1
|
Kőhegyi B, Tóth ZS, Gál E, Laczkovich M, Benedek A, Vértessy BG, Nyíri K. Full-length inhibitor protein is the most effective to perturb human dUTPase activity. Sci Rep 2025; 15:4836. [PMID: 39924564 PMCID: PMC11808092 DOI: 10.1038/s41598-025-86131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
It has been demonstrated recently that knockout of the dUTPase enzyme leads to early embryonic lethality in mice. However, to explore the physiological processes arising upon the lack of dUTPase an effective and selective enzyme inhibitor is much needed. A highly specific and strong binding proteinaceous human dUTPase inhibitor described by us recently was a promising starting point to develop a molecular tool to study temporal and conditional dUTPase inhibition in cellulo. Towards this end we determined the 3D crystal structure of the crystallizable amino terminal domain of inhibitor protein, named StlNT in complex with the human dUTPase and designed several point mutants based on the structure to improve the inhibition effectivity. The effect of StlNT and a peptide derived from the full-length inhibitor on the activity of the human dUTPase was also tested. We showed that the C-terminal part of the Stl protein omitted from the crystal structure has an important role in the enzyme inhibition as the full-length Stl is needed to exert maximal inhibition on the human dUTPase.
Collapse
Affiliation(s)
- Bianka Kőhegyi
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 111, Hungary
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt 2, Budapest, 1117, Hungary
| | - Zoé S Tóth
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt 2, Budapest, 1117, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest, 1117, Hungary
| | - Enikő Gál
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 111, Hungary
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt 2, Budapest, 1117, Hungary
| | - Máté Laczkovich
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 111, Hungary
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt 2, Budapest, 1117, Hungary
| | - András Benedek
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 111, Hungary
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt 2, Budapest, 1117, Hungary
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 111, Hungary.
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt 2, Budapest, 1117, Hungary.
| | - Kinga Nyíri
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 111, Hungary.
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt 2, Budapest, 1117, Hungary.
| |
Collapse
|
2
|
Hayran AB, Liabakk NB, Aas PA, Kusnierczyk A, Vågbø CB, Sarno A, Iveland TS, Chawla K, Zahn A, Di Noia JM, Slupphaug G, Kavli B. RPA guides UNG to uracil in ssDNA to facilitate antibody class switching and repair of mutagenic uracil at the replication fork. Nucleic Acids Res 2024; 52:784-800. [PMID: 38000394 PMCID: PMC10810282 DOI: 10.1093/nar/gkad1115] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) interacts with replication protein A (RPA), the major ssDNA-binding protein, to promote deamination of cytosine to uracil in transcribed immunoglobulin (Ig) genes. Uracil-DNA glycosylase (UNG) acts in concert with AID during Ig diversification. In addition, UNG preserves genome integrity by base-excision repair (BER) in the overall genome. How UNG is regulated to support both mutagenic processing and error-free repair remains unknown. UNG is expressed as two isoforms, UNG1 and UNG2, which both contain an RPA-binding helix that facilitates uracil excision from RPA-coated ssDNA. However, the impact of this interaction in antibody diversification and genome maintenance has not been investigated. Here, we generated B-cell clones with targeted mutations in the UNG RPA-binding motif, and analysed class switch recombination (CSR), mutation frequency (5' Ig Sμ), and genomic uracil in clones representing seven Ung genotypes. We show that the UNG:RPA interaction plays a crucial role in both CSR and repair of AID-induced uracil at the Ig loci. By contrast, the interaction had no significant impact on total genomic uracil levels. Thus, RPA coordinates UNG during CSR and pre-replicative repair of mutagenic uracil in ssDNA but is not essential in post-replicative and canonical BER of uracil in dsDNA.
Collapse
Affiliation(s)
- Abdul B Hayran
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Nina B Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Per A Aas
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Anna Kusnierczyk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- PROMEC - Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Cathrine B Vågbø
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- PROMEC - Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Cancer Clinic, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Konika Chawla
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- BioCore - Bioinformatics Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Astrid Zahn
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 Av des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Département of Médicine, Université de Montréal H3C 3J7 Montréal, Québec, Canada
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- PROMEC - Proteomics and Modomics Experimental Core Facility at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| |
Collapse
|
3
|
Kavli B, Iveland TS, Buchinger E, Hagen L, Liabakk NB, Aas PA, Obermann TS, Aachmann FL, Slupphaug G. RPA2 winged-helix domain facilitates UNG-mediated removal of uracil from ssDNA; implications for repair of mutagenic uracil at the replication fork. Nucleic Acids Res 2021; 49:3948-3966. [PMID: 33784377 PMCID: PMC8053108 DOI: 10.1093/nar/gkab195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 01/14/2023] Open
Abstract
Uracil occurs at replication forks via misincorporation of deoxyuridine monophosphate (dUMP) or via deamination of existing cytosines, which occurs 2-3 orders of magnitude faster in ssDNA than in dsDNA and is 100% miscoding. Tethering of UNG2 to proliferating cell nuclear antigen (PCNA) allows rapid post-replicative removal of misincorporated uracil, but potential 'pre-replicative' removal of deaminated cytosines in ssDNA has been questioned since this could mediate mutagenic translesion synthesis and induction of double-strand breaks. Here, we demonstrate that uracil-DNA glycosylase (UNG), but not SMUG1 efficiently excises uracil from replication protein A (RPA)-coated ssDNA and that this depends on functional interaction between the flexible winged-helix (WH) domain of RPA2 and the N-terminal RPA-binding helix in UNG. This functional interaction is promoted by mono-ubiquitination and diminished by cell-cycle regulated phosphorylations on UNG. Six other human proteins bind the RPA2-WH domain, all of which are involved in DNA repair and replication fork remodelling. Based on this and the recent discovery of the AP site crosslinking protein HMCES, we propose an integrated model in which templated repair of uracil and potentially other mutagenic base lesions in ssDNA at the replication fork, is orchestrated by RPA. The UNG:RPA2-WH interaction may also play a role in adaptive immunity by promoting efficient excision of AID-induced uracils in transcribed immunoglobulin loci.
Collapse
Affiliation(s)
- Bodil Kavli
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Iveland
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Cancer Clinic, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Edith Buchinger
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Lars Hagen
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Nina B Liabakk
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Per A Aas
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Tobias S Obermann
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway
| | - Finn L Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7034 Trondheim, Norway
| | - Geir Slupphaug
- Department of Clinical and Molecular Medicine, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.,Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.,PROMEC Proteomics and Modomics Experimental Core at NTNU and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| |
Collapse
|
4
|
Elsakrmy N, Zhang-Akiyama QM, Ramotar D. The Base Excision Repair Pathway in the Nematode Caenorhabditis elegans. Front Cell Dev Biol 2020; 8:598860. [PMID: 33344454 PMCID: PMC7744777 DOI: 10.3389/fcell.2020.598860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Exogenous and endogenous damage to the DNA is inevitable. Several DNA repair pathways including base excision, nucleotide excision, mismatch, homologous and non-homologous recombinations are conserved across all organisms to faithfully maintain the integrity of the genome. The base excision repair (BER) pathway functions to repair single-base DNA lesions and during the process creates the premutagenic apurinic/apyrimidinic (AP) sites. In this review, we discuss the components of the BER pathway in the nematode Caenorhabditis elegans and delineate the different phenotypes caused by the deletion or the knockdown of the respective DNA repair gene, as well as the implications. To date, two DNA glycosylases have been identified in C. elegans, the monofunctional uracil DNA glycosylase-1 (UNG-1) and the bifunctional endonuclease III-1 (NTH-1) with associated AP lyase activity. In addition, the animal possesses two AP endonucleases belonging to the exonuclease-3 and endonuclease IV families and in C. elegans these enzymes are called EXO-3 and APN-1, respectively. In mammalian cells, the DNA polymerase, Pol beta, that is required to reinsert the correct bases for DNA repair synthesis is not found in the genome of C. elegans and the evidence indicates that this role could be substituted by DNA polymerase theta (POLQ), which is known to perform a function in the microhomology-mediated end-joining pathway in human cells. The phenotypes observed by the C. elegans mutant strains of the BER pathway raised many challenging questions including the possibility that the DNA glycosylases may have broader functional roles, as discuss in this review.
