1
|
Popovic M. The SARS-CoV-2 Hydra, a tiny monster from the 21st century: Thermodynamics of the BA.5.2 and BF.7 variants. MICROBIAL RISK ANALYSIS 2023; 23:100249. [PMID: 36777924 PMCID: PMC9898946 DOI: 10.1016/j.mran.2023.100249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 06/01/2023]
Abstract
SARS-CoV-2 resembles the ancient mythical creature Hydra. Just like with the Hydra, when one head is cut, it is followed by appearance of two more heads, suppression of one SARS-CoV-2 variant causes appearance of newer variants. Unlike Hydra that grows identical heads, newer SARS-CoV-2 variants are usually more infective, which can be observed as time evolution of the virus at hand, which occurs through acquisition of mutations during time. The appearance of new variants is followed by appearance of new COVID-19 pandemic waves. With the appearance of new pandemic waves and determining of sequences, in the scientific community and general public the question is always raised of whether the new variant will be more virulent and more pathogenic. The two variants characterized in this paper, BA.5.2 and BF.7, have caused a pandemic wave during the late 2022. This paper gives full chemical and thermodynamic characterization of the BA.5.2 and BF.7 variants of SARS-CoV-2. Having in mind that Gibbs energy of binding and biosynthesis represent the driving forces for the viral life cycle, based on the calculated thermodynamic properties we can conclude that the newer variants are more infective than earlier ones, but that their pathogenicity has not changed.
Collapse
Affiliation(s)
- Marko Popovic
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
2
|
Biothermodynamics of Viruses from Absolute Zero (1950) to Virothermodynamics (2022). Vaccines (Basel) 2022; 10:vaccines10122112. [PMID: 36560522 PMCID: PMC9784531 DOI: 10.3390/vaccines10122112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Biothermodynamics of viruses is among the youngest but most rapidly developing scientific disciplines. During the COVID-19 pandemic, it closely followed the results published by molecular biologists. Empirical formulas were published for 50 viruses and thermodynamic properties for multiple viruses and virus variants, including all variants of concern of SARS-CoV-2, SARS-CoV, MERS-CoV, Ebola virus, Vaccinia and Monkeypox virus. A review of the development of biothermodynamics of viruses during the last several decades and intense development during the last 3 years is described in this paper.
Collapse
|
3
|
Zhou K, Li F, Dai G, Meng C, Wang Q. Disulfide Bond: Dramatically Enhanced Assembly Capability and Structural Stability of Tobacco Mosaic Virus Nanorods. Biomacromolecules 2013; 14:2593-600. [DOI: 10.1021/bm400445m] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kun Zhou
- Suzhou Key Laboratory of Nanomedical
Characterization, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Biological Science
and Technology, Fuzhou University, Fuzhou,
350108, China
| | - Feng Li
- Suzhou Key Laboratory of Nanomedical
Characterization, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Gaole Dai
- Suzhou Key Laboratory of Nanomedical
Characterization, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Biological Science
and Technology, Fuzhou University, Fuzhou,
350108, China
| | - Chun Meng
- College of Biological Science
and Technology, Fuzhou University, Fuzhou,
350108, China
| | - Qiangbin Wang
- Suzhou Key Laboratory of Nanomedical
Characterization, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
4
|
Bruckman MA, Soto CM, McDowell H, Liu JL, Ratna BR, Korpany KV, Zahr OK, Blum AS. Role of hexahistidine in directed nanoassemblies of tobacco mosaic virus coat protein. ACS NANO 2011; 5:1606-16. [PMID: 21361370 DOI: 10.1021/nn1025719] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A common challenge in nanotechnology is the fabrication of materials with well-defined nanoscale structure and properties. Here we report that a genetically engineered tobacco mosaic virus (TMV) coat protein (CP), to which a hexahistidine (His) tag was incorporated, can self-assemble into disks, hexagonally packed arrays of disks, stacked disks, helical rods, fibers, and elongated rafts. The insertion of a His tag to the C-terminus of TMV-CP was shown to significantly affect the self-assembly in comparison to the wild type, WT-TMV-CP. Furthermore, the His tag interactions attributed to the alternative self-assembly of His-TMV-CP can be controlled through ethanol and nickel-nitrilotriacetic acid (Ni-NTA) additions as monitored with atomic force microscopy.
