromatin/physiology
- Humans
- Interphase/physiology
- Metaphase/physiology
- Mitomycin/pharmacology
- Resting Phase, Cell Cycle/drug effects
- Resting Phase, Cell Cycle/physiology
- S Phase/drug effects
- S Phase/physiology
- Sequence Homology, Nucleic Acid
- Sister Chromatid Exchange/drug effects
- Sister Chromatid Exchange/physiology
- Xeroderma Pigmentosum/genetics
Collapse
Affiliation(s)
- H I Abdel-Halim
- Department of Toxicogenetics, Leiden University Medical Center, PO Box 9503, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
24
|
Wang Y, Wang Y. Structure elucidation of DNA interstrand cross-link by a combination of nuclease P1 digestion with mass spectrometry. Anal Chem 2004; 75:6306-13. [PMID: 14616015 DOI: 10.1021/ac034683n] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA interstrand cross-link reagents are among the most powerful agents for cancer treatment. Here we report a combined nuclease P1 digestion/mass spectrometry method for the structure elucidation of duplex oligodeoxynucleotides (ODNs) containing an interstrand cross-link. Our results demonstrate that nuclease P1 digestion of a double-stranded ODN containing an interstrand cross-link (ICL) of 4,5',8-trimethylpsoralen or mitomycin C gives a tetranucleotide bearing the cross-linked nucleobase moiety. Product ion spectra of the deprotonated ions of the tetranucleotides provide information about the structure of the cross-link. Furthermore, product-ion spectra of tetranucleotides containing two orientation isomers of mitomycin C interstrand cross-link are distinctive. We believe that the method described in this paper can be generally applicable for investigating the structures of other DNA ICLs.
Collapse
Affiliation(s)
- Yuesong Wang
- Department of Chemistry-027, University of California at Riverside, Riverside, California 92521-0403, USA
| | | |
Collapse
|
25
|
Tian L, Wei W, Mao Y. Kinetic studies of the interaction between antitumor antibiotics and DNA using quartz crystal microbalance. Clin Biochem 2004; 37:120-7. [PMID: 14725942 DOI: 10.1016/j.clinbiochem.2003.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Kinetic studies of the interaction process between antitumor antibiotics, Mitomycin C (MMC) and Bleomycin (BLM), and DNA were performed with a novel analytical method, piezoelectric quartz crystal (PQC) impedance analysis. DESIGN AND METHODS DNA was directly immobilized on the Au-electrode surface of a piezoelectric quartz crystal by adsorption. The DNA-modified piezoelectric sensor was in contact with Mitomycin C and Bleomycin solution, respectively. RESULTS The experimental results demonstrated that antitumor antibiotics concentration had an effect on the interaction. A pseudo-first-order kinetic model for the interaction between antitumor antibiotics and DNA was derived to describe the process. All fitted results were well in agreement with the corresponding experimental results. The kinetic parameters, the interaction rate constants (k(MMC) and k(BLM)), were determined by fitting experimental data to the model. At 37 +/- 0.5 degrees C, the k(MMC) and k(BLM) values obtained were 4.56 (+/-0.02) x 10(-3) and 9.11 (+/-0.02) mM(-1) s(-1), respectively. CONCLUSION Piezoelectric quartz crystal impedance (PQCI) analysis is a very powerful method to study the kinetic process of antitumor drugs and DNA interaction.
Collapse
Affiliation(s)
- Lu Tian
- State Key Laboratory of Chem/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | |
Collapse
|
26
|
Lage C, de Pádula M, de Alencar TAM, da Fonseca Gonçalves SR, da Silva Vidal L, Cabral-Neto J, Leitão AC. New insights on how nucleotide excision repair could remove DNA adducts induced by chemotherapeutic agents and psoralens plus UV-A (PUVA) in Escherichia coli cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2003; 544:143-57. [PMID: 14644316 DOI: 10.1016/j.mrrev.2003.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Chemotherapeutic agents such as mitomycin C or nitrogen mustards induce DNA inter-strand cross-links (ICL) and are highly toxic, thus constituting an useful tool to treat some human degenerative diseases, such as cancer. Additionally, psoralens plus UV-A (PUVA), which also induce ICL, find use in treatment of patients afflicted with psoriasis and vitiligo. The repair of DNA ICL generated by different molecules involves a number of multi-step DNA repair pathways. In bacteria, as in eukaryotic cells, if DNA ICL are not tolerated or repaired via nucleotide excision repair (NER), homologous recombination or translesion synthesis pathways, these DNA lesions may lead to mutations and cell death. Herein, we bring new insights to the role of Escherichia coli nucleotide excision repair genes uvrA, uvrB and uvrC in the repair of DNA damage induced by some chemotherapeutic agents and psoralen derivatives plus UV-A. These new observations point to a novel role for the UvrB protein, independent of its previously described role in the Uvr(A)BC complex, which could be specific for repair of monoadducts, intra-strand biadducts and/or ICL.