Collapse
Affiliation(s)
- Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| |
Collapse
|
5
|
Abstract
Human deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), essential for DNA integrity, acts as a survival factor for tumor cells and is a target for cancer chemotherapy. Here we report that the Staphylococcal repressor protein StlSaPIBov1 (Stl) forms strong complex with human dUTPase. Functional analysis reveals that this interaction results in significant reduction of both dUTPase enzymatic activity and DNA binding capability of Stl. We conducted structural studies to understand the mechanism of this mutual inhibition. Small-angle X-ray scattering (SAXS) complemented with hydrogen-deuterium exchange mass spectrometry (HDX-MS) data allowed us to obtain 3D structural models comprising a trimeric dUTPase complexed with separate Stl monomers. These models thus reveal that upon dUTPase-Stl complex formation the functional homodimer of Stl repressor dissociates, which abolishes the DNA binding ability of the protein. Active site forming dUTPase segments were directly identified to be involved in the dUTPase-Stl interaction by HDX-MS, explaining the loss of dUTPase activity upon complexation. Our results provide key novel structural insights that pave the way for further applications of the first potent proteinaceous inhibitor of human dUTPase.
Collapse
|
6
|
Li J, Chen R, Yang Y, Zhang Z, Fang GC, Xie W, Cao W. An unconventional family 1 uracil DNA glycosylase in Nitratifractor salsuginis. FEBS J 2017; 284:4017-4034. [PMID: 28977725 DOI: 10.1111/febs.14285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/10/2017] [Accepted: 09/29/2017] [Indexed: 11/30/2022]
Abstract
The uracil DNA glycosylase superfamily consists of at least six families with a diverse specificity toward DNA base damage. Family 1 uracil N-glycosylase (UNG) exhibits exclusive specificity on uracil-containing DNA. Here, we report a family 1 UNG homolog from Nitratifractor salsuginis with distinct biochemical features that differentiate it from conventional family 1 UNGs. Globally, the crystal structure of N. salsuginisUNG shows a few additional secondary structural elements. Biochemical and enzyme kinetic analysis, coupled with structural determination, molecular modeling, and molecular dynamics simulations, shows that N. salsuginisUNG contains a salt bridge network that plays an important role in DNA backbone interactions. Disruption of the amino acid residues involved in the salt bridges greatly impedes the enzymatic activity. A tyrosine residue in motif 1 (GQDPY) is one of the distinct sequence features setting family 1 UNG apart from other families. The crystal structure of Y81G mutant indicates that several subtle changes may account for its inactivity. Unlike the conventional family 1 UNG enzymes, N. salsuginisUNG is not inhibited by Ugi, a potent inhibitor specific for family 1 UNG. This study underscores the diversity of paths that a uracil DNA glycosylase may take to acquire its unique structural and biochemical properties during evolution. DATABASE Structure data are available in the PDB under accession numbers 5X3G and 5X3H.
Collapse
Affiliation(s)
- Jing Li
- Department of Genetics and Biochemistry, Clemson University, SC, USA
| | - Ran Chen
- State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ye Yang
- Department of Genetics and Biochemistry, Clemson University, SC, USA
| | - Zhemin Zhang
- State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guang-Chen Fang
- Department of Genetics and Biochemistry, Clemson University, SC, USA
| | - Wei Xie
- State Key Laboratory for Biocontrol, School of Life Sciences, The Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, SC, USA
| |
Collapse
|
7
|
Processive DNA demethylation via DNA deaminase-induced lesion resolution. PLoS One 2014; 9:e97754. [PMID: 25025377 PMCID: PMC4098905 DOI: 10.1371/journal.pone.0097754] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/23/2014] [Indexed: 12/13/2022] Open
Abstract
Base modifications of cytosine are an important aspect of chromatin biology, as they can directly regulate gene expression, while DNA repair ensures that those modifications retain genome integrity. Here we characterize how cytosine DNA deaminase AID can initiate DNA demethylation. In vitro, AID initiated targeted DNA demethylation of methyl CpGs when in combination with DNA repair competent extracts. Mechanistically, this is achieved by inducing base alterations at or near methyl-cytosine, with the lesion being resolved either via single base substitution or a more efficient processive polymerase dependent repair. The biochemical findings are recapitulated in an in vivo transgenic targeting assay, and provide the genetic support of the molecular insight into DNA demethylation. This targeting approach supports the hypothesis that mCpG DNA demethylation can proceed via various pathways and mCpGs do not have to be targeted to be demethylated.
Collapse
|
8
|
Franchini DM, Incorvaia E, Rangam G, Coker HA, Petersen-Mahrt SK. Simultaneous in vitro characterisation of DNA deaminase function and associated DNA repair pathways. PLoS One 2013; 8:e82097. [PMID: 24349193 PMCID: PMC3857227 DOI: 10.1371/journal.pone.0082097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/25/2013] [Indexed: 02/02/2023] Open
Abstract
During immunoglobulin (Ig) diversification, activation-induced deaminase (AID) initiates somatic hypermutation and class switch recombination by catalysing the conversion of cytosine to uracil. The synergy between AID and DNA repair pathways is fundamental for the introduction of mutations, however the molecular and biochemical mechanisms underlying this process are not fully elucidated. We describe a novel method to efficiently decipher the composition and activity of DNA repair pathways that are activated by AID-induced lesions. The in vitro resolution (IVR) assay combines AID based deamination and DNA repair activities from a cellular milieu in a single assay, thus avoiding synthetically created DNA-lesions or genetic-based readouts. Recombinant GAL4-AID fusion protein is targeted to a plasmid containing GAL4 binding sites, allowing for controlled cytosine deamination within a substrate plasmid. Subsequently, the Xenopus laevis egg extract provides a source of DNA repair proteins and functional repair pathways. Our results demonstrated that DNA repair pathways which are in vitro activated by AID-induced lesions are reminiscent of those found during AID-induced in vivo Ig diversification. The comparative ease of manipulation of this in vitro systems provides a new approach to dissect the complex DNA repair pathways acting on defined physiologically lesions, can be adapted to use with other DNA damaging proteins (e.g. APOBECs), and provide a means to develop and characterise pharmacological agents to inhibit these potentially oncogenic processes.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
| | - Elisabetta Incorvaia
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Gopinath Rangam
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
| | - Heather A. Coker
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
| | - Svend K. Petersen-Mahrt
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
- DNA Editing Lab, Clare Hall Laboratories, London Research Institute, South Mimms, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Abstract
During the course of evolution, viruses have learned to take advantage of the natural resources of their hosts for their own benefit. Due to their small dimension and limited size of genomes, bacteriophages have optimized the exploitation of bacterial host factors to increase the efficiency of DNA replication and hence to produce vast progeny. The Bacillus subtilis phage φ29 genome consists of a linear double-stranded DNA molecule that is duplicated by means of a protein-primed mode of DNA replication. Its genome has been shown to be topologically constrained at the size of the bacterial nucleoid and, as to avoid generation of positive supercoiling ahead of the replication forks, the bacterial DNA gyrase is used by the phage. In addition, the B. subtilis actin-like MreB cytoskeleton plays a crucial role in the organization of φ29 DNA replication machinery in peripheral helix-like structures. Thus, in the absence of an intact MreB cytoskeleton, φ29 DNA replication is severely impaired. Importantly, MreB interacts directly with the phage membrane protein p16.7, responsible for attaching φ29 DNA at the cell membrane. Moreover, the φ29-encoded protein p56 inhibits host uracil-DNA glycosylase activity and has been proposed to be a defense mechanism developed by the phage to prevent the action of the base excision repair pathway if uracil residues arise in replicative intermediates. All of them constitute incoming examples on how viruses have profited from the cellular machinery of their hosts.