Collapse
Affiliation(s)
- Michael A Bruckman
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375, United States
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jeembaeva M, Jönsson B, Castelnovo M, Evilevitch A. DNA heats up: energetics of genome ejection from phage revealed by isothermal titration calorimetry. J Mol Biol 2009; 395:1079-87. [PMID: 19969001 DOI: 10.1016/j.jmb.2009.11.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 11/11/2009] [Accepted: 11/30/2009] [Indexed: 10/20/2022]
Abstract
Most bacteriophages are known to inject their double-stranded DNA into bacteria upon receptor binding in an essentially spontaneous way. This downhill thermodynamic process from the intact virion to the empty viral capsid plus released DNA is made possible by the energy stored during active packaging of the genome into the capsid. Only indirect measurements of this energy have been available until now, using either single-molecule or osmotic suppression techniques. In this work, we describe for the first time the use of isothermal titration calorimetry to directly measure the heat released (or, equivalently, the enthalpy) during DNA ejection from phage lambda, triggered in solution by a solubilized receptor. Quantitative analyses of the results lead to the identification of thermodynamic determinants associated with DNA ejection. The values obtained were found to be consistent with those previously predicted by analytical models and numerical simulations. Moreover, the results confirm the role of DNA hydration in the energetics of genome confinement in viral capsids.
Collapse
Affiliation(s)
- Meerim Jeembaeva
- Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh 15213 PA, USA
| | | | | | | |
Collapse
|
6
|
Abstract
A phenomenological theory is presented for the kinetics of the in vitro assembly and disassembly of icosahedral virus capsids in solutions of coat proteins. The focus is on conditions where nucleation-type processes can be ignored. We find that the kinetics of assembly is strongly concentration dependent and that the late-stage relaxation time varies as the inverse of the square of the concentration. These findings are corroborated by experimental observations on a number of viruses. Further, our theory shows that hysteresis observed in some experiments could be a direct effect of the kinetics of a high-order mass action law, not necessarily the result of a free energy barrier between assembled and disassembled states.
Collapse
Affiliation(s)
- Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology, POB 513, 5600 MB Eindhoven, The Netherlands
| | | |
Collapse
|
7
|
Kegel WK, van der Schoot P. Physical regulation of the self-assembly of tobacco mosaic virus coat protein. Biophys J 2006; 91:1501-12. [PMID: 16731551 PMCID: PMC1518656 DOI: 10.1529/biophysj.105.072603] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present a statistical mechanical model based on the principle of mass action that explains the main features of the in vitro aggregation behavior of the coat protein of tobacco mosaic virus (TMV). By comparing our model to experimentally obtained stability diagrams, titration experiments, and calorimetric data, we pin down three competing factors that regulate the transitions between the different kinds of aggregated state of the coat protein. These are hydrophobic interactions, electrostatic interactions, and the formation of so-called "Caspar" carboxylate pairs. We suggest that these factors could be universal and relevant to a large class of virus coat proteins.
Collapse
Affiliation(s)
- Willem K Kegel
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Research Institute, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
8
|
Ackermann T. Kalorimetrische Untersuchungen an Biopolymeren und Aggregaten von Phospholipiden. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.19891010805] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Zandi R, van der Schoot P, Reguera D, Kegel W, Reiss H. Classical nucleation theory of virus capsids. Biophys J 2005; 90:1939-48. [PMID: 16387781 PMCID: PMC1386774 DOI: 10.1529/biophysj.105.072975] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental step in the replication of a viral particle is the self-assembly of its rigid shell (capsid) from its constituent proteins. Capsids play a vital role in genome replication and intercellular movement of viruses, and as such, understanding viral assembly has great potential in the development of new antiviral therapies and a systematic treatment of viral infection. In this article, we assume that nucleation is the underlying mechanism for self-assembly and combine the theoretical methods of the physics of equilibrium polymerization with those of the classical nucleation to develop a theory for the kinetics of virus self-assembly. We find expressions for the size of the critical capsid, the lag time, and the steady-state nucleation rate of capsids, and how they depend on both protein concentration and binding energy. The latter is a function of the acidity of the solution, the ionic strength, and the temperature, explaining why capsid nucleation is a sensitive function of the ambient conditions.