Collapse
Affiliation(s)
- Claudia Lage
- Laboratório de Radiobiologia Molecular, Instituto de Biofísica Carlos Chagas Filho, Bloco G, Centro de Ciencias da Saude, Universidade de Federal do Rio de Janeiro, 21949-900 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Wolkenberg SE, Boger DL. Mechanisms of in situ activation for DNA-targeting antitumor agents. Chem Rev 2002; 102:2477-95. [PMID: 12105933 DOI: 10.1021/cr010046q] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Scott E Wolkenberg
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
28
|
Li VS, Tang MS, Kohn H. The effect of C(5) cytosine methylation at CpG sequences on mitomycin-DNA bonding profiles. Bioorg Med Chem 2001; 9:863-73. [PMID: 11354669 DOI: 10.1016/s0968-0896(00)00301-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have documented that cytosine C(5) methylation of CpG sequences enhances mitomycin C (1) adduction. The reports differ on the extent and uniformity of 1 modification at the nucleotide level. We have determined the bonding profiles for mitomycin monoalkylation in two DNA restriction fragments where the CpG sequences were methylated. Three mitomycin substrates were used and two different enzymatic assays employed to monitor the extent of drug modification at the individual base sites. Drug DNA modification was accomplished with I and 10-decarbamoylmitomycin C (2) under reductive (Na2S2O4) condilions and with N-methyl-7-methoxyaziridinomitosene (3) under nonreductive conditions. The UvrABC incision assay permitted us to quantitate the sites of drug adduction, and the lambda-exonuclease stop assay provided a qualitative estimation of drug-DNA modification consistent with the UvrABC data. We learned that C(5) cytosine methylation (m5C) enhanced the extent of overall DNA modification. Using the UvrABC endonuclease assay, we found that modification by 1 increased 2.0 and 7.4 times for the two DNA restriction fragments. Analysis of the modification sites at the nucleotide sequence level revealed that guanine (G) was the only base modified and that the overall increased level of DNA adduction was due to enhanced modification of select m5CpG* (G* = mitomycin (mitosene) adduction sites) loci compared with CpG* sites: the largest differences reached two orders of magnitude. Significantly, not all CpG* sites underwent increased drug adduction upon C(5) cytosine methylation. The effect of C(5) cytosine methylation on the drug adduction profiles was less pronounced for G* sites located within dinucleotide sequences other than CpG*. We observed that DNA methylation often led to slightly diminished adduction levels at these sites. The different m5CpG* adduction patterns provided distinctive sequence-selective bonding profiles for 1-3. We have attributed the large differences in guanine reactivity to DNA structural factors created, in part, by C(5) cytosine methylation. The significance of these findings in cancer chemotherapy is briefly discussed.
Collapse
Affiliation(s)
- V S Li
- Department of Chemistry, University of Houston, TX 77204-5641, USA
| | | | | |
Collapse
|
29
|
Millard JT, Wilkes EE. Diepoxybutane and diepoxyoctane interstrand cross-linking of the 5S DNA nucleosomal core particle. Biochemistry 2001; 40:10677-85. [PMID: 11524013 DOI: 10.1021/bi0109663] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diepoxyalkanes form interstrand cross-links in DNA oligomers preferentially at 5'-GNC sites. We have examined cross-linking by 1,2,3,4-diepoxybutane (DEB) and 1,2,7,8-diepoxyoctane (DEO) within a fragment of the 5S RNA gene of Xenopus borealis in both the free and nucleosomal states. Sites and efficiencies of interstrand cross-linking were probed through denaturing polyacrylamide gel electrophoresis and quantitative phosphorimagery. Both agents targeted 5'-GNC sites for cross-linking in the restriction fragment in its free state, and DEO also targeted 5'-GNNC sites. Monoalkylation occurred at all deoxyguanosines. The sites for both monoalkylation and interstrand cross-linking were similar in nucleosomal and free DNA, and cross-linked DNA was cleanly incorporated into the core particle structure. These findings suggest that the 5S core particle is able to tolerate any structural abnormalities induced by diepoxide cross-linking.
