1
|
Vilgis TA. Soft matter food physics--the physics of food and cooking. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:124602. [PMID: 26534781 DOI: 10.1088/0034-4885/78/12/124602] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.
Collapse
Affiliation(s)
- Thomas A Vilgis
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| |
Collapse
|
2
|
de Oliveira GAP, Rocha CB, Marques MDA, Cordeiro Y, Sorenson MM, Foguel D, Silva JL, Suarez MC. Insights into the Intramolecular Coupling between the N- and C-Domains of Troponin C Derived from High-Pressure, Fluorescence, Nuclear Magnetic Resonance, and Small-Angle X-ray Scattering Studies. Biochemistry 2012; 52:28-40. [DOI: 10.1021/bi301139d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guilherme A. P. de Oliveira
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Cristiane B. Rocha
- UNIRIO-Universidade Federal do Estado do Rio de Janeiro, CCBS-Centro de
Ciências Biológicas e da Saúde, Instituto Biomédico-IB,
Departamento de Bioquímica, Rua Frei Caneca 94-Centro, Rio
de Janeiro, Brazil
| | - Mayra de A. Marques
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculdade
de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro,
Brazil
| | - Martha M. Sorenson
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Débora Foguel
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Marisa C. Suarez
- Programa de
Biologia Estrutural,
Instituto de Bioquímica Médica, Instituto Nacional de
Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância
Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Programa de Biologia
Estrutural,
Instituto de Bioquímica Médica-Polo Xerém, Universidade Federal do Rio de Janeiro, Xerém,
Brazil
| |
Collapse
|
3
|
Lassalle MW. Expression and assembly of active human cardiac troponin in Escherichia coli. Protein Expr Purif 2012; 87:61-6. [PMID: 23116770 DOI: 10.1016/j.pep.2012.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 10/27/2022]
Abstract
Cardiomyopathy-related mutations in human cardiac troponin subunits, including troponin C (hcTnC), troponin I (hcTnI), and troponin T (hcTnT), are well-documented. Recently, it has been recognised that human cardiac troponin (hcTn) is a sophisticated allosteric system. Therefore, the effect of drugs on this protein complex should be studied with assembled hcTn rather than a short fragment of a subunit or the subunit itself. Here, we describe the expression and assembly of active hcTn in Escherichia coli, a novel method that is rapid and simple, and produces large amounts of functional hcTn.
Collapse
Affiliation(s)
- Michael W Lassalle
- Senior Research Fellow Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
4
|
Anderson SE, Liu H, Beyschau A, Cala PM. Effects of cold cardioplegia on pH, Na, and Ca in newborn rabbit hearts. Am J Physiol Heart Circ Physiol 2006; 290:H1090-7. [PMID: 16227341 DOI: 10.1152/ajpheart.00776.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many studies suggest myocardial ischemia-reperfusion (I/R) injury results largely from cytosolic proton (Hi)-stimulated increases in cytosolic Na (Nai), which cause Na/Ca exchange-mediated increases in cytosolic Ca concentration ([Ca]i). Because cold, crystalloid cardioplegia (CCC) limits [H]i, we tested the hypothesis that in newborn hearts, CCC diminishes Hi, Nai, and Cai accumulation during I/R to limit injury. NMR measured intracellular pH (pHi), Nai, [Ca]i, and ATP in isolated Langendorff-perfused newborn rabbit hearts. The control ischemia protocol was 30 min for baseline perfusion, 40 min for global ischemia, and 40 min for reperfusion, all at 37°C. CCC protocols were the same, except that ice-cold CCC was infused for 5 min before ischemia and heart temperature was lowered to 12°C during ischemia. Normal potassium CCC solution (NKCCC) was identical to the control perfusate, except for temperature; the high potassium (HKCCC) was identical to NKCCC, except that an additional 11 mmol/l KCl was substituted isosmotically for NaCl. NKCCC and HKCCC were not significantly different for any measurement. The following were different ( P < 0.05). End-ischemia pHi was higher in the CCC than in the control group. Similarly, CCC limited increases in Nai during I/R. End-ischemia Nai values (in meq/kg dry wt) were 115 ± 16 in the control group, 49 ± 13 in the NKCCC group, and 37 ± 12 in the HKCCC group. CCC also improved [Ca]i recovery during reperfusion. After 40 min of reperfusion, [Ca]i values (in nmol/l) were 302 ± 50 in the control group, 145 ± 13 in the NKCCC group, and 182 ± 19 in the HKCCC group. CCC limited ATP depletion during ischemia and improved recovery of ATP and left ventricular developed pressure and decreased creatine kinase release during reperfusion. Surprisingly, CCC did not significantly limit [Ca]i during ischemia. The latter is explained as the result of Ca release from intracellular buffers on cooling.
