1
|
Galenkamp NS, Zernia S, Van Oppen YB, van den Noort M, Argeitis AM, Maglia G. Allostery can convert binding free energies into concerted domain motions in enzymes. Nat Commun 2024; 15:10109. [PMID: 39572546 PMCID: PMC11582565 DOI: 10.1038/s41467-024-54421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Enzymatic mechanisms are typically inferred from structural data. However, understanding enzymes require unravelling the intricate dynamic interplay between dynamics, conformational substates, and multiple protein structures. Here, we use single-molecule nanopore analysis to investigate the catalytic conformational changes of adenylate kinase (AK), an enzyme that catalyzes the interconversion of various adenosine phosphates (ATP, ADP, and AMP). Kinetic analysis validated by hidden Markov models unravels the details of domain motions during catalysis. Our findings reveal that allosteric interactions between ligands and cofactor enable converting binding energies into directional conformational changes of the two catalytic domains of AK. These coordinated motions emerged to control the exact sequence of ligand binding and the affinity for the three different substrates, thereby guiding the reactants along the reaction coordinates. Interestingly, we find that about 10% of enzymes show altered allosteric regulation and ligand affinities, indicating that a subset of enzymes folds in alternative catalytically active forms. Since molecules or proteins might be able to selectively stabilize one of the folds, this observation suggests an evolutionary path for allostery in enzymes. In AK, this complex catalytic framework has likely emerged to prevent futile ATP/ADP hydrolysis and to regulate the enzyme for different energy needs of the cell.
Collapse
Affiliation(s)
- Nicole Stéphanie Galenkamp
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Sarah Zernia
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Yulan B Van Oppen
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Marco van den Noort
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Andreas Milias Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Giovanni Maglia
- Chemical Biology I, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
2
|
Nam K, Arattu Thodika AR, Grundström C, Sauer UH, Wolf-Watz M. Elucidating Dynamics of Adenylate Kinase from Enzyme Opening to Ligand Release. J Chem Inf Model 2024; 64:150-163. [PMID: 38117131 PMCID: PMC10778088 DOI: 10.1021/acs.jcim.3c01618] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
This study explores ligand-driven conformational changes in adenylate kinase (AK), which is known for its open-to-close conformational transitions upon ligand binding and release. By utilizing string free energy simulations, we determine the free energy profiles for both enzyme opening and ligand release and compare them with profiles from the apoenzyme. Results reveal a three-step ligand release process, which initiates with the opening of the adenosine triphosphate-binding subdomain (ATP lid), followed by ligand release and concomitant opening of the adenosine monophosphate-binding subdomain (AMP lid). The ligands then transition to nonspecific positions before complete dissociation. In these processes, the first step is energetically driven by ATP lid opening, whereas the second step is driven by ATP release. In contrast, the AMP lid opening and its ligand release make minor contributions to the total free energy for enzyme opening. Regarding the ligand binding mechanism, our results suggest that AMP lid closure occurs via an induced-fit mechanism triggered by AMP binding, whereas ATP lid closure follows conformational selection. This difference in the closure mechanisms provides an explanation with implications for the debate on ligand-driven conformational changes of AK. Additionally, we determine an X-ray structure of an AK variant that exhibits significant rearrangements in the stacking of catalytic arginines, explaining its reduced catalytic activity. In the context of apoenzyme opening, the sequence of events is different. Here, the AMP lid opens first while the ATP lid remains closed, and the free energy associated with ATP lid opening varies with orientation, aligning with the reported AK opening and closing rate heterogeneity. Finally, this study, in conjunction with our previous research, provides a comprehensive view of the intricate interplay between various structural elements, ligands, and catalytic residues that collectively contribute to the robust catalytic power of the enzyme.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Abdul Raafik Arattu Thodika
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | | | - Uwe H. Sauer
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| | - Magnus Wolf-Watz
- Department
of Chemistry, Umeå University, Umeå 90187, SE, Sweden
| |
Collapse
|
3
|
Dulko-Smith B, Ojeda-May P, Ådén J, Wolf-Watz M, Nam K. Mechanistic Basis for a Connection between the Catalytic Step and Slow Opening Dynamics of Adenylate Kinase. J Chem Inf Model 2023; 63:1556-1569. [PMID: 36802243 DOI: 10.1021/acs.jcim.2c01629] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Escherichia coli adenylate kinase (AdK) is a small, monomeric enzyme that synchronizes the catalytic step with the enzyme's conformational dynamics to optimize a phosphoryl transfer reaction and the subsequent release of the product. Guided by experimental measurements of low catalytic activity in seven single-point mutation AdK variants (K13Q, R36A, R88A, R123A, R156K, R167A, and D158A), we utilized classical mechanical simulations to probe mutant dynamics linked to product release, and quantum mechanical and molecular mechanical calculations to compute a free energy barrier for the catalytic event. The goal was to establish a mechanistic connection between the two activities. Our calculations of the free energy barriers in AdK variants were in line with those from experiments, and conformational dynamics consistently demonstrated an enhanced tendency toward enzyme opening. This indicates that the catalytic residues in the wild-type AdK serve a dual role in this enzyme's function─one to lower the energy barrier for the phosphoryl transfer reaction and another to delay enzyme opening, maintaining it in a catalytically active, closed conformation for long enough to enable the subsequent chemical step. Our study also discovers that while each catalytic residue individually contributes to facilitating the catalysis, R36, R123, R156, R167, and D158 are organized in a tightly coordinated interaction network and collectively modulate AdK's conformational transitions. Unlike the existing notion of product release being rate-limiting, our results suggest a mechanistic interconnection between the chemical step and the enzyme's conformational dynamics acting as the bottleneck of the catalytic process. Our results also suggest that the enzyme's active site has evolved to optimize the chemical reaction step while slowing down the overall opening dynamics of the enzyme.