Collapse
Affiliation(s)
- J T Millard
- Department of Chemistry, Colby College, Waterville, Maine 04901, USA.
| | | |
Collapse
|
30
|
Paz MM, Das A, Palom Y, He QY, Tomasz M. Selective activation of mitomycin A by thiols to form DNA cross-links and monoadducts: biochemical basis for the modulation of mitomycin cytotoxicity by the quinone redox potential. J Med Chem 2001; 44:2834-42. [PMID: 11495594 DOI: 10.1021/jm010072g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mitomycin A (MA) but not mitomycin C (MC) cross-linked linearized (32)P-pBR322 DNA in the presence of dithiothreitol (DTT) or glutathione (GSH), as shown by a sensitive DNA cross-link assay. Incubation of calf-thymus DNA with MA and DTT or mercaptoethanol (MER) resulted in the formation of MA-DNA adducts, which were isolated from nuclease digests of the drug-DNA complexes by HPLC. The adducts were characterized by their UV absorption spectra, electrospray ionization mass spectrometry (ESIMS), and facile conversion from 7-methoxy- to 7-amino-substituted mitosene type adducts upon 10% NH(4)OH treatment, which were identical with known adducts of MC. Both DNA interstrand and intrastrand cross-link adducts, linking two deoxyguanosine residues at N(2), as well as several deoxyguanosine-N(2) monoadducts of MA, were identified. No DNA adducts were formed with MC under the same conditions. A specificity of DNA cross-link formation for the CpG sequence was observed using 12-mer synthetic oligodeoxyribonucleotides as substrates and as DNA sequence models, in analogy to the known CpG sequence specificity of MC-induced DNA cross-links. MA is known to be more cytotoxic by 2-3 orders of magnitude than MC, and this property correlates with redox potentials of MA (-0.19 V) and MA analogues that are higher than those of MC (-0.40 V) and its analogues. It is suggested that the biochemical basis for the higher cytotoxic potency of MA is MA's propensity to be reductively activated by cellular thiols while MC is resistant to thiol activation. This distinction is probably derived from the large difference between the quinone redox potentials of the two drugs.
Collapse
Affiliation(s)
- M M Paz
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
In this review I discuss straightforward and general methods to modify nucleic acid structure with disulfide cross-links. A motivating factor in developing this chemistry was the notion that disulfide bonds would be excellent tools to probe the structure, dynamics, thermodynamics, folding, and function of DNA and RNA, much in the way that cystine cross-links have been used to study proteins. The chemistry described has been used to synthesize disulfide cross-linked hairpins and duplexes, higher order structures like triplexes, nonground-state conformations, and tRNAs. Since the cross-links form quantitatively by mild air oxidation and do not perturb either secondary or tertiary structure, this modification should prove quite useful for the study of nucleic acids.
Collapse
Affiliation(s)
- G D Glick
- Department of Chemistry, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
32
|
Das A, Tang KS, Gopalakrishnan S, Waring MJ, Tomasz M. Reactivity of guanine at m5CpG steps in DNA: evidence for electronic effects transmitted through the base pairs. CHEMISTRY & BIOLOGY 1999; 6:461-71. [PMID: 10381403 DOI: 10.1016/s1074-5521(99)80064-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mitomycin C (MC), a DNA cross-linking and alkylating agent, targets guanines in the m5CpG sequence with 2-3-fold preference over guanines in unmethylated CpG. Benzo[a]pyrenediolepoxide (BPDE) and several other aromatic carcinogens form guanine adducts with an identical selectivity for m5CpG, and in certain cancers G to T transversion mutation 'hotspots' in the p53 tumor suppressor gene are more frequent at this sequence than at guanines in other sequences. MC appears suitable to probe the general mechanism of this selectivity. RESULTS A 162-bp DNA fragment containing C, m5C or f5C (5-fluoro cytosine) at all cytosine positions was cross-linked by MC at guanines in CpG steps. The extent of cross-linking increased in the order f5C < C < m5C. Monoalkylation or cross-linking of duplex 12-mer oligonucleotides containing a single CpG, f5CpG or m5CpG step gave yields of adducts that increased in the same order. The rates showed a correlation with the Hammett sigma constant of the methyl and fluoro substituents of the cytosine. Only the base-pair cytosine substituent influenced reactivity of guanine. CONCLUSIONS The 2-amino group of guanine in the m5CpG sequence of DNA has a greater nucleophilic reactivity with mitomycin than CpG. Evidence is presented for a novel mechanism: transmission of the electron-donating effect of the 5-methyl substituent of the cytosine to guanine through H-bonding of the m5C.G base pair. The results explain the enhanced reaction of BPDE at m5CpG in DNA and the origin of G-T mutational hotspots in the p53 gene in cancer.