Collapse
Affiliation(s)
- Steven E Anderson
- Department of Human Physiology, University of California, 1 Shields Ave., Davis, California 95616-8644, USA.
| | | | | | | |
Collapse
|
5
|
Application of differential scanning calorimetry in food research and food quality assurance. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf01980925] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Musci G, Bonaccorsi di Patti MC, Petruzzelli R, Giartosio A, Calabrese L. Divalent cation binding to ceruloplasmin. Biometals 1996; 9:66-72. [PMID: 8574094 DOI: 10.1007/bf00188092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Binding of calcium to human and sheep ceruloplasmin was investigated by metal substitution with manganese and competitive displacement of bound manganese by calcium monitored by electron paramagnetic resonance spectroscopy. The Kd for calcium was found to be 1.4 mM. Magnesium also bound to ceruloplasmin, with Kd = 0.3 and 0.7 mM for the human and sheep protein, respectively. The thermal stability of ceruloplasmin, as studied by differential scanning calorimetry, was affected by calcium but not by magnesium. A considerable increase of the Tm value, from 73.8 to 83.1 degrees C, was observed for sheep ceruloplasmin in the presence of calcium. The Tm value of the human protein was only slightly altered by calcium (from 85.1 to 87 degrees C). The interaction of ceruloplasmin with the chromatographic material used for its isolation, Sepharose 4B derivatized with chloroethylamine, was weakened by calcium. This allowed us to set up a novel purification scheme that made it possible to efficiently isolate ceruloplasmin and prothrombin from plasma with the same single-step chromatography.
Collapse
Affiliation(s)
- G Musci
- Department of Biochemical Sciences, University of Rome La Sapienza, Italy
| | | | | | | | | |
Collapse
|
7
|
Ma CY, Harwalkar V. Thermal Analysis of Food Proteins. ADVANCES IN FOOD AND NUTRITION RESEARCH 1991. [DOI: 10.1016/s1043-4526(08)60067-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Harrison SM, Bers DM. Modification of temperature dependence of myofilament Ca sensitivity by troponin C replacement. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C282-8. [PMID: 2305871 DOI: 10.1152/ajpcell.1990.258.2.c282] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Ca sensitivity of chemically skinned right ventricular trabeculae from the rat heart was determined at 22 and 8 degrees C. Endogenous troponin C (TnC) was then extracted with EDTA and replaced with either bovine cardiac TnC or rabbit fast-twitch skeletal TnC. The temperature dependence of myofilament Ca sensitivity was then reevaluated. Cooling native cardiac tissue from 22 to 8 degrees C reduced the pCa (-log10 [Ca2+]), generating half-maximal tension (K1/2) from 5.20 +/- 0.07 to 4.89 +/- 0.08 (SD, n = 14), and also reduced maximum Ca-activated force to 33 +/- 6% of its value at 22 degrees C. After extraction of endogenous TnC and reconstitution with cardiac TnC, cooling from 22 to 8 degrees C caused a similar shift in mean K1/2 from 4.93 +/- 0.08 to 4.69 +/- 0.06 (n = 7). When skeletal TnC was reconstituted into TnC-extracted ventricular fibers, cooling from 22 to 8 degrees C led to a much smaller mean shift in K1/2 from 4.88 +/- 0.07 to 4.78 +/- 0.04 (n = 7). The results show that the magnitude of the cooling-induced shift in myofilament Ca sensitivity observed in the native state (or after reconstitution with cardiac TnC) is significantly reduced if the fiber is reconstituted with skeletal TnC (P less than 0.001). This indicates that the temperature dependence of myofilament Ca sensitivity of cardiac muscle can be modified by incorporation of skeletal TnC. Thus Ca binding to TnC plays an important role in determining the temperature dependence of myofilament Ca sensitivity.