Collapse
|
10
|
Uracil DNA glycosylase initiates degradation of HIV-1 cDNA containing misincorporated dUTP and prevents viral integration. Proc Natl Acad Sci U S A 2013; 110:E448-57. [PMID: 23341616 DOI: 10.1073/pnas.1219702110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1 reverse transcriptase discriminates poorly between dUTP and dTTP, and accordingly, viral DNA products become heavily uracilated when viruses infect host cells that contain high ratios of dUTP:dTTP. Uracilation of invading retroviral DNA is thought to be an innate immunity barrier to retroviral infection, but the mechanistic features of this immune pathway and the cellular fate of uracilated retroviral DNA products is not known. Here we developed a model system in which the cellular dUTP:dTTP ratio can be pharmacologically increased to favor dUTP incorporation, allowing dissection of this innate immunity pathway. When the virus-infected cells contained elevated dUTP levels, reverse transcription was found to proceed unperturbed, but integration and viral protein expression were largely blocked. Furthermore, successfully integrated proviruses lacked detectable uracil, suggesting that only nonuracilated viral DNA products were integration competent. Integration of the uracilated proviruses was restored using an isogenic cell line that had no detectable human uracil DNA glycosylase (hUNG2) activity, establishing that hUNG2 is a host restriction factor in cells that contain high dUTP. Biochemical studies in primary cells established that this immune pathway is not operative in CD4+ T cells, because these cells have high dUTPase activity (low dUTP), and only modest levels of hUNG activity. Although monocyte-derived macrophages have high dUTP levels, these cells have low hUNG activity, which may diminish the effectiveness of this restriction pathway. These findings establish the essential elements of this pathway and reconcile diverse observations in the literature.
Collapse
|
11
|
Krokan HE. A life in DNA repair—And beyond. DNA Repair (Amst) 2012; 11:224-35. [DOI: 10.1016/j.dnarep.2011.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Yonekura SI, Nakamura N, Yonei S, Zhang-Akiyama QM. Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. JOURNAL OF RADIATION RESEARCH 2009; 50:19-26. [PMID: 18987436 DOI: 10.1269/jrr.08080] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Base moieties in DNA are spontaneously threatened by naturally occurring chemical reactions such as deamination, hydrolysis and oxidation. These DNA modifications have been considered to be major causes of cell death, mutations and cancer induction in organisms. Organisms have developed the DNA base excision repair pathway as a defense mechanism to protect them from these threats. DNA glycosylases, the key enzyme in the base excision repair pathway, are highly conserved in evolution. Uracil constantly occurs in DNA. Uracil in DNA arises by spontaneous deamination of cytosine to generate pro-mutagenic U:G mispairs. Uracil in DNA is also produced by the incorporation of dUMP during DNA replication. Uracil-DNA glycosylase (UNG) acts as a major repair enzyme that protects DNA from the deleterious consequences of uracil. The first UNG activity was discovered in E. coli in 1974. This was also the first discovery of base excision repair. The sequence encoded by the ung gene demonstrates that the E. coli UNG is highly conserved in viruses, bacteria, archaea, yeast, mice and humans. In this review, we will focus on central and recent findings on the generation, biological consequences and repair mechanisms of uracil in DNA and on the biological significance of uracil-DNA glycosylase.
Collapse
Affiliation(s)
- Shin-Ichiro Yonekura
- Department of Biological Sciences, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
13
|
Serrano-Heras G, Ruiz-Masó JA, del Solar G, Espinosa M, Bravo A, Salas M. Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res 2007; 35:5393-401. [PMID: 17698500 PMCID: PMC2018632 DOI: 10.1093/nar/gkm584] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein p56 (56 amino acids) from the Bacillus subtilis phage ϕ29 inactivates the host uracil-DNA glycosylase (UDG), an enzyme involved in the base excision repair pathway. At present, p56 is the only known example of a UDG inhibitor encoded by a non-uracil containing viral DNA. Using analytical ultracentrifugation methods, we found that protein p56 formed dimers at physiological concentrations. In addition, circular dichroism spectroscopic analyses revealed that protein p56 had a high content of β-strands (around 40%). To understand the mechanism underlying UDG inhibition by p56, we carried out in vitro experiments using the Escherichia coli UDG enzyme. The highly acidic protein p56 was able to compete with DNA for binding to UDG. Moreover, the interaction between p56 and UDG blocked DNA binding by UDG. We also demonstrated that Ugi, a protein that interacts with the DNA-binding domain of UDG, was able to replace protein p56 previously bound to the UDG enzyme. These results suggest that protein p56 could be a novel naturally occurring DNA mimicry.
Collapse
Affiliation(s)
- Gemma Serrano-Heras
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - José A. Ruiz-Masó
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Gloria del Solar
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Espinosa
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Bravo
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Margarita Salas
- Instituto de Biología Molecular ‘Eladio Viñuela’ (CSIC), Centro de Biología Molecular ‘Severo Ochoa’ (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid and Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- *To whom correspondence should be addressed. +34 91 497 8435+34 91 497 8490
| |
Collapse
|
14
|
Géoui T, Buisson M, Tarbouriech N, Burmeister WP. New insights on the role of the gamma-herpesvirus uracil-DNA glycosylase leucine loop revealed by the structure of the Epstein-Barr virus enzyme in complex with an inhibitor protein. J Mol Biol 2006; 366:117-31. [PMID: 17157317 DOI: 10.1016/j.jmb.2006.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 10/31/2006] [Accepted: 11/02/2006] [Indexed: 11/23/2022]
Abstract
Epstein-Barr virus (EBV) is a human gamma-herpesvirus. Within its 86 open reading frame containing genome, two enzymes avoiding uracil incorporation into DNA can be found: uracil triphosphate hydrolase and uracil-DNA glycosylase (UNG). The latter one excises uracil bases that are due to cytosine deamination or uracil misincorporation from double-stranded DNA substrates. The EBV enzyme belongs to family 1 UNGs. We solved the three-dimensional structure of EBV UNG in complex with the uracil-DNA glycosylase inhibitor protein (Ugi) from bacteriophage PBS-2 at a resolution of 2.3 A by X-ray crystallography. The structure of EBV UNG encoded by the BKRF3 reading frame shows the excellent global structural conservation within the solved examples of family 1 enzymes. Four out of the five catalytic motifs are completely conserved, whereas the fifth one, the leucine loop, carries a seven residue insertion. Despite this insertion, catalytic constants of EBV UNG are similar to those of other UNGs. Modelling of the EBV UNG-DNA complex shows that the longer leucine loop still contacts DNA and is likely to fulfil its role of DNA binding and deformation differently than the enzymes with previously solved structures. We could show that despite the evolutionary distance of EBV UNG from the natural host protein, bacteriophage Ugi binds with an inhibitory constant of 8 nM to UNG. This is due to an excellent specificity of Ugi for conserved elements of UNG, four of them corresponding to catalytic motifs and a fifth one corresponding to an important beta-turn structuring the catalytic site.
Collapse
Affiliation(s)
- Thibault Géoui
- Institut de Virologie Moléculaire et Structurale, FRE 2854 CNRS-UJF, BP 181, F-38042 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
15
|
Serrano-Heras G, Salas M, Bravo A. A uracil-DNA glycosylase inhibitor encoded by a non-uracil containing viral DNA. J Biol Chem 2006; 281:7068-74. [PMID: 16421108 DOI: 10.1074/jbc.m511152200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uracil-DNA glycosylase (UDG) is an enzyme involved in the base excision repair pathway. It specifically removes uracil from both single-stranded and double-stranded DNA. The genome of the Bacillus subtilis phage 29 is a linear double-stranded DNA with a terminal protein covalently linked at each 5'-end. Replication of 29 DNA starts by a protein-priming mechanism and generates intermediates that have long stretches of single-stranded DNA. By using in vivo chemical cross-linking and affinity chromatography techniques, we found that UDG is a cellular target for the early viral protein p56. Addition of purified protein p56 to B. subtilis extracts inhibited the endogenous UDG activity. Moreover, extracts from 29-infected cells were deficient in UDG activity. We suggested that inhibition of the cellular UDG is a defense mechanism developed by 29 to prevent the action of the base excision repair pathway if uracil residues arise in their replicative intermediates. Protein p56 is the first example of a UDG inhibitor encoded by a non-uracil-containing viral DNA.