Collapse
Affiliation(s)
- A Das
- Department of Chemistry, Hunter College, CUNY, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
33
|
Coulombe RA, Drew GL, Stermitz FR. Pyrrolizidine alkaloids crosslink DNA with actin. Toxicol Appl Pharmacol 1999; 154:198-202. [PMID: 9925804 DOI: 10.1006/taap.1998.8552] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are toxic constituents of hundreds of plant species, some of which people are exposed to in herbal products and traditional remedies. The bioactivity of PAs are related, at least in part, to their ability to form DNA-protein complexes (DPC). Previous studies from our laboratory indicated a possible role for actin in PA-induced DPCs. Nuclei prepared from Madin-Darby bovine kidney (MDBK) and human breast carcinoma (MCF-7) cells were treated with the pyrrolic PAs dehydrosenecionine (DHSN) and dehydromonocrotaline (DHMO). DPCs were purified and then analyzed by Western immunoblotting. Actin was found in DPCs induced by both DHSN and DHMO, but not in those from control nuclei. Actin was also present in DPCs induced by cisplatinum and mitomycin C, two bifunctional cross-linkers. In separate experiments, DHSN and DHMO were crosslinked to a mixture of HindIII digested lambda phage with varying amounts of glutathione (GSH), cysteine, or methionine to identify the stoichiometry of competition between DNA and alternate nucleophiles for crosslink formation with pyrroles. GSH and cysteine, but not methionine, competed with lambda phage for DNA crosslinking, indicating that reduced thiols may have a role in nucleophilic reactions with pyrroles in the cell. While actin involvement in cisplatinum-induced DPCs is documented, the discovery of actin crosslinking in PA or mitomycin C-treated cells or nuclei is, to our knowledge, novel. Pyrrole-induced DPC formation with actin, a protein with structural and/or regulatory importance proteins, may be a significant mechanism for PA toxicity and bioactivity.
Collapse
Affiliation(s)
- R A Coulombe
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, 84322-4620, USA.
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Scott R. Rajski
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | | |
Collapse
|
35
|
Tomasz M, Das A, Tang KS, Ford MGJ, Minnock A, Musser SM, Waring MJ. The Purine 2-Amino Group as the Critical Recognition Element for Sequence-Specific Alkylation and Cross-Linking of DNA by Mitomycin C. J Am Chem Soc 1998. [DOI: 10.1021/ja9824019] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Maria Tomasz
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Arunangshu Das
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Kit S. Tang
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Marjin G. J. Ford
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Andrew Minnock
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Steven M. Musser
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| | - Michael J. Waring
- Contribution from the Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, U.S. Food and Drug Administration, Washington, D.C. 20204, and Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK
| |
Collapse
|
36
|
Belcourt MF, Hodnick WF, Rockwell S, Sartorelli AC. Exploring the mechanistic aspects of mitomycin antibiotic bioactivation in Chinese hamster ovary cells overexpressing NADPH:cytochrome C (P-450) reductase and DT-diaphorase. ADVANCES IN ENZYME REGULATION 1998; 38:111-33. [PMID: 9762350 DOI: 10.1016/s0065-2571(97)00009-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have directly demonstrated the involvement of human NADPH: cytochrome c (P-450) reductase in the aerobic/hypoxic differential toxicity of mitomycin C and porfiromycin in living cells by varying only this enzyme in a transfected cell line. In the same manner, we have implicated rat DT-diaphorase in the aerobic and hypoxic activation of mitomycin C, but found only a minor role for this enzyme in the aerobic activation of porfiromycin. DT-Diaphorase does not cause the production of an aerobic/hypoxic differential toxicity by mitomycin C, but rather activates this agent through an oxygen insensitive pathway. The evidence suggests that DT-diaphorase activates mitomycin C more effectively than porfiromycin, with porfiromycin being preferentially activated through a one-electron reductive pathway. The therapeutic potential of mitomycin antibiotics in the treatment of cancer can be envisioned to be enhanced for those tumors containing elevated levels of the bioreductive enzymes. However, cytogenetic heterogeneity within the tumor cell population and the various environmental factors which impact on bioreductive enzyme function, including pH and oxygen tension, may subvert this approach. Moreover, if high tumor levels of a drug activating enzyme reflect high levels in the normal tissues of the patient, normal tissue damage may also be enhanced with possibly no improvement in the therapeutic ratio. Approaches utilizing gene therapy, whereby a specific bioreductive catalyst is introduced into the tumor cell population via a targeting vehicle to activate a particular prodrug, may be more effective in that not only will the prodrug of choice be specifically activated in the tumor, but the source of the catalyst, be it bacterial, rodent, or human, will not be important. In fact, in the case of DT-diaphorase and mitomycin C, the rat form of the enzyme could be advantageous because it is more effective in activating mitomycin C than is the human form of this enzyme. Assuming targeted gene delivery to malignant cells, a non-host enzyme which is more effective at activating mitomycin C than the analogous host enzyme might also result in less drug activation in normal tissue and, hence, less normal tissue toxicity.