Collapse
Affiliation(s)
- S M Harrison
- Division of Biomedical Sciences, University of California, Riverside 92521
| | | |
Collapse
|
9
|
YAMAMOTO KAZUHIKO, NUNOI KIYOHIDE, FUJISHIMA MASATOSHI. <b>INTERACTION OF TROPONIN C AND CALMODULIN WITH TROPONIN T: A COMPARATIVE STUDY OF SKELETAL AND CARDIAC MUSCLE </b><b>TROPONINS</b>. Biomed Res 1987. [DOI: 10.2220/biomedres.8.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - KIYOHIDE NUNOI
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University
| | - MASATOSHI FUJISHIMA
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University
| |
Collapse
|
10
|
Lepock JR, Arnold LD, Torrie BH, Andrews B, Kruuv J. Structural analyses of various Cu2+, Zn2+-superoxide dismutases by differential scanning calorimetry and Raman spectroscopy. Arch Biochem Biophys 1985; 241:243-51. [PMID: 3896151 DOI: 10.1016/0003-9861(85)90380-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The thermal denaturation profile of the Cu2+, Zn2+ metalloenzyme, bovine superoxide dismutase, consists of two primary components, the major component denatures irreversibly at Tm = 104 degrees C with a total enthalpy (delta Hcal) of 7.30 cal/g. Reduction of Cu(II) to Cu(I) with potassium ferrocyanide lowers Tm to 96 degrees C and delta Hcal to 6.96 cal/g. The apo-form of bovine superoxide dismutase (both Cu and Zn removed) denatures at 60 degrees C with an enthalpy only one-half that of the holo-form. The reduced thermal stability, which indicates a greater ability to change conformation, may explain the previously observed much greater membrane binding of the apo-enzyme. Reconstitution with Zn2+, Cu2+, or Zn2+ and Cu2+ raises Tm to 80, 89, or 102 degrees C, respectively, with corresponding increases in the enthalpy. Thus, the metal ions considerably stabilize the enzyme and must somewhat affect conformation. The effect of Cu2+ alone is greater than that of Zn2+, although both are needed for full stability. Raman spectroscopy indicates little difference in secondary structure between the apo- and holo-forms, implying that the increased stability due to metal binding is not caused by an extreme structural reorganization. The value of Tm of canine and yeast superoxide dismutase is also lowered by reduction of Cu(II). The reduced form of the yeast enzyme denatures irreversibly, as do all forms of the bovine and canine enzymes, but the oxidized form is unique in that it denatures reversibly. Thus, the copper ion must be oxidized for renaturation and appears to act as a nucleation site.
Collapse
|
11
|
Kometani K, Yamada K. Enthalpy, entropy and heat capacity changes induced by binding of calcium ions to cardiac troponin C. Biochem Biophys Res Commun 1983; 114:162-7. [PMID: 6882420 DOI: 10.1016/0006-291x(83)91608-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Microcalorimetric titrations have been used to study the binding of Ca2+ to cardiac troponin C. Measurements were made both in the presence and in the absence of Mg2+, and at temperatures of 5 degrees, 15 degrees and 25 degrees C. Changes in enthalpy, entropy and heat capacity of troponin C associated with Ca binding have been determined. Cardiac troponin C exhibited a decrease in enthalpy and an increase in entropy associated with Ca binding. Enthalpy changes increased linearly with temperature, indicating that the Ca binding causes negative changes in the heat capacity of troponin C. These results show that the Ca binding causes a strong hydrophobic effect and a tightening of the molecular structure of cardiac troponin C.
Collapse
|
12
|
|
13
|
Byers DM, Kay CM. Bovine cardiac troponin subunits: binary complexes and reconstitution of whole troponin. FEBS Lett 1982; 148:12-6. [PMID: 7173399 DOI: 10.1016/0014-5793(82)81232-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The reconstitution of bovine cardiac troponin from its subunits has been investigated using hydrodynamic techniques. Gel filtration (Sephacryl S-300) and sedimentation velocity experiments indicate that troponin-C and troponin-I form a stable binary complex (1:1 mole ratio) with an apparent Stokes' radius of 36 A (frictional ratio = 1.6). Troponin-C and troponin-T do not interact significantly while troponin-I and troponin-T undergo partial complex formation. The effect of subunit ratio on the reconstitution of whole troponin has been examined by SDS-polyacrylamide gel electrophoresis and gel filtration and the results suggest that native troponin contains the subunits in an equimolar ratio.
Collapse
|