Collapse
Affiliation(s)
- Gemma Serrano-Heras
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
16
|
Abstract
The discoveries of DNA mimicry by proteins inspired by Ugi experiments led by Dale Mosbaugh and his colleagues have sparked dramatic insights for our understanding of DNA and protein interactions. Currently only a small number protein mimics of DNA are known or suspected, including Ugi, HI1450, Ocr, TAF1, MfpA, and Dinl. These proteins are structurally diverse, but together they share common themes we define here. These mimics tend to resemble distorted rather than normal B-DNA, possibly to prevent cross-reactions with other DNA metabolizing proteins that should not be inhibited. Side-chain carboxylates of glutamates and aspartates functionally replace phosphates and thereby generate an overall charge pattern resembling the DNA phosphate backbone. Most protein mimics of DNA have strikingly hydrophobic cores that likely stabilize the protein fold despite substantial charge localization and a relatively small internal volume enforced by the restrictions from DNA size. These common characteristics for protein mimicry of DNA should prove useful for future identifications of DNA mimics, which seem likely to be found in bacteriophages, conjugative plasmids, eukaryotic viruses, and transcription machinery. We also suggest approaches to the design of novel DNA mimics to inhibit specific pathways and could be important for basic science applications and for use as therapeutic agents. Moreover, mimicry in general is of critical importance in that it provides an elegant mechanism by which interfaces can be reused to force sequential rather than simultaneous complex formations such as seen in systems involving polar protein assemblies and DNA repair machinery.
Collapse
Affiliation(s)
- Christopher D Putnam
- Ludwig Institute for Cancer Research, Department of Medicine, University of California, San Diego School of Medicine, La Jolla, 92093-0669, USA
| | | |
Collapse
|
17
|
Peña-Diaz J, Akbari M, Sundheim O, Farez-Vidal ME, Andersen S, Sneve R, Gonzalez-Pacanowska D, Krokan HE, Slupphaug G. Trypanosoma cruzi contains a single detectable uracil-DNA glycosylase and repairs uracil exclusively via short patch base excision repair. J Mol Biol 2004; 342:787-99. [PMID: 15342237 DOI: 10.1016/j.jmb.2004.07.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 07/08/2004] [Accepted: 07/12/2004] [Indexed: 11/23/2022]
Abstract
Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.
Collapse
Affiliation(s)
- Javier Peña-Diaz
- Instituto de Parasitologia y Biomedicina "Lopez Neyra", Consejo Superior de Investigaciones Cientificas, C/Ventanilla 11, 18001 Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kruman II, Schwartz E, Kruman Y, Cutler RG, Zhu X, Greig NH, Mattson MP. Suppression of uracil-DNA glycosylase induces neuronal apoptosis. J Biol Chem 2004; 279:43952-60. [PMID: 15297456 DOI: 10.1074/jbc.m408025200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A chronic imbalance in DNA precursors, caused by one-carbon metabolism impairment, can result in a deficiency of DNA repair and increased DNA damage. Although indirect evidence suggests that DNA damage plays a role in neuronal apoptosis and in the pathogenesis of neurodegenerative disorders, the underlying mechanisms are poorly understood. In particular, very little is known about the role of base excision repair of misincorporated uracil in neuronal survival. To test the hypothesis that repair of DNA damage associated with uracil misincorporation is critical for neuronal survival, we employed an antisense (AS) oligonucleotide directed against uracil-DNA glycosylase encoded by the UNG gene to deplete UNG in cultured rat hippocampal neurons. AS, but not a scrambled control oligonucleotide, induced apoptosis, which was associated with DNA damage analyzed by comet assay and up-regulation of p53. UNG mRNA and protein levels were decreased within 30 min and were undetectable within 6-9 h of exposure to the UNG AS oligonucleotide. Whereas UNG expression is significantly higher in proliferating as compared with nonproliferating cells, such as neurons, the levels of UNG mRNA were increased in brains of cystathionine beta-synthase knockout mice, a model for hyperhomocysteinemia, suggesting that one-carbon metabolism impairment and uracil misincorporation can induce the up-regulation of UNG expression.
Collapse
Affiliation(s)
- Inna I Kruman
- Sun Health Research Institute, Sun City, Arizona 85351, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Di Noia J, Neuberger MS. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 2002; 419:43-8. [PMID: 12214226 DOI: 10.1038/nature00981] [Citation(s) in RCA: 415] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A functional immune system depends on the production of a wide range of immunoglobulin molecules. Immunoglobulin variable region (IgV) genes are diversified after gene rearrangement by hypermutation. In the DNA deamination model, we have proposed that deamination of dC residues to dU by activation-induced deaminase (AID) triggers this diversification. In hypermutating chicken DT40 B cells, most IgV mutations are dC --> dG/dA or dG --> dC/dT transversions, which are proposed to result from replication over sites of base loss produced by the excision activity of uracil-DNA glycosylase. Blocking the activity of uracil-DNA glycosylase should instead lead to replication over the dU lesion, resulting in dC --> dT (and dG --> dA) transitions. Here we show that expression in DT40 cells of a bacteriophage-encoded protein that inhibits uracil-DNA glycosylase shifts the pattern of IgV gene mutations from transversion dominance to transition dominance. This is good evidence that antibody diversification involves dC --> dU deamination within the immunoglobulin locus itself.
Collapse
Affiliation(s)
- Javier Di Noia
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | |
Collapse
|
20
|
Putnam CD, Shroyer MJ, Lundquist AJ, Mol CD, Arvai AS, Mosbaugh DW, Tainer JA. Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol 1999; 287:331-46. [PMID: 10080896 DOI: 10.1006/jmbi.1999.2605] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uracil-DNA glycosylase (UDG), which is a critical enzyme in DNA base-excision repair that recognizes and removes uracil from DNA, is specifically and irreversably inhibited by the thermostable uracil-DNA glycosylase inhibitor protein (Ugi). A paradox for the highly specific Ugi inhibition of UDG is how Ugi can successfully mimic DNA backbone interactions for UDG without resulting in significant cross-reactivity with numerous other enzymes that possess DNA backbone binding affinity. High-resolution X-ray crystal structures of Ugi both free and in complex with wild-type and the functionally defective His187Asp mutant Escherichia coli UDGs reveal the detailed molecular basis for duplex DNA backbone mimicry by Ugi. The overall shape and charge distribution of Ugi most closely resembles a midpoint in a trajectory between B-form DNA and the kinked DNA observed in UDG:DNA product complexes. Thus, Ugi targets the mechanism of uracil flipping by UDG and appears to be a transition-state mimic for UDG-flipping of uracil nucleotides from DNA. Essentially all the exquisite shape, electrostatic and hydrophobic complementarity for the high-affinity UDG-Ugi interaction is pre-existing, except for a key flip of the Ugi Gln19 carbonyl group and Glu20 side-chain, which is triggered by the formation of the complex. Conformational changes between unbound Ugi and Ugi complexed with UDG involve the beta-zipper structural motif, which we have named for the reversible pairing observed between intramolecular beta-strands. A similar beta-zipper is observed in the conversion between the open and closed forms of UDG. The combination of extremely high levels of pre-existing structural complementarity to DNA binding features specific to UDG with key local conformational changes in Ugi resolves the UDG-Ugi paradox and suggests a potentially general structural solution to the formation of very high affinity DNA enzyme-inhibitor complexes that avoid cross- reactivity.