Collapse
Affiliation(s)
- M F Belcourt
- Department of Pharmacology, Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Fanconi anemia (FA) is an autosomal genetic disease characterized by a complex array of developmental disorders, a high predisposition to bone marrow failure and to acute myelogenous leukemia. The chromosomal instability and the hypersensitivity to DNA cross-linking agents led to its classification with the DNA repair disorders. This review aimed at establishing whether it is still appropriate to consider 1/approximately FA within a DNA repair framework taking into account the recently discovered genetic heterogeneity characteristics of the defect (eight complementation groups). We discuss the possibility that the FA proteins interact to form a complex which may control different functions, including the processing of specific DNA lesions. Such a complex may act as a sensor to initiate protective systems as well as transcription of specific genes specifying, among others proteins, growth factors. Such steps may be organized as a linear cascade or more likely under the form of a web network.
Collapse
Affiliation(s)
- M Buchwald
- UMR 218 CNRS and LCR no. 1 CEA, Institut Curie-Recherche, Paris, France
| | | |
Collapse
|
38
|
Tomasz M, Palom Y. The mitomycin bioreductive antitumor agents: cross-linking and alkylation of DNA as the molecular basis of their activity. Pharmacol Ther 1997; 76:73-87. [PMID: 9535170 DOI: 10.1016/s0163-7258(97)00088-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review focuses on the chemical and enzymatic aspects of the reductive activation of mitomycin C, its disulfide analogs KW-2149 and BMS-181174, and, in less detail, FR66979 and FR900482, newly discovered antitumor antibiotics related to mitomycins. Furthermore, structural aspects of DNA damage induced by these drugs in vitro and in vivo are described, including the chemical and conformational characteristics of DNA interstrand and intrastrand cross-links and monofunctional alkylation products, with emphasis on DNA adducts of mitomycin C. The DNA sequence specificity of the damage and its mechanism is reviewed. The relationship between the chemical and structural properties of the DNA damage on the one hand, and the antitumor and other biological activities of the mitomycins on the other, is discussed.
Collapse
Affiliation(s)
- M Tomasz
- Hunter College, The City University of New York, New York 10021, USA
| | | |
Collapse
|
39
|
Johnson DA, August PR, Shackleton C, Liu HW, Sherman DH. Microbial Resistance to Mitomycins Involves a Redox Relay Mechanism. J Am Chem Soc 1997. [DOI: 10.1021/ja963880j] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David A. Johnson
- Department of Chemistry, University of Minnesota Minneapolis, Minnesota 55455 Department of Microbiology and Biological Process Technology Institute, University of Minnesota 240 Gortner Laboratory, St. Paul, Minnesota 55108 Children's Hospital Oakland Research Institute Oakland, California 94609
| | - Paul R. August
- Department of Chemistry, University of Minnesota Minneapolis, Minnesota 55455 Department of Microbiology and Biological Process Technology Institute, University of Minnesota 240 Gortner Laboratory, St. Paul, Minnesota 55108 Children's Hospital Oakland Research Institute Oakland, California 94609
| | - Cedric Shackleton
- Department of Chemistry, University of Minnesota Minneapolis, Minnesota 55455 Department of Microbiology and Biological Process Technology Institute, University of Minnesota 240 Gortner Laboratory, St. Paul, Minnesota 55108 Children's Hospital Oakland Research Institute Oakland, California 94609
| | - Hung-wen Liu
- Department of Chemistry, University of Minnesota Minneapolis, Minnesota 55455 Department of Microbiology and Biological Process Technology Institute, University of Minnesota 240 Gortner Laboratory, St. Paul, Minnesota 55108 Children's Hospital Oakland Research Institute Oakland, California 94609
| | - David H. Sherman
- Department of Chemistry, University of Minnesota Minneapolis, Minnesota 55455 Department of Microbiology and Biological Process Technology Institute, University of Minnesota 240 Gortner Laboratory, St. Paul, Minnesota 55108 Children's Hospital Oakland Research Institute Oakland, California 94609
| |
Collapse
|
40
|