Collapse
Affiliation(s)
- Beata Dulko-Smith
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Pedro Ojeda-May
- High Performance Computing Centre North (HPC2N), Umeå University, Umeå SE-90187, Sweden
| | - Jörgen Ådén
- Department of Chemistry, Umeå University, Umeå SE-90187, Sweden
| | | | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
4
|
Biswas A, Shukla A, Chaudhary SK, Santhosh R, Jeyakanthan J, Sekar K. Structural studies of a hyperthermophilic thymidylate kinase enzyme reveal conformational substates along the reaction coordinate. FEBS J 2017. [PMID: 28627020 DOI: 10.1111/febs.14140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thymidylate kinase (TMK) is a key enzyme which plays an important role in DNA synthesis. It belongs to the family of nucleoside monophosphate kinases, several of which undergo structure-encoded conformational changes to perform their function. However, the absence of three-dimensional structures for all the different reaction intermediates of a single TMK homolog hinders a clear understanding of its functional mechanism. We herein report the different conformational states along the reaction coordinate of a hyperthermophilic TMK from Aquifex aeolicus, determined via X-ray diffraction and further validated through normal-mode studies. The analyses implicate an arginine residue in the Lid region in catalysis, which was confirmed through site-directed mutagenesis and subsequent enzyme assays on the wild-type protein and mutants. Furthermore, the enzyme was found to exhibit broad specificity toward phosphate group acceptor nucleotides. Our comprehensive analyses of the conformational landscape of TMK, together with associated biochemical experiments, provide insights into the mechanistic details of TMK-driven catalysis, for example, the order of substrate binding and the reaction mechanism for phosphate transfer. Such a study has utility in the design of potent inhibitors for these enzymes. DATABASE Structural data are available in the PDB under the accession numbers 2PBR, 4S2E, 5H5B, 5XAI, 4S35, 5XB2, 5H56, 5XB3, 5H5K, 5XB5, and 5XBH.
Collapse
Affiliation(s)
- Ansuman Biswas
- Department of Physics, Indian Institute of Science, Bangalore, India
| | - Arpit Shukla
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India
| |
Collapse
|
5
|
Das U, Wang LK, Smith P, Shuman S. Structural and biochemical analysis of the phosphate donor specificity of the polynucleotide kinase component of the bacterial pnkp•hen1 RNA repair system. Biochemistry 2013; 52:4734-43. [PMID: 23721485 DOI: 10.1021/bi400412x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clostridium thermocellum Pnkp is the end-healing and end-sealing subunit of a bacterial RNA repair system. CthPnkp is composed of three catalytic modules: an N-terminal 5'-OH polynucleotide kinase, a central 2',3' phosphatase, and a C-terminal ligase. The crystal structure of the kinase domain bound to ATP•Mg(2+) revealed a rich network of ionic and hydrogen-bonding contacts to the α, β, and γ phosphates. By contrast, there are no enzymic contacts to the ribose and none with the adenine base other than a π-cation interaction with Arg116. Here we report that the enzyme uses ATP, GTP, CTP, UTP, or dATP as a phosphate donor for the 5'-OH kinase reaction. The enzyme also catalyzes the reverse reaction, in which a polynucleotide 5'-PO4 group is transferred to ADP, GDP, CDP, UDP, or dADP to form the corresponding NTP. We report new crystal structures of the kinase in complexes with GTP, CTP, UTP, and dATP in which the respective nucleobases are stacked on Arg116 but make no other enzymic contacts. Mutating Arg116 to alanine elicits a 10-fold increase in Km for ATP but has little effect on kcat. These findings illuminate the basis for nonspecific donor nucleotide utilization by a P-loop phosphotransferase.
Collapse
Affiliation(s)
- Ushati Das
- Molecular Biology Program, Sloan-Kettering Institute , New York, New York 10065, United States
| | | | | | | |
Collapse
|
6
|
Yin S, Loo JA. Elucidating the site of protein-ATP binding by top-down mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:899-907. [PMID: 20163968 DOI: 10.1016/j.jasms.2010.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/08/2010] [Accepted: 01/08/2010] [Indexed: 05/11/2023]
Abstract
A Fourier-transform ion cyclotron resonance (FT-ICR) top-down mass spectrometry strategy for determining the adenosine triphosphate (ATP)-binding site on chicken adenylate kinase is described. Noncovalent protein-ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), but the ability to detect protein-ligand complexes depends on their stability in the gas phase. Previously, we showed that collisionally activated dissociation (CAD) of protein-nucleotide triphosphate complexes yield products from the dissociation of a covalent phosphate bond of the nucleotide with subsequent release of the nucleotide monophosphate (Yin, S. et al., J. Am. Soc. Mass Spectrom. 2008, 19, 1199-1208). The intrinsic stability of electrostatic interactions in the gas phase allows the diphosphate group to remain noncovalently bound to the protein. This feature is exploited to yield positional information on the site of ATP-binding on adenylate kinase. CAD and electron capture dissociation (ECD) of the adenylate kinase-ATP complex generate product ions bearing mono- and diphosphate groups from regions previously suggested as the ATP-binding pocket by NMR and crystallographic techniques. Top-down MS may be a viable tool to determine the ATP-binding sites on protein kinases and identify previously unknown protein kinases in a functional proteomics study.