Collapse
Affiliation(s)
- C D Putnam
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Reddy SM, Williams M, Cohen JI. Expression of a uracil DNA glycosylase (UNG) inhibitor in mammalian cells: varicella-zoster virus can replicate in vitro in the absence of detectable UNG activity. Virology 1998; 251:393-401. [PMID: 9837803 DOI: 10.1006/viro.1998.9428] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Uracil DNA glycosylase (UNG) functions as a DNA repair or proofreading enzyme. The UNG gene is present in nearly all prokaryotes and eukaryotes screened to date and is found in herpesviruses and poxviruses. Prior studies showed that viral UNG is essential for poxvirus replication. Although viral UNG is not required for herpesvirus replication, cellular UNG was thought to be essential for virus replication. To study the role of UNG in herpesvirus replication, we first showed that varicella-zoster virus (VZV) ORF59 encodes a functional UNG. We then constructed a VZV mutant with a deletion in the UNG gene and showed that the mutant was unimpaired for replication in vitro. Because cultured cells express their own endogenous UNG, we next inserted a bacteriophage UNG inhibitor UGI gene into the VZV genome. Infection of cells with VZV lacking viral UNG and expressing UGI completely abrogated detectable cellular UNG activity in vitro. Parental VZV, VZV lacking viral UNG, and VZV expressing UGI all grew to similar titers in cell culture, indicating that VZV can replicate in vitro in the absence of detectable viral or cellular UNG activity.
Collapse
Affiliation(s)
- S M Reddy
- Laboratory of Clinical Investigation, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | | | | |
Collapse
|
22
|
Muller-Weeks S, Mastran B, Caradonna S. The nuclear isoform of the highly conserved human uracil-DNA glycosylase is an Mr 36,000 phosphoprotein. J Biol Chem 1998; 273:21909-17. [PMID: 9705330 DOI: 10.1074/jbc.273.34.21909] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that human cells contain multiple forms of uracil-DNA glycosylase (Caradonna, S. J., Ladner, R., Hansbury, M., Kosciuk, M., Lynch, F., and Muller, S. J. (1996) Exp. Cell Res. 222, 345-359). One of these is an Mr 29,000 processed form of the highly conserved uracil-DNA glycosylase (UDG1) located in the mitochondria. The others are located in the nucleus and migrate as a group of at least three distinct bands within the 35,000-37,000 molecular weight range. In this report, we perform a detailed characterization of the Mr 35,000-37,000 purified proteins. To accomplish this, uracil-DNA glycosylases were affinity purified from HeLa cell nuclear extracts. The proteins were separated by SDS-PAGE, and their identities were verified by renaturation and activity assays. The three protein bands were individually digested with cyanogen bromide, and the resulting peptide fragments were analyzed by direct amino acid sequencing. Peptide sequence, derived from each band, was identical and corresponded to a recently identified isoform of UDG1. This isoform (UDG1A) has a unique 44-amino acid N-terminal region and a C-terminal region that is identical to UDG1. To begin to study the signals required for nuclear targeting, the N-terminal regions of UDG1 and UDG1A were isolated and cloned into pEGFP-N2 to generate fusions with a red-shifted variant of green fluorescent protein (GFP). When these constructs were transfected into NIH3T3 cells, UDG1/pEGFP was targeted to the mitochondria, and UDG1A/pEGFP was targeted to the nucleus. Further studies, using deletion mutants, demonstrate that the nuclear localization signal resides within the first 20 amino acids of UDG1A. To investigate the possibility that the heterogeneity observed on SDS-PAGE results from post-translational modification(s), the UDG/pEGFP fusion constructs were transfected into NIH3T3 cells, and the cells were metabolically labeled with [32P]orthophosphate. Results from these experiments show that UDG1A is a phosphoprotein. Subsequent phosphoamino acid analysis revealed that UDG1A is phosphorylated on both serine and threonine residues. As a final characterization, RNase protection assays were performed to examine expression of each of these isoforms. These studies demonstrate that UDG1A is expressed in a wide variety of cell types and that message levels are elevated in transformed cells.
Collapse
Affiliation(s)
- S Muller-Weeks
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey, School of Osteopathic Medicine, Stratford, New Jersey 08084, USA.
| | | | | |
Collapse
|
23
|
Abstract
The time course of removal of thymine by thymine DNA glycosylase has been measured in vitro. Each molecule of thymine DNA glycosylase removes only one molecule of thymine from DNA containing a G.T mismatch because it binds tightly to the apurinic DNA site left after removal of thymine. The 5'-flanking base pair to G.T mismatches influences the rate of removal of thymine: kcat values with C.G, T.A, G.C, and A.T as the 5'-base pair were 0.91, 0.023, 0. 0046, and 0.0013 min-1, respectively. Thymine DNA glycosylase can also remove thymine from mismatches with S6-methylthioguanine, but, unlike G.T mismatches, a 5'-C.G does not have a striking effect on the rate: kcat values for removal of thymine from SMeG.T with C.G, T. A, G.C, and A.T as the 5'-base pair were 0.026, 0.018, 0.0017, and 0. 0010 min-1, respectively. Thymine removal is fastest when it is from a G.T mismatch with a 5'-flanking C.G pair, suggesting that the rapid reaction of this substrate involves contacts between the enzyme and oxygen 6 or the N-1 hydrogen of the mismatched guanine as well as the 5'-flanking C.G pair. Disrupting either of these sets of contacts (i.e. replacing the 5'-flanking C.G base pair with a T.A or replacing the G.T mismatch with SMeG.T) has essentially the same effect on rate as disrupting both sets (i.e. replacing CpG.T with TpSMeG.T), and so these contacts are probably cooperative. The glycosylase removes uracil from G.U, C.U, and T.U base pairs faster than it removes thymine from G.T. It can even remove uracil from A.U base pairs, although at a very much lower rate. Thus, thymine DNA glycosylase may play a backup role to the more efficient general uracil DNA glycosylase.
Collapse
Affiliation(s)
- T R Waters
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | | |
Collapse
|
24
|
Lundquist AJ, Beger RD, Bennett SE, Bolton PH, Mosbaugh DW. Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem 1997; 272:21408-19. [PMID: 9261156 DOI: 10.1074/jbc.272.34.21408] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacteriophage PBS2 uracil-DNA glycosylase inhibitor (Ugi) protein inactivates uracil-DNA glycosylase (Ung) by acting as a DNA mimic to bind Ung in an irreversible complex. Seven mutant Ugi proteins (E20I, E27A, E28L, E30L, E31L, D61G, and E78V) were created to assess the role of various negatively charged residues in the binding mechanism. Each mutant Ugi protein was purified and characterized with respect to inhibitor activity and Ung binding properties relative to the wild type Ugi. Analysis of the Ugi protein solution structures by nuclear magnetic resonance indicated that the mutant Ugi proteins were folded into the same general conformation as wild type Ugi. All seven of the Ugi proteins were capable of forming a Ung.Ugi complex but varied considerably in their individual ability to inhibit Ung activity. Like the wild type Ugi, five of the mutants formed an irreversible complex with Ung; however, the binding of Ugi E20I and E28L to Ung was shown to be reversible. The tertiary structure of [13C,15N]Ugi in complex with Ung was determined by solution state multi-dimensional nuclear magnetic resonance and compared with the unbound Ugi structure. Structural and functional analysis of these proteins have elucidated the two-step mechanism involved in Ung.Ugi association and irreversible complex formation.