Park HJ, Kelly RC, Hurley LH. The Chemical Evolution of DNA−DNA Interstrand Cross-Linkers That Recognize Defined Mixed AT and GC Sequences. J Am Chem Soc 1996. [DOI: 10.1021/ja961678a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hyun-Ju Park
- Contribution from the Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and Pharmacia Upjohn Co., 301 Henrietta Street, Kalamazoo, Michigan 49001
| | - Robert C. Kelly
- Contribution from the Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and Pharmacia Upjohn Co., 301 Henrietta Street, Kalamazoo, Michigan 49001
| | - Laurence H. Hurley
- Contribution from the Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, and Pharmacia Upjohn Co., 301 Henrietta Street, Kalamazoo, Michigan 49001
| |
Collapse
|
41
|
Abstract
The guiding principle of early work was the hypothesis that the anti-cancer alkylating drugs acted through their ability to cross-link macromolecules essential for cell division. Not long afterwards, DNA was specified as the essential target, and support for the hypothesis came from evidence that the archetypal agent, mustard gas, could link guanine bases in DNA through their N-7 atoms. Quantitative correlations between alkylation of DNA and its inactivation as a template followed, with bacteriophage as a simple test object, showing that the mean lethal dose was close to a single cross-link in the genome. This conclusion applied to either mustard gas or the more recently introduced platinum drugs. Although both inter- and intra-strand cross-links were effective, it was thought that in cells the inter-strand cross-link would, by preventing the separation of the strands necessary for cell division, and by being more difficult to repair, constitute the more effectively lethal lesion. With repair-deficient bacteria, it also emerged that a single cross-link in the genome was lethal, but proficient bacteria could remove about 20 cross-links through excision repair. Mono-7-alkylguanines were not removed and were evidently inert. Thus, only a few percent of the total alkylation products were the most effective lesions. Parallel studies with cultured mammalian cells gave a rather different picture, in that the mean lethal doses of even hypersensitive cell lines were around 20 or more cross-links per genome, about the same as for resistant strains of bacteria. Most cells could withstand several hundreds of cross-links per genome, and although adducts were removed, there was incomplete removal of cross-links. Some, but not all, sensitive cell lines were deficient in excision repair. Methods were devised for measuring the extents of alkylation of DNA in cells of patients treated with chemotherapeutic drugs; these are mainly immunoassays, and were applied generally to peripheral blood leukocytes, although some tumours were studied. Extents of alkylation of leukocyte DNA were generally of the same order as, or rather less than the mean lethal doses of cultured cells of the 'normal' type, but in some reports for cisplatin-treated patients, very wide variability between individuals was found. A positive correlation between adduct levels, and particularly a very minor adduct recognised specifically by one antibody, and favourable therapeutic outcome was discerned, and suggested to have a pharmacogenetic basis. In several instances, extents of alkylation of tumours were significantly higher than the average for leukocytes; for ovarian and a testicular tumour for cisplatin, and for a plasma cell tumour for melphalan. Nevertheless, these favourable examples would not constitute more than three or four mean lethal doses in the tumour cells, assuming that they had the same sensitivity as 'normal' cell lines: the therapeutic effect would of course be much more favourable if the tumour cells resembled 'sensitive' cell lines. This lack of a favourable difference between extents of alkylation in DNA of patients and the mean lethal dose for normal cells was particularly obvious with the methylating drugs dacarbazine and procarbazine. These considerations stress the need for higher extents of alkylation to be achieved in target tumour DNA for successful chemotherapy. One approach is to give a higher overall dose, and to 'rescue' the bone marrow (known from the earliest report on mustard gas to be the most susceptible tissue) by autologous transplantation. The second, which has yet to reach the clinic, is to convert unreactive prodrugs through enzymic activation into alkylating agents specifically in tumours (see Bagshawe, 1994).