Collapse
Affiliation(s)
- Roya Zandi
- Department of Physics, University of California, Riverside, California, USA.
| | | | | | | | | |
Collapse
|
10
|
van der Schoot P, Bruinsma R. Electrostatics and the assembly of an RNA virus. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:061928. [PMID: 16089786 DOI: 10.1103/physreve.71.061928] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Indexed: 05/03/2023]
Abstract
Electrostatic interactions play a central role in the assembly of single-stranded RNA viruses. Under physiological conditions of salinity and acidity, virus capsid assembly requires the presence of genomic material that is oppositely charged to the core proteins. In this paper we apply basic polymer physics and statistical mechanics methods to the self-assembly of a synthetic virus encapsidating generic polyelectrolyte molecules. We find that (i) the mean concentration of the encapsidated polyelectrolyte material depends on the surface charge density, the radius of the capsid, and the linear charge density of the polymer but neither on the salt concentration nor the Kuhn length, and (ii) the total charge of the capsid interior is equal but opposite to that of the empty capsid, a form of charge reversal. Unlike natural viruses, synthetic viruses are predicted not to be under an osmotic swelling pressure. The design condition that self-assembly only produces filled capsids is shown to coincide with the condition that the capsid surface charge exceeds the desorption threshold of polymer surface adsorption. We compare our results with studies on the self-assembly of both synthetic and natural viruses.
Collapse
Affiliation(s)
- Paul van der Schoot
- Department of Physics and Astronomy, UCLA, Box 951547, Los Angeles, California 90095-1547, USA
| | | |
Collapse
|
11
|
Jha BK, Mitra N, Rana R, Surolia A, Salunke DM, Datta K. pH and Cation-induced Thermodynamic Stability of Human Hyaluronan Binding Protein 1 Regulates Its Hyaluronan Affinity. J Biol Chem 2004; 279:23061-72. [PMID: 15004022 DOI: 10.1074/jbc.m310676200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan-binding protein 1 (HABP1) is a trimeric protein with high negative charges distributed asymmetrically along the faces of the molecule. Recently, we have reported that HABP1 exhibits a high degree of structural flexibility, which can be perturbed by ions under in vitro conditions near physiological pH (Jha, B. K., Salunke, D. M., and Datta, K. (2003) J. Biol. Chem. 278, 27464-27472). Here, we report the effect of ionic strength and pH on thermodynamic stability of HABP1. Trimeric HABP1 was shown to unfold reversibly upon dissociation ruling out the possibility of existence of folded monomer. An increase in ionic concentration (0.05-1 M) or decrease in pH (pH 8.0-pH 5.0) induced an unusually high thermodynamic stability of HABP1 as reflected in the gradual increase in transition midpoint temperature, enthalpy of transition, and conformational entropy. Our studies suggest that the presence of counter ions in the molecular environment of HABP1 leads to dramatic reduction of the intramolecular electrostatic repulsion either by de-ionizing the charged amino acid residues or by direct binding leading to a more stable conformation. A regulation on cellular HA-HABP1 interaction by changes in pH and ionic strength may exist, because the more stable conformation attained at higher ionic strength or at acidic pH showed maximum affinity toward HA as probed either in solid phase binding assay on HA-immobilized plates or an in-solution binding assay using intrinsic fluorescence of HABP1.