Collapse
Affiliation(s)
- A J Lundquist
- Department of Agricultural Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
25
|
Radany EH, Malanoski G, Ambulos NP, Friedberg EC, Yasbin RE. Transfection enhancement in Bacillus subtilis displays features of a novel DNA repair pathway. I: DNA base and nucleolytic specificity. Mutat Res 1997; 384:107-20. [PMID: 9298119 DOI: 10.1016/s0921-8777(97)00019-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cells of Bacillus subtilis can enter a natural physiological state, termed competence, that is permissive for uptake of DNA from the surrounding medium. In the B. subtilis genetic system, transfection refers to uptake of isolated bacteriophage DNA by competent host cells, followed by intracellular processing that may ultimately lead to productive infection. Previous investigations have shown that transfecting DNA is usually far less infectious (on a molar basis) than is the DNA injected by phage particles; this result is apparently due to inactivating events suffered by transfecting DNA during its metabolism by competent cells. Earlier studies also demonstrated that, in some cases, the infectivity of transfecting DNA can be increased by ultraviolet (UV) irradiation of the competent cells prior to transfection, or by cotransfection of UV-irradiated heterologous DNAs; collectively, these phenomena have been termed transfection enhancement (TE). We propose here that some transfecting B. subtilis phage DNAs are attacked by a novel host DNA repair system, and that TE reflects inhibition of this by a competing substrate in UV-irradiated DNA. In support of this model, we show that UV-DNA cotransfection leads to a reduced rate of intracellular endonucleolytic breakdown of transfecting DNA. We also demonstrate that TE displays marked specificity of a kind frequently observed for repair enzymes. Thus, phages that contain hydroxymethyl uracil (HMU), but not thymine, in their genomes are susceptible to this process. In addition, we show that the photoproduct(s) in UV-irradiated DNA that produces TE by cotransfection is specific, and is not uracil, a pyrimidine dimer, thymine glycol, HMU, or a substrate for the E. coli thymine glycol DNA N-glycosylase. This photoproduct is derivable from thymine or HMU. The implications of these results are discussed.
Collapse
Affiliation(s)
- E H Radany
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor 48109-0582, USA.
| | | | | | | | | |
Collapse
|
26
|
Abstract
A wide range of cytotoxic and mutagenic DNA bases are removed by different DNA glycosylases, which initiate the base excision repair pathway. DNA glycosylases cleave the N-glycosylic bond between the target base and deoxyribose, thus releasing a free base and leaving an apurinic/apyrimidinic (AP) site. In addition, several DNA glycosylases are bifunctional, since they also display a lyase activity that cleaves the phosphodiester backbone 3' to the AP site generated by the glycosylase activity. Structural data and sequence comparisons have identified common features among many of the DNA glycosylases. Their active sites have a structure that can only bind extrahelical target bases, as observed in the crystal structure of human uracil-DNA glycosylase in a complex with double-stranded DNA. Nucleotide flipping is apparently actively facilitated by the enzyme. With bacteriophage T4 endonuclease V, a pyrimidine-dimer glycosylase, the enzyme gains access to the target base by flipping out an adenine opposite to the dimer. A conserved helix-hairpin-helix motif and an invariant Asp residue are found in the active sites of more than 20 monofunctional and bifunctional DNA glycosylases. In bifunctional DNA glycosylases, the conserved Asp is thought to deprotonate a conserved Lys, forming an amine nucleophile. The nucleophile forms a covalent intermediate (Schiff base) with the deoxyribose anomeric carbon and expels the base. Deoxyribose subsequently undergoes several transformations, resulting in strand cleavage and regeneration of the free enzyme. The catalytic mechanism of monofunctional glycosylases does not involve covalent intermediates. Instead the conserved Asp residue may activate a water molecule which acts as the attacking nucleophile.
Collapse
Affiliation(s)
- H E Krokan
- UNIGEN Center for Molecular Biology, The Medical Faculty, Norwegian University of Science and Technology, N-7005 Trondheim, Norway
| | | | | |
Collapse
|
27
|
Abstract
Our genetic information is constantly challenged by exposure to endogenous and exogenous DNA-damaging agents, by DNA polymerase errors, and thereby inherent instability of the DNA molecule itself. The integrity of our genetic information is maintained by numerous DNA repair pathways, and the importance of these pathways is underscored by their remarkable structural and functional conservation across the evolutionary spectrum. Because of the highly conserved nature of DNA repair, the enzymes involved in this crucial function are often able to function in heterologous cells; as an example, the E. coli Ada DNA repair methyltransferase functions efficiently in yeast, in cultured rodent and human cells, in transgenic mice, and in ex vivo-modified mouse bone marrow cells. The heterologous expression of DNA repair functions has not only been used as a powerful cloning strategy, but also for the exploration of the biological and biochemical features of numerous enzymes involved in DNA repair pathways. In this review we highlight examples where the expression of DNA repair enzymes in heterologous cells was used to address fundamental questions about DNA repair processes in many different organisms.
Collapse
Affiliation(s)
- A Memisoglu
- Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
28
|
Sanderson RJ, Mosbaugh DW. Identification of specific carboxyl groups on uracil-DNA glycosylase inhibitor protein that are required for activity. J Biol Chem 1996; 271:29170-81. [PMID: 8910574 DOI: 10.1074/jbc.271.46.29170] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The bacteriophage PBS2 uracil-DNA glycosylase inhibitor (Ugi) protein inactivates uracil-DNA glycosylase (Ung) by forming an exceptionally stable protein-protein complex in which Ugi mimics electronegative and structural features of duplex DNA (Beger, R. D., Balasubramanian, S., Bennett, S. E., Mosbaugh, D. W., and Bolton, P. H. (1995) J. Biol. Chem. 270, 16840-16847; Mol, C. D., Arvai, A. S., Sanderson, R. J., Slupphaug, G., Kavli, B., Krokan, H. E., Mosbaugh, D. W., and Tainer, J. A. (1995) Cell 82, 701-708). The role of specific carboxylic amino acid residues in forming the Ung.Ugi complex was investigated using selective chemical modification techniques. Ugi treated with carbodiimide and glycine ethyl ester produced five discrete protein species (forms I-V) that were purified and characterized. Analysis by mass spectrometry revealed that Ugi form I escaped protein modification, and forms II-V showed increasing incremental amounts of acyl-glycine ethyl ester adduction. Ugi forms II-V retained their ability to form a Ung.Ugi complex but exhibited a reduced ability to inactivate Escherichia coli Ung, directly reflecting the extent of modification. Competition experiments using modified forms II-V with unmodified Ugi as a competitor protein revealed that unmodified Ugi preferentially formed complex. Furthermore, unmodified Ugi and poly(U) were capable of displacing forms II-V from a preformed Ung.Ugi complex but were unable to displace Ugi form I. The primary sites of acyl-glycine ethyl ester adduction were located in the alpha2-helix of Ugi at Glu-28 and Glu-31. We infer that these two negatively charged amino acids play an important role in mediating a conformational change in Ugi that precipitates the essentially irreversible Ung/Ugi interaction.
Collapse
Affiliation(s)
- R J Sanderson
- Department of Agricultural Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
29
|
Ellison KS, Peng W, McFadden G. Mutations in active-site residues of the uracil-DNA glycosylase encoded by vaccinia virus are incompatible with virus viability. J Virol 1996; 70:7965-73. [PMID: 8892920 PMCID: PMC190869 DOI: 10.1128/jvi.70.11.7965-7973.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The D4R gene of vaccinia virus encodes a functional uracil-DNA glycosylase that is essential for viral viability (D. T. Stuart, C. Upton, M. A. Higman, E. G. Niles, and G. McFadden, J. Virol. 67:2503-2513, 1993), and a D4R mutant, ts4149, confers a conditional lethal defect in viral DNA replication (A. K. Millns, M. S. Carpenter, and A. M. DeLange, Virology 198:504-513, 1994). The mutant ts4149 protein was expressed in vitro and assayed for uracil-DNA glycosylase activity. Less than 6% of wild-type activity was observed at permissive temperatures, but the ts4149 protein was completely inactive at the nonpermissive temperature. Mutagenesis of the ts4149 gene back to wild type (Arg-179-->Gly) restored full activity. The ts4149 protein was considerably reduced in lysates of cells infected at the permissive temperature, and its activity was undetectable, even in the presence of the uracil glycosylase inhibitor protein, which inhibits the host uracil-DNA glycosylases but not that of vaccinia virus. Thus the ts4149 protein is thermolabile, correlating uracil removal with vaccinia virus DNA replication. Three active-site amino acids of the vaccinia virus uracil-DNA glycosylase were mutated (Asp-68-->Asn, Asn-120-->Val, and His-181-->Leu), producing proteins that were completely defective in uracil excision but still retained the ability to bind DNA. Each mutated D4R gene was transfected into vaccinia virus ts4149-infected cells in order to assess the recombination events that allowed virus survival at 40 degrees C. Genetic analysis and sequencing studies revealed that the only viruses to survive were those in which recombination eliminated the mutant locus. We conclude that the uracil cleavage activity of the D4R protein is essential for its function in vaccinia virus DNA replication, suggesting that the removal of uracil residues plays an obligatory role.