Collapse
Affiliation(s)
- P D Lawley
- Haddow Laboratories, Institute of Cancer Research, Sutton, Surrey, UK
| | | |
Collapse
|
42
|
Fagan PA, Spielmann HP, Sigurdsson S, Rink SM, Hopkins PB, Wemmer DE. An NMR study of [d(CGCGAATTCGCG)]2 containing an interstrand cross-link derived from a distamycin-pyrrole conjugate. Nucleic Acids Res 1996; 24:1566-73. [PMID: 8628693 PMCID: PMC145811 DOI: 10.1093/nar/24.8.1566] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Minor groove binding compounds related to distamycin A bind DNA with high sequence selectivity, recognizing sites which contain various combinations of A.T and G.C base pairs. These molecules have the potential to deliver cross-linking agents to the minor groove of a target DNA sequence. We have studied the covalent DNA-DNA cross-linked complex of 2,3- bis(hydroxymethyl)pyrrole-distamycin and [d(CGCGAATTCGCG)]2. The alkylating pyrrole design is based on the pharmacophore of mitomycin C and is similar in substructure to another important class of natural products, the oxidatively activated pyrrolizidine alkaloids. Ligand-DNA NOEs confirm that the tri(pyrrole-carboxamide) unit of the ligand is bound in the minor groove of the central A+T tract. Unexpectedly, it is shifted by 1 bp with respect to the distamycin A binding site on this DNA sequence. The cross-link bridges the 2-amino position of two guanine residues, G4 and G22. The C3.G22 and G4.C21 base pairs exhibit Watson-Crick base pairing, with some local distortion, as evidenced by unusual intensities observed for DNA-DNA NOE cross-peaks. The model is compared with a related structure of a cross-linked mitomycin C:DNA complex.
Collapse
Affiliation(s)
- P A Fagan
- Structural Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
43
|
Reiss B, Klemm M, Kosak H, Schell J. RecA protein stimulates homologous recombination in plants. Proc Natl Acad Sci U S A 1996; 93:3094-8. [PMID: 8610174 PMCID: PMC39767 DOI: 10.1073/pnas.93.7.3094] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A number of RecA-like proteins have been found in eukaryotic organisms. We demonstrate that the prokaryotic recombination protein RecA itself is capable of interacting with genomic homologous DNA in somatic plant cells. Resistance to the DNA crosslinking agent mitomycin C requires homologous recombination as well as excision repair activity. Tobacco protoplasts expressing a nucleus-targeted RecA protein were at least three times as efficient as wild-type cells in repairing mitomycin C-induced damage. Moreover, homologous recombination at a defined locus carrying an endogenous nuclear marker gene was stimulated at least 10-fold in transgenic plant cells expressing nucleus-targeted RecA. The increase in resistance to mitomycin C and the stimulation of intrachromosomal recombination demonstrate that Escherichia coli RecA protein is functional in genomic homologous recombination in plants, especially when targeted to the plant nucleus.
Collapse
Affiliation(s)
- B Reiss
- Max-Planck-Institut für Züchtungsforschung, Cologne, Germany
| | | | | | | |
Collapse
|
44
|
Hopkins PB. DNA sequence selectivity of the pyrrole-derived, bifunctional alkylating agents. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1067-568x(96)80011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
45
|
Transcriptional assay for probing molecular aspects of drug-DNA interactions. ADVANCES IN DNA SEQUENCE-SPECIFIC AGENTS 1996. [DOI: 10.1016/s1067-568x(96)80007-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
46
|
Abstract
Mitomycin C, an important antitumor drug and antibiotic, has an extraordinary ability to crosslink DNA with high efficiency and absolute specificity for the sequence CpG. Recent results have shown how mitomycin C crosslinks DNA, and why the sequence specificity is so complete. This new understanding may allow the design of agents that mimic mitomycin C's economy of structure and can crosslink other sequences.
Collapse
Affiliation(s)
- M Tomasz
- Department of Chemistry, Hunter College, City University of New York, NY 10021, USA
| |
Collapse
|
47
|
Cain RJ, Zuiderweg ER, Glick GD. Solution structure of a DNA hairpin and its disulfide cross-linked analog. Nucleic Acids Res 1995; 23:2153-60. [PMID: 7610043 PMCID: PMC307002 DOI: 10.1093/nar/23.12.2153] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The solution structures of a 21 base long DNA hairpin derived from the ColE1 cruciform, and an analog possessing a disulfide cross-link bridging the terminal bases, have been determined by NMR spectroscopy. The 8 bp long stem of these sequences adopts a B-form helix whereas the five base long single-stranded loop appears to be flexible and cannot be represented by a unique static conformation. NOESY cross-peak volumes, proton and phosphorus chemical shifts, and both homo- and heteronuclear coupling constants for the cross-linked hairpin are virtually identical to those measured for the unmodified sequence, even for the residues that are proximal to the cross-link. These results indicate that both hairpins are structurally isomorphous. Because this cross-link can be incorporated site specifically in a sequence independent manner, and does not appear to alter native conformation, it should prove broadly applicable in studies of DNA structure and function.