Collapse
Affiliation(s)
- Sheng Yin
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
7
|
Liu R, Ström AL, Zhai J, Gal J, Bao S, Gong W, Zhu H. Enzymatically inactive adenylate kinase 4 interacts with mitochondrial ADP/ATP translocase. Int J Biochem Cell Biol 2008; 41:1371-80. [PMID: 19130895 DOI: 10.1016/j.biocel.2008.12.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/03/2008] [Accepted: 12/08/2008] [Indexed: 12/18/2022]
Abstract
Adenylate kinase 4 (AK4) is a unique member with no enzymatic activity in vitro in the adenylate kinase (AK) family although it shares high sequence homology with other AKs. It remains unclear what physiological function AK4 might play or why it is enzymatically inactive. In this study, we showed increased AK4 protein levels in cultured cells exposed to hypoxia and in an animal model of the neurodegenerative disease amyotrophic lateral sclerosis. We also showed that short hairpin RNA (shRNA)-mediated knockdown of AK4 in HEK293 cells with high levels of endogenous AK4 resulted in reduced cell proliferation and increased cell death. Furthermore, we found that AK4 over-expression in the neuronal cell line SH-SY5Y with low endogenous levels of AK4 protected cells from H(2)O(2) induced cell death. Proteomic studies revealed that the mitochondrial ADP/ATP translocases (ANTs) interacted with AK4 and higher amount of ANT was co-precipitated with AK4 when cells were exposed to H(2)O(2) treatment. In addition, structural analysis revealed that, while AK4 retains the capability of binding nucleotides, AK4 has a glutamine residue instead of a key arginine residue in the active site well conserved in other AKs. Mutation of the glutamine residue to arginine (Q159R) restored the adenylate kinase activity with GTP as substrate. Collectively, these results indicate that the enzymatically inactive AK4 is a stress responsive protein critical to cell survival and proliferation. It is likely that the interaction with the mitochondrial inner membrane protein ANT is important for AK4 to exert the protective benefits to cells under stress.
Collapse
Affiliation(s)
- Rujuan Liu
- National Key Laboratory of Macrobiomolecules, Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
8
|
O'Brien PJ, Lassila JK, Fenn TD, Zalatan JG, Herschlag D. Arginine coordination in enzymatic phosphoryl transfer: evaluation of the effect of Arg166 mutations in Escherichia coli alkaline phosphatase. Biochemistry 2008; 47:7663-72. [PMID: 18627128 DOI: 10.1021/bi800545n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arginine residues are commonly found in the active sites of enzymes catalyzing phosphoryl transfer reactions. Numerous site-directed mutagenesis experiments establish the importance of these residues for efficient catalysis, but their role in catalysis is not clear. To examine the role of arginine residues in the phosphoryl transfer reaction, we have measured the consequences of mutations to arginine 166 in Escherichia coli alkaline phosphatase on hydrolysis of ethyl phosphate, on individual reaction steps in the hydrolysis of the covalent enzyme-phosphoryl intermediate, and on thio substitution effects. The results show that the role of the arginine side chain extends beyond its positive charge, as the Arg166Lys mutant is as compromised in activity as Arg166Ser. Through measurement of individual reaction steps, we construct a free energy profile for the hydrolysis of the enzyme-phosphate intermediate. This analysis indicates that the arginine side chain strengthens binding by approximately 3 kcal/mol and provides an additional 1-2 kcal/mol stabilization of the chemical transition state. A 2.1 A X-ray diffraction structure of Arg166Ser AP is presented, which shows little difference in enzyme structure compared to the wild-type enzyme but shows a significant reorientation of the bound phosphate. Altogether, these results support a model in which the arginine contributes to catalysis through binding interactions and through additional transition state stabilization that may arise from complementarity of the guanidinum group to the geometry of the trigonal bipyramidal transition state.
Collapse
Affiliation(s)
- Patrick J O'Brien
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
9
|
Herdendorf TJ, Miziorko HM. Functional evaluation of conserved basic residues in human phosphomevalonate kinase. Biochemistry 2007; 46:11780-8. [PMID: 17902708 PMCID: PMC2530820 DOI: 10.1021/bi701408t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphomevalonate kinase (PMK) catalyzes the cation-dependent reaction of mevalonate 5-phosphate with ATP to form mevalonate 5-diphosphate and ADP, a key step in the mevalonate pathway for isoprenoid/sterol biosynthesis. Animal PMK proteins belong to the nucleoside monophosphate (NMP) kinase family. For many NMP kinases, multiple basic residues contribute to the neutralization of the negatively charged pentacoordinate phosphate reaction intermediate. Loss of basicity can result in catalytically impaired enzymes. On the basis of this precedent, conserved basic residues of human PMK have been mutated, and purified forms of the mutated proteins have been kinetically and biophysically characterized. K48M and R73M mutants exhibit diminished Vmax values in both reaction directions (>1000-fold) with only slight Km perturbations (<10-fold). In both forward and reverse reactions, R110M exhibits a large (>10,000-fold) specific activity diminution. R111M exhibits substantially inflated Km values for mevalonate 5-phosphate and mevalonate 5-diphosphate (60- and 30-fold, respectively) as well as decreases [50-fold (forward) and 85-fold (reverse)] in Vmax. R84M also exhibits inflated Km values (50- and 33-fold for mevalonate 5-phosphate and mevalonate 5-diphosphate, respectively). The Ki values for R111M and R84M product inhibition by mevalonate 5-diphosphate are inflated by 45- and 63-fold; effects are comparable to the 30- and 38-fold inflations in Km for mevalonate 5-diphosphate. R141M exhibits little perturbation in Vmax [14-fold (forward) and 10-fold (reverse)] but has inflated Km values for ATP and ADP (48- and 136-fold, respectively). The Kd of ATP for R141M, determined by changes in tryptophan fluorescence, is inflated 27-fold compared to wt PMK. These data suggest that R110 is important to PMK catalysis, which is also influenced by K48 and R73. R111 and R84 contribute to binding of mevalonate 5-phosphate and R141 to binding of ATP.