Collapse
Affiliation(s)
- Babal Kant Jha
- 103 Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
12
|
Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:329-401. [PMID: 10751948 DOI: 10.1016/s0065-3233(00)53007-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
13
|
Orlov VN, Kust SV, Kalmykov PV, Krivosheev VP, Dobrov EN, Drachev VA. A comparative differential scanning calorimetric study of tobacco mosaic virus and of its coat protein ts mutant. FEBS Lett 1998; 433:307-11. [PMID: 9744816 DOI: 10.1016/s0014-5793(98)00924-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The differential scanning calorimetry (DSC) 'melting curves' for virions and coat proteins (CP) of wild-type tobacco mosaic virus (strain U1) and for its CP ts mutant ts21-66 were measured. Strain U1 and ts21-66 mutant (two amino acid substitutions in CP: 121 --> T and D66 --> G) differ in the type of symptoms they induce on some host plants. It was observed that CP subunits of both U1 and ts21-66 at pH 8.0, in the form of small (3-4S) aggregates, possess much lower thermal stability than in the virions. Assembly into the virus particles resulted in a DSC melting temperature increase from 41 to 72 degrees C for U1 and from 38 to 72 degrees C for ts21-66 CP. In the RNA-free helical virus-like protein assemblies U1 and ts21-66 CP subunits had a thermal stability intermediate between those in 3-4S aggregates and in the virions. ts21-66 helical protein displayed a somewhat lower thermal stability than U1.
Collapse
Affiliation(s)
- V N Orlov
- A.N. Belozersky Institute of Physical and Chemical Biology, Moscow State University, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Gross M, Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 221:617-30. [PMID: 8174542 DOI: 10.1111/j.1432-1033.1994.tb18774.x] [Citation(s) in RCA: 457] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Oceans not only cover the major part of the earth's surface but also reach into depths exceeding the height of the Mt Everest. They are populated down to the deepest levels (approximately 11,800 m), which means that a significant proportion of the global biosphere is exposed to pressures of up to 120 MPa. Although this fact has been known for more than a century, the ecology of the 'abyss' is still in its infancy. Only recently, barophilic adaptation, i.e. the requirement of elevated pressure for viability, has been firmly established. In non-adapted organisms, increased pressure leads to morphological anomalies or growth inhibition, and ultimately to cell death. The detailed molecular mechanism of the underlying 'metabolic dislocation' is unresolved. Effects of pressure as a variable in microbiology, biochemistry and biotechnology allow the structure/function relationship of proteins conjugates to be analyzed. In this context, stabilization by cofactors or accessory proteins has been observed. High-pressure equipment available today allows the comprehensive characterization of the behaviour of proteins under pressure. Single-chain proteins undergo pressure-induced denaturation in the 100-MPa range, which, in the case of oligomeric proteins or protein assemblies, is preceded by dissociation at lower pressure. The effects may be ascribed to the positive reaction volumes connected with the formation of hydrophobic and ionic interactions. In addition, the possibility of conformational effects exerted by moderate, non-denaturing pressures, and related to the intrinsic compressibility of proteins, is discussed. Crystallization may serve as a model reaction of protein self-organization. Kinetic aspects of its pressure-induced inhibition can be described by a model based on the Oosawa theory of molecular association. Barosensitivity is known to be correlated with the pressure-induced inhibition of protein biosynthesis. Attempts to track down the ultimate cause in the dissociation of ribosomes have revealed remarkable stabilization of functional complexes under pseudo-physiological conditions, with the post-translational complex as the most pressure-sensitive species. Apart from the key issue of barosensitivity and barophilic adaptation, high-pressure biochemistry may provide means to develop new approaches to nonthermic industrial processes, especially in the field of food technology.