Collapse
Affiliation(s)
- K S Ellison
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
30
|
Mol CD, Arvai AS, Sanderson RJ, Slupphaug G, Kavli B, Krokan HE, Mosbaugh DW, Tainer JA. Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 1995; 82:701-8. [PMID: 7671300 DOI: 10.1016/0092-8674(95)90467-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Uracil-DNA glycosylase inhibitor (Ugi) is a B. subtilis bacteriophage protein that protects the uracil-containing phage DNA by irreversibly inhibiting the key DNA repair enzyme uracil-DNA glycosylase (UDG). The 1.9 A crystal structure of Ugi complexed to human UDG reveals that the Ugi structure, consisting of a twisted five-stranded antiparallel beta sheet and two alpha helices, binds by inserting a beta strand into the conserved DNA-binding groove of the enzyme without contacting the uracil specificity pocket. The resulting interface, which buries over 1200 A2 on Ugi and involves the entire beta sheet and an alpha helix, is polar and contains 22 water molecules. Ugi binds the sequence-conserved DNA-binding groove of UDG via shape and electrostatic complementarity, specific charged hydrogen bonds, and hydrophobic packing enveloping Leu-272 from a protruding UDG loop. The apparent mimicry by Ugi of DNA interactions with UDG provides both a structural mechanism for UDG binding to DNA, including the enzyme-assisted expulsion of uracil from the DNA helix, and a crystallographic basis for the design of inhibitors with scientific and therapeutic applications.
Collapse
Affiliation(s)
- C D Mol
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Beger RD, Balasubramanian S, Bennett SE, Mosbaugh DW, Bolton PH. Tertiary structure of uracil-DNA glycosylase inhibitor protein. J Biol Chem 1995; 270:16840-7. [PMID: 7622499 DOI: 10.1074/jbc.270.28.16840] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Bacillus subtilis bacteriophage PBS2 uracil-DNA glycosylase inhibitor (Ugi) is an acidic protein of 84 amino acids that inactivates uracil-DNA glycosylase from diverse organisms. The secondary structure of Ugi consists of five anti-parallel beta-strands and two alpha-helices (Balasubramanian, S., Beger, R.D., Bennett, S.E., Mosbaugh, D.W., and Bolton, P.H. (1995) J. Biol. Chem. 270, 296-303). The tertiary structure of Ugi has been determined by solution state multidimensional nuclear magnetic resonance. The Ugi structure contains an area of highly negative electrostatic potential produced by the close proximity of a number of acidic residues. The unfavorable interactions between these acidic residues are apparently accommodated by the stability of the beta-strands. This negatively charged region is likely to play an important role in the binding of Ugi to uracil-DNA glycosylase.
Collapse
Affiliation(s)
- R D Beger
- Chemistry Department, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | |
Collapse
|
32
|
Savva R, Pearl LH. Cloning and expression of the uracil-DNA glycosylase inhibitor (UGI) from bacteriophage PBS-1 and crystallization of a uracil-DNA glycosylase-UGI complex. Proteins 1995; 22:287-9. [PMID: 7479702 DOI: 10.1002/prot.340220310] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The uracil-DNA glycosylase inhibitory protein (UGI) from the bacteriophage PBS-1 has been cloned and overexpressed. The nucleotide sequence is identical to that for the previously described PBS-2 inhibitor. The recombinant PBS-1 UGI inhibits the uracil-DNA glycosylase from herpes simplex virus type-1 (HSV-1 UDGase), and a complex between the HSV-1 UDGase and PBS-1 UGI has been crystallized. The crystals have unit cell dimensions a = 143.21 A, c = 40.78 A and are in a polar hexagonal space group. There is a single complex in the asymmetric unit with a solvent content of 62% by volume and the crystals diffract to 2.5A on a synchrotron radiation source.
Collapse
Affiliation(s)
- R Savva
- Department of Biochemistry and Molecular Biology, University College London, England
| | | |
Collapse
|
33
|
Balasubramanian S, Beger RD, Bennett SE, Mosbaugh DW, Bolton PH. Secondary structure of uracil-DNA glycosylase inhibitor protein. J Biol Chem 1995; 270:296-303. [PMID: 7814390 DOI: 10.1074/jbc.270.1.296] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Bacillus subtilis bacteriophage PBS2 uracil-DNA glycosylase inhibitor (Ugi) is an acidic protein of 84 amino acids that inactivates uracil-DNA glycosylase from diverse organisms (Wang, Z., and Mosbaugh, D. W. (1989) J. Biol. Chem. 264, 1163-1171). The secondary structure of Ugi has been determined by solution state multidimensional nuclear magnetic resonance. The protein adopts a single well defined structure consisting of five anti-parallel beta-strands and two alpha-helices. Six loop or turn regions were identified that contain approximately one half of the acidic amino acid residues and connect the beta-strands sequentially to one another. The secondary structure suggests which regions of Ugi may be involved in interactions with uracil-DNA glycosylase.
Collapse
Affiliation(s)
- S Balasubramanian
- Chemistry Department, Wesleyan University, Middletown, Connecticut 06450
| | | | | | | | | |
Collapse
|
34
|
Bennett S, Jensen O, Barofsky D, Mosbaugh D. UV-catalyzed cross-linking of Escherichia coli uracil-DNA glycosylase to DNA. Identification of amino acid residues in the single-stranded DNA binding site. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31883-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Kinetics of the uracil-DNA glycosylase/inhibitor protein association. Ung interaction with Ugi, nucleic acids, and uracil compounds. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74193-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
Bennett S, Mosbaugh D. Characterization of the Escherichia coli uracil-DNA glycosylase.inhibitor protein complex. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41702-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
37
|
Olsen LC, Aasland R, Krokan HE, Helland DE. Human uracil-DNA glycosylase complements E. coli ung mutants. Nucleic Acids Res 1991; 19:4473-8. [PMID: 1886771 PMCID: PMC328636 DOI: 10.1093/nar/19.16.4473] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have previously isolated a cDNA encoding a human uracil-DNA glycosylase which is closely related to the bacterial and yeast enzymes. In vitro expression of this cDNA produced a protein with an apparent molecular weight of 34 K in agreement with the size predicted from the sequence data. The in vitro expressed protein exhibited uracil-DNA glycosylase activity. The close resemblance between the human and the bacterial enzyme raised the possibility that the human enzyme may be able to complement E. coli ung mutants. In order to test this hypothesis, the human uracil-DNA glycosylase cDNA was established in a bacterial expression vector. Expression of the human enzyme as a LacZ alpha-humUNG fusion protein was then studied in E. coli ung mutants. E. coli cells lacking uracil-DNA glycosylase activity exhibit a weak mutator phenotype and they are permissive for growth of phages with uracil-containing DNA. Here we show that the expression of human uracil-DNA glycosylase in E. coli can restore the wild type phenotype of ung mutants. These results demonstrate that the evolutionary conservation of the uracil-DNA glycosylase structure is also reflected in the conservation of the mechanism for removal of uracil from DNA.