Collapse
Affiliation(s)
| | - Henry M. Miziorko
- *Address for correspondence: Henry Miziorko, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, , Phone: 816-235-2246, Fax: 816-235-5595
| |
Collapse
|
10
|
Berry MB, Bae E, Bilderback TR, Glaser M, Phillips GN. Crystal structure of ADP/AMP complex of Escherichia coli adenylate kinase. Proteins 2006; 62:555-6. [PMID: 16302237 DOI: 10.1002/prot.20699] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael B Berry
- W. M. Keck Center for Computational Biology, Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
11
|
Krishnamurthy H, Lou H, Kimple A, Vieille C, Cukier RI. Associative mechanism for phosphoryl transfer: a molecular dynamics simulation of Escherichia coli adenylate kinase complexed with its substrates. Proteins 2006; 58:88-100. [PMID: 15521058 DOI: 10.1002/prot.20301] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ternary complex of Escherichia coli adenylate kinase (ECAK) with its substrates adenosine monophosphate (AMP) and Mg-ATP, which catalyzes the reversible transfer of a phosphoryl group between adenosine triphosphate (ATP) and AMP, was studied using molecular dynamics. The starting structure for the simulation was assembled from the crystal structures of ECAK complexed with the bisubstrate analog diadenosine pentaphosphate (AP(5)A) and of Bacillus stearothermophilus adenylate kinase complexed with AP(5)A, Mg(2+), and 4 coordinated water molecules, and by deleting 1 phosphate group from AP(5)A. The interactions of ECAK residues with the various moieties of ATP and AMP were compared to those inferred from NMR, X-ray crystallography, site-directed mutagenesis, and enzyme kinetic studies. The simulation supports the hypothesis that hydrogen bonds between AMP's adenine and the protein are at the origin of the high nucleoside monophosphate (NMP) specificity of AK. The ATP adenine and ribose moieties are only loosely bound to the protein, while the ATP phosphates are strongly bound to surrounding residues. The coordination sphere of Mg(2+), consisting of 4 waters and oxygens of the ATP beta- and gamma-phosphates, stays approximately octahedral during the simulation. The important role of the conserved Lys13 in the P loop in stabilizing the active site by bridging the ATP and AMP phosphates is evident. The influence of Mg(2+), of its coordination waters, and of surrounding charged residues in maintaining the geometry and distances of the AMP alpha-phosphate and ATP beta- and gamma-phosphates is sufficient to support an associative reaction mechanism for phosphoryl transfer.
Collapse
Affiliation(s)
- Harini Krishnamurthy
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48224-1322, USA
| | | | | | | | | |
Collapse
|
12
|
Burlacu-Miron S, Gilles AM, Popescu A, Bârzu O, Craescu CT. Multinuclear magnetic resonance studies of Escherichia coli adenylate kinase in free and bound forms. Resonance assignment, secondary structure and ligand binding. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:765-74. [PMID: 10491122 DOI: 10.1046/j.1432-1327.1999.00633.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The crystal structure of Escherichia coli adenylate kinase (AKe) revealed three main components: a CORE domain, composed of a five-stranded parallel beta-sheet surrounded by alpha-helices, and two peripheral domains involved in covering the ATP in the active site (LID) and binding of the AMP (NMPbind). We initiated a long-term NMR study aiming to characterize the solution structure, binding mechanism and internal dynamics of the various domains. Using single (15N) and double-labeled (13C and 15N) samples and double- and triple-resonance NMR experiments we assigned 97% of the 1H, 13C and 15N backbone resonances, and proton and 13Cbeta resonances for more than 40% of the side chains in the free protein. Analysis of a 15N-labeled enzyme in complex with the bi-substrate analogue [P1,P5-bis(5'-adenosine)-pentaphosphate] (Ap5A) resulted in the assignment of 90% of the backbone 1H and 15N resonances and 42% of the side chain resonances. Based on short-range NOEs and 1H and 13C secondary chemical shifts, we identified the elements of secondary structure and the topology of the beta-strands in the unliganded form. The alpha-helices and the beta-strands of the parallel beta-sheet in solution have the same limits (+/- 1 residue) as those observed in the crystal. The first helix (alpha1) appears to have a frayed N-terminal side. Significant differences relative to the crystal were noticed in the LID domain, which in solution exhibits four antiparallel beta-strands. The secondary structure of the nucleoside-bound form, as deduced from intramolecular NOEs and the 1Halpha chemical shifts, is similar to that of the free enzyme. The largest chemical shift differences allowed us to map the regions of protein-ligand contacts. 1H/2H exchange experiments performed on free and Ap5A-bound enzymes showed a general decrease of the structural flexibility in the complex which is accompanied by a local increased flexibility on the N-side of the parallel beta-sheet.
Collapse
|
13
|
Yan H, Tsai MD. Nucleoside monophosphate kinases: structure, mechanism, and substrate specificity. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1999; 73:103-34, x. [PMID: 10218107 DOI: 10.1002/9780470123195.ch4] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The catalytic mechanisms of adenylate kinase, guanylate kinase, uridylate kinase, and cytidylate kinase are reviewed in terms of kinetic and structural information that has been obtained in recent years. All four kinases share a highly related tertiary structure, characterized by a central five-stranded parallel beta-sheet with helices on both sides, as well as the three regions designated as the CORE, NMPbind, and LID domains. The catalytic mechanism continues to be refined to higher levels of resolution by iterative structure-function studies, and the strengths and limitations of site-directed mutagenesis are well illustrated in the case of adenylate kinase. The identity and roles of active site residues now appear to be resolved, and this review describes how specific site substitutions with unnatural amino acid side-chains have proven to be a major advance. Likewise, there is mounting evidence that phosphoryl transfer occurs by an associative transition state, based on (a) the stereochemical course of phosphoryl transfer, (b) geometric considerations, (c) examination of likely electronic distributions, (d) the orientation of the phosphoryl acceptor relative to the phosphoryl being transferred, (e) the most likely role of magnesium ion, (f) the lack of restricted access of solvent water, and (g) the results of oxygen-18 kinetic isotope. effect experiments.