Collapse
Affiliation(s)
- R J Cain
- Department of Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|
48
|
Johnson WS, He QY, Tomasz M. Selective recognition of the m5CpG dinucleotide sequence in DNA by mitomycin C for alkylation and cross-linking. Bioorg Med Chem 1995; 3:851-60. [PMID: 7582961 DOI: 10.1016/0968-0896(95)00067-q] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The clinically used natural antitumor agent mitomycin C (MC) is known to alkylate DNA monofunctionally and bifunctionally, resulting in the cross-linking of DNA. These reactions occur selectively with guanines at the CpG sequence. We show, confirming a previous report (Millard, J. T.; Beachy, T. M. Biochemistry 1993, 32, 12850) that cross-linking in oligonucleotides is further enhanced when the cytosines in CpG.CpG are 5-methylated to m5CpG.m5CpG. It is shown, furthermore, that guanines in m5CpG are monoalkylated two- to three-times faster than in CpG indicating that the m5C-induced rate enhancement occurs at the first, monoalkylation step of the two-step cross-linking process. The same MC-DNA adducts are formed in methylated as in non-methylated DNA. The basepaired but not the 5'-flanking, m5C residue is responsible for the enhanced alkylation of guanine. Enzymatically activated or Na2S2O4-activated MC shows identical rate-enhancement of alkylation at m5CpG. pBR322 DNA methylated by CpG-methylase was cross-linked two- to three-times more efficiently by MC than non-methylated DNA, indicating that the m5C effect is not an artifact of oligonucleotides. An electronic effect of the 5-methyl group of cytosine transmitted via G.C H-bonding to N2 of guanine is suggested as responsible for increased reactivity with MC. CpG is severely depleted in mammalian DNA and it is speculated that this factor attenuates MC cytotoxicity in human cells.
Collapse
Affiliation(s)
- W S Johnson
- Department of Chemistry, Hunter College, City University of New York, New York 10021, USA
| | | | | |
Collapse
|
49
|
Abstract
Reductively-activated mitomycin C (MC) presents a high specificity to the 5'-CG site and to a lesser extent the 5'-GG site. However, its affinity is different for each 5'-CG site. This was evidenced by using the 3'-5' exonuclease activity of T4 DNA polymerase on a short DNA fragment exposed to MC, which was gradually activated by several Na2S2O4 additions. The time-delayed appearance of some exonuclease digestion stop sites (corresponding to MC-monofunctional adducts) suggests that MC discriminates between very fine structural variations. The feature of the stop sites suggests a good fit of MC in the DNA groove, in the case of the major alkylation sites, but not in the case of a minor 5'-TG alkylation site. Furthermore, it is evidenced by the use of the chemical probe hydroxylamine (HA) that MC-monoalkylation of 5'-CG (or 5'-GG) does not induce notable local structural disturbance of the DNA double helix, as opposed to alkylation of the 5'-TG site of minor specificity, which leads to significant local DNA distortion. This suggests that the 'in vivo' effect of MC is related, not only to amount of alkylated sites (essentially 5'-CG sites), but also to possible local DNA deformations (at minor alkylation sites).
Collapse
Affiliation(s)
- B Jollès
- Laboratoire de Physique et Chimie Biomoléculaires (C.N.R.S. URA 198), Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
50
|
Srikanth NS, Mudipalli A, Maccubbin AE, Gurtoo HL. Mutations in a shuttle vector exposed to activated mitomycin C. Mol Carcinog 1994; 10:23-9. [PMID: 8185826 DOI: 10.1002/mc.2940100105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cytotoxicity of the potent antibiotic and antitumor agent mitomycin C (MMC) is due to its irreversible binding to DNA. Alkylating species generated by bioreductive activation of MMC are known to cause monoadducts and cross-links in DNA by specifically binding to guanine residues. To gain insight into how these lesions lead to base- and sequence-specific mutations, shuttle vector pSP189 was treated with MMC chemically reduced by treatment with sodium borohydride, replicated in human Ad293 cells, rescued in bacteria, and analyzed for mutations in the supF tRNA gene sequence. The MMC-induced mutations were predominantly base substitutions. Eighty-four percent of the base substitutions were transversions, with G:C-->T:A the major transversion. Single base deletions were the other major mutational event, and 77% of these were G:C deletions. Base positions 115, 123, and 163 were mutational hot spots based on the frequency of independent mutations. Identification of a single MMC adduct (presumed to be a modified G on the basis of its Rf value) and clustering of MMC-induced mutations at three GC-rich areas (nt 100-123, 152-163, and 168-176) suggested that the mutational spectrum we found was due to binding of MMC to guanine on either strand of the plasmid DNA.
Collapse
Affiliation(s)
- N S Srikanth
- Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | | | |
Collapse
|