Collapse
Affiliation(s)
- L C Olsen
- Laboratory of Biotechnology, University of Bergen, Norway
| | | | | | | |
Collapse
|
38
|
Wang ZG, Smith DG, Mosbaugh DW. Overproduction and characterization of the uracil-DNA glycosylase inhibitor of bacteriophage PBS2. Gene 1991; 99:31-7. [PMID: 1902430 DOI: 10.1016/0378-1119(91)90030-f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A plasmid expression vector (pZWtac1) was constructed which allowed inducible overexpression of the uracil-DNA glycosylase (Ung) inhibitor (Ugi)-encoding gene (ugi) in Escherichia coli. In this plasmid, the ugi gene was under the control of both its own promoter and the tac promoter. Constitutive expression of the ugi was observed in the absence of isopropyl-beta-D-thiogalactopyranoside (IPTG). In the presence of 1 mM IPTG, the Ugi protein was overproduced to an approx. 16-fold higher level, and accounted for approx. 19% of the total soluble cellular proteins. Following high-level production in E. coli, the Ugi protein was purified to apparent homogeneity. Using E. coli Ung, we observed that Ugi inactivated the enzyme in a noncompetitive manner. Kinetic studies revealed a Ki value (0.14 microM) of approx. twelve-fold lower than Km value (1.7 microM) of glycosylase. Ugi did not act synergistically with free uracil to inhibit E. coli Ung suggesting that uracil and Ugi could share a similar mode of inhibition.
Collapse
Affiliation(s)
- Z G Wang
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331
| | | | | |
Collapse
|
39
|
Winters TA, Williams MV. Use of the PBS2 uracil-DNA glycosylase inhibitor to differentiate the uracil-DNA glycosylase activities encoded by herpes simplex virus types 1 and 2. J Virol Methods 1990; 29:233-42. [PMID: 2176221 DOI: 10.1016/0166-0934(90)90051-g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bacteriophage PBS2 encoded uracil-DNA glycosylase (UNG) inhibitor was examined for its effect upon the nuclear UNG activities of KB, HeLa, and Vero cells infected with herpes simplex virus (HSV) type 1 or 2 and mock-infected cells. UNG activity from HSV-1 infected cells exhibited the greatest sensitivity to inhibition by the inhibitor, while UNG activity from cells infected with HSV-2 exhibited the greatest resistance. This differential effect was dependent upon the virus, cell line, and buffer system used in the reaction. Furthermore, the PBS2 UNG inhibitor's differential effect, provides a means of distinguishing the herpesvirus UNG activities from one another, and from the cellular UNG activity. Therefore, this method of identification should prove to be useful for the purification and characterization of the viral enzymes from infected cell nuclear extracts.
Collapse
Affiliation(s)
- T A Winters
- Department of Medical Microbiology and Immunology, Ohio State University, Columbus 43210
| | | |
Collapse
|
40
|
Affiliation(s)
- K Sakumi
- Department of Biochemistry, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
41
|
Williams MV, Pollack JD. A mollicute (mycoplasma) DNA repair enzyme: purification and characterization of uracil-DNA glycosylase. J Bacteriol 1990; 172:2979-85. [PMID: 2345131 PMCID: PMC209097 DOI: 10.1128/jb.172.6.2979-2985.1990] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The DNA repair enzyme uracil-DNA glycosylase from Mycoplasma lactucae (831-C4) was purified 1,657-fold by using affinity chromatography and chromatofocusing techniques. The only substrate for the enzyme was DNA that contained uracil residues, and the Km of the enzyme was 1.05 +/- 0.12 microM for dUMP containing DNA. The product of the reaction was uracil, and it acted as a noncompetitive inhibitor of the uracil-DNA glycosylase with a Ki of 5.2 mM. The activity of the enzyme was insensitive to Mg2+, Mn2+, Zn2+, Ca2+, and Co2+ over the concentration range tested, and the activity was not inhibited by EDTA. The enzyme activity exhibited a biphasic response to monovalent cations and to polyamines. The enzyme had a pI of 6.4 and existed as a nonspherical monomeric protein with a molecular weight of 28,500 +/- 1,200. The uracil-DNA glycosylase from M. lactucae was inhibited by the uracil-DNA glycosylase inhibitor from bacteriophage PBS-2, but the amount of inhibitor required for 50% inhibition of the mycoplasmal enzyme was 2.2 and 8 times greater than that required to cause 50% inhibition of the uracil-DNA glycosylases from Escherichia coli and Bacillus subtilis, respectively. Previous studies have reported that some mollicutes lack uracil-DNA glycosylase activity, and the results of this study demonstrate that the uracil-DNA glycosylase from M. lactucae has a higher Km for uracil-containing DNA than those of the glycosylases of other procaryotic organisms. Thus, the low G + C content of the DNA from some mollicutes and the A.T-biased mutation pressure observed in these organisms may be related to their decreased capacity to remove uracil residues from DNA.
Collapse
Affiliation(s)
- M V Williams
- Department of Medical Microbiology and Immunology, Ohio State University, Columbus 43210
| | | |
Collapse
|
42
|
Wang Z, Mosbaugh DW. Uracil-DNA Glycosylase Inhibitor Gene of Bacteriophage PBS2 Encodes a Binding Protein Specific for Uracil-DNA Glycosylase. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)85067-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Wang Z, Mosbaugh DW. Uracil-DNA glycosylase inhibitor of bacteriophage PBS2: cloning and effects of expression of the inhibitor gene in Escherichia coli. J Bacteriol 1988; 170:1082-91. [PMID: 2963806 PMCID: PMC210877 DOI: 10.1128/jb.170.3.1082-1091.1988] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 was cloned, and the effects of this inhibitor on Escherichia coli cells that contain uracil-DNA glycosylase activity were determined. A PBS2 genomic library was constructed by inserting EcoRI restriction fragments of PBS2 DNA into a plasmid pUC19 vector. The library was used to transform wild-type (ung+) E. coli, and the presence of the functional inhibitor gene was determined by screening for colonies that supported growth of M13mp19 phage containing uracil-DNA. A clone was identified that carried a 4.1-kilobase EcoRI DNA insert in the vector plasmid. Extracts of cells transformed with this recombinant plasmid lacked detectable uracil-DNA glycosylase activity and contained a protein that inhibited the activity of purified E. coli uracil-DNA glycosylase in vitro. The uracil-DNA glycosylase inhibitor expressed in these E. coli was partially purified and characterized as a heat-stable protein with a native molecular weight of about 18,000. Hence, we conclude that the PBS2 uracil-DNA glycosylase inhibitor gene was cloned and that the gene product has properties similar to those from PBS2-infected Bacillus subtilis cells. Inhibitor gene expression in E. coli resulted in (i) a weak mutator phenotype, (ii) a growth rate similar to that of E. coli containing pUC19 alone, (iii) a sensitivity to the antifolate drug aminopterin similar to that of cells lacking the inhibitor gene, and (iv) an increased resistance to the lethal effects of 5-fluoro-2'-deoxyuridine. These physiological properties are consistent with the phenotypes of other ung mutants.
Collapse
Affiliation(s)
- Z Wang
- Clayton Foundation Biochemical Institute, University of Texas at Austin 78712
| | | |
Collapse
|
44
|
Boorstein RJ, Levy DD, Teebor GW. 5-Hydroxymethyluracil-DNA glycosylase activity may be a differentiated mammalian function. Mutat Res 1987; 183:257-63. [PMID: 3553917 DOI: 10.1016/0167-8817(87)90008-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To determine the prevalence of the repair enzyme HMU-DNA glycosylase we assayed its activity in whole cell extracts of several bacterial species, the eukaryotic yeast Saccharomyces cerevisiae, mammalian cell lines and murine tissue. Enzyme activity was constitutively present in murine, hamster and human cell lines. It was not inducible by exposing cells to oxidative stress from ionizing radiation or by incubating cells with the 2'-deoxynucleoside of HMU, HMdU. In murine tissue, enzyme activity was highest in brain and thymus. HMU-DNA glycosylase activity was not detectable in bacteria or yeast nor could activity be detected after exposure of cells to H2O2. These results suggest that, in contrast to other DNA-repair enzymes, HMU-DNA glycosylase is a differentiated function limited to higher eukaryotic organisms.
Collapse
|
45
|
Krüger DH, Bickle TA. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 1983; 47:345-60. [PMID: 6314109 PMCID: PMC281580 DOI: 10.1128/mr.47.3.345-360.1983] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|