Collapse
Affiliation(s)
- H Yan
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|
14
|
Reczkowski RS, Taylor JC, Markham GD. The active-site arginine of S-adenosylmethionine synthetase orients the reaction intermediate. Biochemistry 1998; 37:13499-506. [PMID: 9753435 DOI: 10.1021/bi9811011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
S-Adenosylmethionine (AdoMet) synthetase catalyzes the formation of AdoMet and tripolyphosphate (PPPi) from ATP and L-methionine and the subsequent hydrolysis of the PPPi to PPi and Pi before product release. Little is known about the roles of active-site residues involved in catalysis of the two sequential reactions that occur at opposite ends of the polyphosphate chain. Crystallographic studies of Escherichia coli AdoMet synthetase showed that arginine-244 is the only arginine near the polyphosphate-binding site. Arginine-244 is embedded as the seventh residue in the conserved sequence DxGxTxxKxI which is also found at the active site of inorganic pyrophosphatases, suggesting a potential pyrophosphate-binding motif. Chemical modification of AdoMet synthetase by the arginine-specific reagents phenylglyoxal or p-hydroxyphenylglyoxal inactivates the enzyme. ATP and PPPi protect the enzyme from inactivation, consistent with the presence of an important arginine residue in the vicinity of the polyphosphate-binding site. Site-specific mutagenesis has been used to change the conserved arginine-244 to either leucine (R244L) or histidine (R244H). In the overall reaction, the R244L mutant has the kcat reduced approximately 10(3)-fold, with a 7 to 10-fold increase in substrate Km values; the R244H mutant has an approximately 10(5)-fold decrease in kcat. In contrast, the kcat values for hydrolysis of added PPPi by the R244L and R244H mutants have been reduced by less than 2 orders of magnitude. In contrast to the wild-type enzyme in which 98% of the Pi formed originates as the gamma-phosphoryl group of ATP, in the R244L mutant the orientation of the PPPi intermediate equilibrates at the active site yielding equal amounts of Pi from the alpha- and gamma-phosphoryl groups of ATP. Thus, the active-site arginine has a profound role in the cleavage of PPPi from ATP during AdoMet formation and in maintaining the orientation of PPPi in the active site, while playing a lesser role in the subsequent PPPi hydrolytic reaction.
Collapse
Affiliation(s)
- R S Reczkowski
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
15
|
Berry MB, Phillips GN. Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+. Proteins 1998; 32:276-88. [PMID: 9715904 DOI: 10.1002/(sici)1097-0134(19980815)32:3<276::aid-prot3>3.0.co;2-g] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mn2+ Ap5A, and Mg2+ Ap5A have been determined by X-ray crystallography to resolutions of 1.6 A, 1.85 A, and 1.96 A, respectively. The protein's lid domain is partially open, being both rotated and translated away from bound Ap5A. The flexibility of the lid domain in the ternary state and its ability to transfer force directly to the the active site is discussed in light of our proposed entropic mechanism for catalytic turnover. The bound Zn2+ atom is demonstrably structural in nature, with no contacts other than its ligating cysteine residues within 5 A. The B. stearothermophilus adenylate kinase lid appears to be a truncated zinc finger domain, lacking the DNA binding finger, which we have termed a zinc knuckle domain. In the Mg2+ Ap5A and Mn2+ Ap5A structures, Mg2+ and Mn2+ demonstrate six coordinate octahedral geometry. The interactions of the Mg2+-coordinated water molecules with the protein and Ap5A phosphate chain demonstrate their involvement in catalyzing phosphate transfer. The protein selects for beta-y (preferred by Mg2+) rather than alpha-gamma (preferred by Mn2+) metal ion coordination by forcing the ATP phosphate chain to have an extended conformation.
Collapse
Affiliation(s)
- M B Berry
- W.M. Keck Center for Computational Biology, Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
16
|
Berry MB, Phillips GN. Crystal structures ofBacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(19980815)32:3%3c276::aid-prot3%3e3.0.co;2-g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Vacca RA, Giannattasio S, Graber R, Sandmeier E, Marra E, Christen P. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. J Biol Chem 1997; 272:21932-7. [PMID: 9268327 DOI: 10.1074/jbc.272.35.21932] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Arg386 and Arg292 of aspartate aminotransferase bind the alpha and the distal carboxylate group, respectively, of dicarboxylic substrates. Their substitution with lysine residues markedly decreased aminotransferase activity. The kcat values with L-aspartate and 2-oxoglutarate as substrates under steady-state conditions at 25 degrees C were 0.5, 2.0, and 0.03 s-1 for the R292K, R386K, and R292K/R386K mutations, respectively, kcat of the wild-type enzyme being 220 s-1. Longer dicarboxylic substrates did not compensate for the shorter side chain of the lysine residues. Consistent with the different roles of Arg292 and Arg386 in substrate binding, the effects of their substitution on the activity toward long chain monocarboxylic (norleucine/2-oxocaproic acid) and aromatic substrates diverged. Whereas the R292K mutation did not impair the aminotransferase activity toward these substrates, the effect of the R386K substitution was similar to that on the activity toward dicarboxylic substrates. All three mutant enzymes catalyzed as side reactions the beta-decarboxylation of L-aspartate and the racemization of amino acids at faster rates than the wild-type enzyme. The changes in reaction specificity were most pronounced in aspartate aminotransferase R292K, which decarboxylated L-aspartate to L-alanine 15 times faster (kcat = 0.002 s-1) than the wild-type enzyme. The rates of racemization of L-aspartate, L-glutamate, and L-alanine were 3, 5, and 2 times, respectively, faster than with the wild-type enzyme. Thus, Arg --> Lys substitutions in the active site of aspartate aminotransferase decrease aminotransferase activity but increase other pyridoxal 5'-phosphate-dependent catalytic activities. Apparently, the reaction specificity of pyridoxal 5'-phosphate-dependent enzymes is not only achieved by accelerating the specific reaction but also by preventing potential side reactions of the coenzyme substrate adduct.