Collapse
Affiliation(s)
- M Gross
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
15
|
Butler PJ, Bloomer AC, Finch JT. Direct visualization of the structure of the "20 S" aggregate of coat protein of tobacco mosaic virus. The "disk" is the major structure at pH 7.0 and the Proto-helix at lower pH. J Mol Biol 1992; 224:381-94. [PMID: 1560458 DOI: 10.1016/0022-2836(92)91002-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have employed the rapid-freeze technique to prepare specimens for electron microscopy of a coat protein solution of tobacco mosaic virus at equilibrium at pH 7.0 and 6.8, ionic strength 0.1 M and 20 degrees C. The former are the conditions for the most rapid assembly of the virus from its isolated protein and RNA. At both pH values, the equilibrium mixture contains approximately 80% of a "20 S" aggregate and 20% of a "4 S" aggregate (the so-called A-protein). The specimens were prepared either totally unstained or positively stained with methyl mercury nitrate, which binds to an amino acid residue (Cys27) internally located within the subunit, which we show not to affect the virus assembly. The images in the electron microscope are compatible only with the major structure for the "20 S" aggregate at pH 7.0 containing two rings of subunits and these aggregates display the same binding contacts as those seen between the aggregate that forms the asymmetric unit in the crystal, which has been shown by X-ray crystallography to be a disk containing two rings, each of 17 subunits, oriented in the same direction. In contrast, the images from specimens prepared at pH 6.8 show the major structure to be a proto-helix at this slightly lower pH, demonstrating that the technique of cryo-electron microscopy is capable of distinguishing between these aggregates of tobacco mosaic virus coat protein. The main structure in solution at pH 7.0 must therefore be very similar to that in the crystal, although slight differences could occur and there are probably other, minor, components in a mixture of species sedimenting around 20 S under these conditions. The equilibrium between aggregates is extremely sensitive to conditions, with a drop of 0.2 pH unit tipping the disk to proto-helix ratio from approximately 10:1 at pH 7.0 to 1:10 at pH 6.8. This direct determination of the structure of the "20 S" aggregate in solution, under conditions for virus assembly, contradicts some recent speculation that it must be helical, and establishes that, at pH 7.0, it is in fact predominantly a two-layer disk as it had been modelled before.
Collapse
Affiliation(s)
- P J Butler
- MRC Laboratory of Molecular Biology, Cambridge, England
| | | | | |
Collapse
|
16
|
Ackermann T. Calorimetric Studies of Biopolymers and Aggregates of Phospholipids. ACTA ACUST UNITED AC 1989. [DOI: 10.1002/anie.198909811] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Strong W, Joshi G, Lura R, Muthukumaraswamy N, Schirch V. 10-Formyltetrahydrofolate synthetase. Evidence for a conformational change in the enzyme upon binding of tetrahydropteroylpolyglutamates. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45236-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Jaenicke R. Folding and association of proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1987; 49:117-237. [PMID: 3327098 DOI: 10.1016/0079-6107(87)90011-3] [Citation(s) in RCA: 494] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Shiotsubo T, Takahashi K. Changes in enthalpy and heat capacity associated with the gelatinization of potato starch, as evaluated from isothermal calorimetry. Carbohydr Res 1986. [DOI: 10.1016/0008-6215(86)84001-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Hinz HJ. Thermodynamic parameters for protein-protein and protein-ligand interaction by differential scanning microcalorimetry. Methods Enzymol 1986; 130:59-79. [PMID: 3773750 DOI: 10.1016/0076-6879(86)30008-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
21
|
|
22
|
|
23
|
|
24
|
|
25
|
Bordas J, Mandelkow EM, Mandelkow E. Stages of tubulin assembly and disassembly studied by time-resolved synchrotron X-ray scattering. J Mol Biol 1983; 164:89-135. [PMID: 6842593 DOI: 10.1016/0022-2836(83)90089-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Shalaby RA, Stevens CL, Lauffer MA. Ultracentrifugation studies on early stage polymerization of tobacco mosaic virus protein. Arch Biochem Biophys 1982; 218:384-401. [PMID: 7159093 DOI: 10.1016/0003-9861(82)90360-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Jaenicke R. Folding and association of proteins. BIOPHYSICS OF STRUCTURE AND MECHANISM 1982; 8:231-56. [PMID: 7052154 DOI: 10.1007/bf00537204] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
Jaenicke R, L�demann HD, Schade BC. High pressure effects on the endothermic association of tobacco mosaic virus protein. ACTA ACUST UNITED AC 1981. [DOI: 10.1007/bf00539179] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|