Collapse
Affiliation(s)
- R A Vacca
- Centro di Studio sui Mitocondri e Metabolismo Energetico, Consiglio Nazionale delle Ricerche, Bari and Trani, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Byeon L, Shi Z, Tsai MD. Mechanism of adenylate kinase. The "essential lysine" helps to orient the phosphates and the active site residues to proper conformations. Biochemistry 1995; 34:3172-82. [PMID: 7880812 DOI: 10.1021/bi00010a006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although how Lys21 interacts with the substrate MgATP of muscle adenylate kinase (AK) can now be deduced from the crystal structure of Escherichia coli AK.MgAP5A [P1,P5-bis(5'-adenosyl) pentaphosphate] [Müller, C. W., & Schulz, G. E. (1992) J. Mol. Biol. 224, 159-177], its contribution to catalysis has not yet been demonstrated by functional studies since the proton NMR of the K21M mutant was shown to be perturbed significantly [Tian, G., Yan., H., Jiang, R.-T., Kishi, F., Nakazawa, A., & Tsai, M.-D. (1990) Biochemistry 29, 4296-4304]. We therefore undertook further structural and functional analyses of a conservative mutant K21R and a nonconservative mutant K21A. In addition to kinetic analyses, the structures of the mutants were analyzed by one- and two-dimensional proton NMR spectroscopy and (1H, 15N) heteronuclear multiple-quantum coherence (HMQC) experiments. Detailed assignments were performed in reference to the total backbone assignments of the WT AK.MgAP5A complex [Byeon, I.-J. L., Yan, H., Edison, A. S., Mooberry, E. S., Abildgaard, F., Markley, J. L., & Tsai, M.-D. (1993) Biochemistry 32, 12508-12521]. The analysis showed that the residues located near the active site (Gly15, Thr23, Arg97, Gln101, Arg128, Arg132, Asp140, Asp141, and Tyr153) exhibit greater changes in 1H-15N chemical shifts. Finally, two-dimensional 31P-31P COSY experiments were used to examine the effects of the lysine side chain on the phosphate groups in the bound AP5A. Our data have led to the following conclusions independent of the crystal structure: (i) Because the perturbations in the conformation of the mutants are not global and are mainly localized at active site residues and Tyr153, the side chain of Lys21 can be concluded to stabilize the transition state in the catalysis of AK by up to 7 kcal/mol on the basis of the 10(5)-fold decreases in the kcat/Km of mutants. (ii) The results of 31P NMR analyses suggest that Lys21 functions by orienting the triphosphate chain of MgATP to a proper conformation required for catalysis. (iii) The interaction between Lys21 and the phosphate chain in turn dictates the interactions between the substrates and the active site residues. In the K21R.MgATP complex, the NH chemical shifts of many of the active site residues are perturbed. (iv) The catalytic functions of Lys21 cannot be replaced by a conservative residue arginine. In addition, since K21A and K21R behave similarly, the catalytic function of Lys21 should not be merely a charge effect.
Collapse
Affiliation(s)
- L Byeon
- Department of Chemistry, Ohio State University, Columbus 43210
| | | | | |
Collapse
|
19
|
Ma GT, Hong YS, Ives DH. Cloning and Expression of the Heterodimeric Deoxyguanosine Kinase/Deoxyadenosine Kinase of Lactobacillus acidophilus R-26. J Biol Chem 1995. [DOI: 10.1074/jbc.270.12.6595] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Kawai M, Uchimiya H. Biochemical properties of rice adenylate kinase and subcellular location in plant cells. PLANT MOLECULAR BIOLOGY 1995; 27:943-951. [PMID: 7766884 DOI: 10.1007/bf00037022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Previously, we characterized nucleotide sequences of two cDNAs encoding adenylate kinase from rice plants (Oryza sativa L.). Each cDNA (Adk-a or Adk-b) was cloned into the expression vector pET 11d-GST to produce GST-AK fusion proteins in Escherichia coli. Recombinant proteins were cleaved by thrombin, and GST-free adenylate kinase proteins were obtained. Enzyme activity profiles of different pH and inhibition effects to the enzyme by Ap5A (adenosine-5'-pentaphospho-5'-adenosine) indicates that both adenylate kinase proteins have similar biochemical characteristics. Among the nucleoside monophosphates (AMP, CMP, GMP and UMP) investigated, only AMP reacted with ATP. Furthermore, using the antiserum against the rice adenylate kinase proteins, the cellular location of adenylate kinase proteins was examined by immunomicroscopic analysis in combination with a subcellular fractionation method. The results indicated that adenylate kinase proteins were distributed largely in cytosol of rice cells.
Collapse
Affiliation(s)
- M Kawai
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | |
Collapse
|
21
|
Berry MB, Meador B, Bilderback T, Liang P, Glaser M, Phillips GN. The closed conformation of a highly flexible protein: the structure of E. coli adenylate kinase with bound AMP and AMPPNP. Proteins 1994; 19:183-98. [PMID: 7937733 DOI: 10.1002/prot.340190304] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The structure of E. coli adenylate kinase with bound AMP and AMPPNP at 2.0 A resolution is presented. The protein crystallizes in space group C2 with two molecules in the asymmetric unit, and has been refined to an R factor of 20.1% and an Rfree of 31.6%. In the present structure, the protein is in the closed (globular) form with the large flexible lid domain covering the AMPPNP molecule. Within the protein, AMP and AMPPNP, and ATP analog, occupy the AMP and ATP sites respectively, which had been suggested by the most recent crystal structure of E. coli adenylate kinase with Ap5A bound (Müller and Schulz, 1992, ref. 1) and prior fluorescence studies (Liang et al., 1991, ref. 2). The binding of substrates and the positions of the active site residues are compared between the present structure and the E. coli adenylate kinase/Ap5A structure. We failed to detect a peak in the density map corresponding to the Mg2+ ion which is required for catalysis, and its absence has been attributed to the use of ammonium sulfate in the crystallization solution. Finally, a comparison is made between the present structure and the structure of the heavy chain of muscle myosin.
Collapse
Affiliation(s)
- M B Berry
- W.M. Keck Center for Computational Biology, Rice University, Houston, Texas 77251-1892
| | | | | | | | | | | |
Collapse
|
22
|
Dahnke T, Tsai M. Mechanism of adenylate kinase. The conserved aspartates 140 and 141 are important for transition state stabilization instead of substrate-induced conformational changes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37162-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Gilles AM, Sismeiro O, Munier H, Fabian H, Mantsch HH, Surewicz WK, Craescu CC, Barzu O, Danchin A. Structural and physico-chemical characteristics of Bordetella pertussis adenylate kinase, a tryptophan-containing enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:921-7. [PMID: 8281944 DOI: 10.1111/j.1432-1033.1993.tb18448.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The adk gene from the Gram-negative pathogen Bordetella pertussis was cloned by complementing the thermosensitive Escherichia coli adk strain CR341T28. B. pertussis adenylate kinase is a 218-amino-acid protein that has high similarity with adenylate kinase from Escherichia coli and Hemophilus influenzae (57%). A distinct characteristic of enzyme from B. pertussis, not found in other bacterial adenylate kinases, is the presence of a tryptophan residue at position 185. Although distant from the catalytic site, this single tryptophan serves as a convenient probe for monitoring the binding of nucleotide substrates or analogs to the enzyme. Differential scanning calorimetry and equilibrium unfolding experiments in guanidine.HCl indicate similar stabilities for adenylate kinase from B. pertussis and E. coli. An extensive comparison between physico-chemical properties of adenylate kinase from B. pertussis and the enzyme from E. coli showed that the kinetic and structural properties of the two enzymes are very similar. However, infrared spectroscopy has allowed to identify small but significant differences in the secondary structure of the two proteins.
Collapse
Affiliation(s)
- A M Gilles
- Unitë de Biochimie des Régulations Cellulaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Shi Z, Byeon IJ, Jiang RT, Tsai MD. Mechanism of adenylate kinase. What can be learned from a mutant enzyme with minor perturbation in kinetic parameters? Biochemistry 1993; 32:6450-8. [PMID: 8518288 DOI: 10.1021/bi00076a019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structural and functional roles of threonine-23 in the chicken muscle adenylate kinase (AK) were investigated by site-directed mutagenesis coupled with proton nuclear magnetic resonance (NMR) and phosphorus stereochemistry. The residue is potentially important because it is conserved among all types of AK and is part of the consensus P-loop sequence, 15GXPGXGKGT23. A mutant enzyme T23A (replacing threonine-23 with alanine) was constructed. Analyses of conformational stability and proton NMR indicate that the side chain of this residue contributes little to the structure of AK, which suggests that the side chain of Thr-23 does not play a structural role. The steady-state kinetic data of the mutant enzyme T23A showed no change in kcat and only 5-7-fold increases in Km and dissociation constants. Such minor changes in kinetic data are insufficient to suggest a functional role of Thr-23. However, two-dimensional NMR analyses of WT.MgAP5A and T23A.MgAP5A complexes indicated that the side chain of Thr-23 is in proximity to the adenine ring of the ATP moiety in the WT.MgAP5A complex in solution. In addition, T23A showed a significant perturbation in the stereospecificity toward the diastereomers of (Rp)- and (Sp)-adenosine 5'-(1-thiotriphosphate) (ATP alpha S), with the Rp/Sp ratio increased from < 0.02 in wild-type to 0.37 in T23A. Detailed 31P NMR analysis indicated that the stereospecificity at the AMP site was not perturbed. These results suggest that the side chain of Thr-23 is involved in catalysis, most likely via a hydrogen bonding interaction Thr-OH...O-P alpha(ATP).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- Z Shi
- Department of Chemistry, Ohio State University, Columbus 43210
| | | | | | | |
Collapse
|
25
|
Pal P, Ma Z, Coleman P. The AMP-binding domain on adenylate kinase. Evidence for a conformational change during binary-to-ternary complex formation via photoaffinity labeling analyses. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)73997-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Müller CW, Schulz GE. Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor Ap5A refined at 1.9 A resolution. A model for a catalytic transition state. J Mol Biol 1992; 224:159-77. [PMID: 1548697 DOI: 10.1016/0022-2836(92)90582-5] [Citation(s) in RCA: 412] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structure of adenylate kinase from Escherichia coli ligated with the two-substrate-mimicking inhibitor P1,P5-bis(adenosine-5'-)pentaphosphate has been determined by X-ray diffraction and refined to a resolution of 1.9 A. The asymmetric unit of the crystals contains two copies of the complex, the structures of which agree well with each other. One of these copies is less well ordered in the crystals than the other, it shows generally higher temperature factors. The molecular packing in the crystals is discussed and correlated to crystal habit and anisotropic X-ray diffraction. The bound inhibitor simulates well the binding of substrates ATP and AMP, which are clearly assigned. The alpha-phosphate of AMP is well positioned for a nucleophilic attack on the gamma-phosphate of ATP. The observed structure readily allows the construction of a stabilized pentaco-ordinated transition state, as proposed for the known in-line mechanism of the enzyme, with nucleophile and leaving group in the apical positions of a trigonal bipyramid. The kinetic data of numerous mutations reported in the literature are correlated with the detailed structure of the enzyme. The mutants were classified. The concomitant increase of the Michaelis constants for ATP and AMP in the group of mutants that modify only the ATP-binding site cannot be explained.
Collapse
Affiliation(s)
- C W Müller
- Institut für Organische Chemie und Biochemie der Universität, Freiburg, Germany
| | | |
Collapse
|
27
|
The active site of creatine kinase. Affinity labeling of cysteine 282 with N-(2,3-epoxypropyl)-N-amidinoglycine. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45859-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
28
|
Cremo CR, Loo JA, Edmonds CG, Hatlelid KM. Vanadate catalyzes photocleavage of adenylate kinase at proline-17 in the phosphate-binding loop. Biochemistry 1992; 31:491-7. [PMID: 1731908 DOI: 10.1021/bi00117a027] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Irradiation of adenylate kinase (AK) from chicken muscle with 300-400-nm light in the presence of 0.25 mM vanadate ion first inactivated the enzyme and then cleaved the polypeptide chain near the NH2 terminus. The addition of the multisubstrate analogue, P1,P5-bis(5'-adenosyl) pentaphosphate, prevented both effects. ATP, but not AMP, blocked both inactivation and cleavage in a saturable manner, suggesting that both effects were due to modification at the ATP-binding site. The polypeptide products of the photocleavage were isolated by HPLC and characterized by amino acid composition, peptide sequencing, and mass spectral analyses. The predominant (greater than 90%) small peptide fragment contained the first 16 amino acids from the amino terminus of the enzyme. The amino terminus of this peptide contained an acetylated serine, and the "carboxy" terminus was modified by a cyclized gamma-aminobutyric acid which originated from photooxidation and decarboxylation of proline-17 by vanadate. Edman sequencing indicated that the majority of the large peptide fragment (Mr approximately 19,500) was amino-terminal blocked, but a small portion was sequenceable starting at either glycine-18 (7%) or serine-19 (2%). These studies indicate that in the ATP-AK complex proline-17 is close to the phosphate chain of ATP but not AMP, consistent with the latest evaluation of nucleotide-binding sites on mitochondrial matrix AK by X-ray crystallography [Diederichs, K., & Schulz, G.E. (1991) J. Mol. Biol. 217, 541-549]. Furthermore, this is the first report that an amino acid other than serine can be involved in vanadate-promoted photocleavage reactions.
Collapse
Affiliation(s)
- C R Cremo
- Biochemistry and Biophysics Department, Washington State University, Pullman 99164-4660
| | | | | | | |
Collapse
|
29
|
Tsai MD, Yan HG. Mechanism of adenylate kinase: site-directed mutagenesis versus X-ray and NMR. Biochemistry 1991; 30:6806-18. [PMID: 2069947 DOI: 10.1021/bi00242a002] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M D Tsai
- Department of Chemistry, Ohio State University, Columbus 43210
| | | |
Collapse
|
30
|
Vogel PD, Cross RL. Adenine nucleotide-binding sites on mitochondrial F1-ATPase. Evidence for an adenylate kinase-like orientation of catalytic and noncatalytic sites. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)38089-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
31
|
Abstract
With the advent of genetic engineering techniques has come the ability to modify proteins as desired. Given this stunning capability, the question remains what residues should be altered, and how should they be changed to achieve a particular specificity pattern. The goals of such modifications are likely to fall into either of two categories: probing the function of a protein or attempting to alter its properties. In either case, our understanding of the consequences of a mutation, as ascertained by our ability to predict the results, is currently quite limited. The problem is extraordinarily complex; our understanding of how to calculate the energetics involved is still incomplete, and we are just beginning to accumulate experimental data which may help guide us. On the positive side, theoretical methods are now being developed and refined that should prove useful in the drive to engineer enzyme specificity. What may be most important at this juncture is to expand the experimental database interrelating sequence, function, and structure. That is, there should be a concerted effort to combine functional analysis of mutant proteins with structural analysis. Only from this combined examination of the effects of mutations can sufficient data be accumulated to test and improve both qualitative and quantitative approaches or methods for remodeling enzyme specificity.
Collapse
|
32
|
Yan HG, Dahnke T, Zhou BB, Nakazawa A, Tsai MD. Mechanism of adenylate kinase. Critical evaluation of the X-ray model and assignment of the AMP site. Biochemistry 1990; 29:10956-64. [PMID: 2125496 DOI: 10.1021/bi00501a013] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The substrate binding sites of adenylate kinase (AK) proposed by X-ray crystallographic studies [Pai, E. F., Sachsenheimer, W., Schirmer, R. H., & Schulz, G. E. (1977) J. Mol. Biol. 114, 37-45, and subsequent revisions] were evaluated by site-specific mutagenesis in conjunction with structural analysis by NMR. The residues examined in this report include two near an adenosine site (threonine-39 and arginine-44) and two in the phosphate binding region (arginine-128 and arginine-149). The results and conclusions are summarized as follows: (a) Although Thr-39 is very close to an adenine site [Egner, U., Tomasselli, A. G., & Schulz, G. E. (1987) J. Mol. Biol. 195, 649-658], it is nonessential either structurally or functionally. (b) The R44M mutant enzyme showed significant increases in the Michaelis and dissociation constants of adenosine 5'-monophosphate (AMP) (36- and 22-fold, respectively) while all other kinetic parameters were relatively unperturbed. The proton NMR property of this mutant was unchanged in the free enzyme and only slightly perturbed in the binary complexes with AMP and with MgATP (adenosine 5'-triphosphate), and in the ternary complex with MgAP5A [P1,P5-bis(5'-adenosyl) pentaphosphate]. These results indicate that Arg-44 interacts specifically with AMP starting at the binary complex, and suggest that the MgATP site proposed by Pai et al. (1977) is likely to be the AMP site. (c) The kinetic parameters of R149M were dramatically perturbed: kcat decreased by a factor of 1540, Km increased to 130-fold, and kcat/Km decreased by a factor of 2 X 10(5).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H G Yan
- Department of Chemistry, Ohio State University, Columbus 43210
| | | | | | | | | |
Collapse
|