1
|
Sun X, Chen H, Gao R, Qu Y, Huang Y, Zhang N, Hu S, Fan F, Zou Y, Hu K, Chen Z, Ge J, Sun A. Intravenous Transplantation of an Ischemic-specific Peptide-TPP-mitochondrial Compound Alleviates Myocardial Ischemic Reperfusion Injury. ACS NANO 2023; 17:896-909. [PMID: 36625783 PMCID: PMC9878726 DOI: 10.1021/acsnano.2c05286] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
It is known that mitochondrial dysfunction is a critical factor involved in myocardial ischemia-reperfusion injury. Mitochondrial transplantation has been suggested as an effective therapeutic strategy to protect against myocardial ischemia-reperfusion injury. However, its clinical translation remains limited because it requires the local injection of mitochondria into the myocardium. Here, a polypeptide, CSTSMLKAC (PEP), bound to triphenylphosphonium cations (TPP+) effectively binds mitochondria to form a PEP-TPP-mitochondrial compound. Further investigation of this compound has revealed that the ischemia-sensing properties of PEP promote its translocation into the ischemic myocardium. Additionally, the targeting peptide, PEP, readily dissociates from the PEP-TPP-mitochondrial compound, allowing for the transplanted mitochondria to be efficiently internalized by cardiomyocytes or transferred to cardiomyocytes by endothelial cells. Mitochondrial transplantation promotes cardiomyocyte energetics and mechanical contraction, subsequently reducing cellular apoptosis, macrophage infiltration, and the pro-inflammatory response, all of which lead to attenuation of ischemia-reperfusion injury. Thus, this study provides promising evidence that the PEP-TPP-mitochondrial compound effectively promotes intravenous mitochondrial transplantation into the ischemic myocardium and subsequently ameliorates myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiaolei Sun
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Hang Chen
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
- Cardiac
Regeneration and Ageing Lab, Institute of Cardiovascular Sciences,
Shanghai Engineering Research Center of Organ Repair, School of Life
Science, Shanghai University, Shanghai 200444, P.R. China
| | - Rifeng Gao
- Shanghai
Fifth People’s Hospital, Fudan University, Shanghai 200240, P.R. China
| | - Yanan Qu
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Ya Huang
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Ning Zhang
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Shiyu Hu
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Fan Fan
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Yunzeng Zou
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
- Institute
of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Kai Hu
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
| | - Zhaoyang Chen
- Department
of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Junbo Ge
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
- Institute
of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| | - Aijun Sun
- Department
of Cardiology, Zhongshan Hospital, Fudan
University, Shanghai 200032, P.R. China
- Shanghai
Institute of Cardiovascular Diseases, Shanghai 200032, P.R.
China
- NHC
Key Laboratory of Viral Heart Diseases, Shanghai 200032, P.R. China
- Key
Laboratory of Viral Heart Diseases, Chinese
Academy of Medical Sciences, Shanghai 200032, P.R. China
- Institute
of Biomedical Science, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
2
|
Treberg JR, Braun K, Selseleh P. Mitochondria can act as energy-sensing regulators of hydrogen peroxide availability. Redox Biol 2018; 20:483-488. [PMID: 30466061 PMCID: PMC6249968 DOI: 10.1016/j.redox.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023] Open
Abstract
Mitochondria are widely recognized as sources of reactive oxygen species in animal cells, with H2O2 being of particular note because it can act not only in oxidative stress but also is important to several signalling pathways. Lesser recognized is that mitochondria can have far greater capacity to consume H2O2 than to produce it; however, the consumption of H2O2 may be kinetically constrained by H2O2 availability especially at the low nanomolar (or lower) concentrations that occur in vivo. The production of H2O2 is a function of many factors, not the least of which are respiratory substrate availability and the protonmotive force (Δp). The Δp, which is predominantly membrane potential (ΔΨ), can be a strong indicator of mitochondrial energy status, particularly if respiratory substrate supply is either not meeting or exceeding demand. The notion that mitochondria may functionally act in regulating H2O2 concentrations may be somewhat implicit but little evidence demonstrating this is available. Here we demonstrate key assumptions that are required for mitochondria to act as regulators of H2O2 by an integrated system of production and concomitant consumption. In particular we show the steady-state level of H2O2 mitochondria approach is a function of both mitochondrial H2O2 consumption and production capacity, the latter of which is strongly influenced by ΔΨ. Our results are consistent with mitochondria being able to manipulate extramitochondrial H2O2 as a means of signalling mitochondrial energetic status, in particular the Δp or ΔΨ. Such a redox-based signal could operate with some independence from other energy sensing mechanisms such as those that transmit information using the cytosolic adenylate pool.
Collapse
Affiliation(s)
- Jason R Treberg
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.
| | - Kristen Braun
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Parisa Selseleh
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Treberg JR, Braun K, Zacharias P, Kroeker K. Multidimensional mitochondrial energetics: Application to the study of electron leak and hydrogen peroxide metabolism. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:121-128. [DOI: 10.1016/j.cbpb.2017.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
4
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 961] [Impact Index Per Article: 137.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
5
|
Speract, a sea urchin egg peptide that regulates sperm motility, also stimulates sperm mitochondrial metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:415-26. [PMID: 26772728 DOI: 10.1016/j.bbabio.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 11/21/2022]
Abstract
Sea urchin sperm have only one mitochondrion, that in addition to being the main source of energy, may modulate intracellular Ca(2+) concentration ([Ca(2+)]i) to regulate their motility and possibly the acrosome reaction. Speract is a decapeptide from the outer jelly layer of the Strongylocentrotus purpuratus egg that upon binding to its receptor in the sperm, stimulates sperm motility, respiration and ion fluxes, among other physiological events. Altering the sea urchin sperm mitochondrial function with specific inhibitors of this organelle, increases [Ca(2+)]i in an external Ca(2+) concentration ([Ca(2+)]ext)-dependent manner (Ardón, et al., 2009. BBActa 1787: 15), suggesting that the mitochondrion is involved in sperm [Ca(2+)]i homeostasis. To further understand the interrelationship between the mitochondrion and the speract responses, we measured mitochondrial membrane potential (ΔΨ) and NADH levels. We found that the stimulation of sperm with speract depolarizes the mitochondrion and increases the levels of NADH. Surprisingly, these responses are independent of external Ca(2+) and are due to the increase in intracellular pH (pHi) induced by speract. Our findings indicate that speract, by regulating pHi, in addition to [Ca(2+)]i, may finely modulate mitochondrial metabolism to control motility and ensure that sperm reach the egg and fertilize it.
Collapse
|
6
|
Tomashek JJ, Brusilow WS. Stoichiometry of energy coupling by proton-translocating ATPases: a history of variability. J Bioenerg Biomembr 2009; 32:493-500. [PMID: 15254384 DOI: 10.1023/a:1005617024904] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the central energy-coupling reactions in living systems is the intraconversion of ATP with a transmembrane proton gradient, carried out by proton-translocating F- and V-type ATPases/synthases. These reversible enzymes can hydrolyze ATP and pump protons, or can use the energy of a transmembrane proton gradient to synthesize ATP from ADP and inorganic phosphate. The stoichiometry of these processes (H(+)/ATP, or coupling ratio) has been studied in many systems for many years, with no universally agreed upon solution. Recent discoveries concerning the structure of the ATPases, their assembly and the stoichiometry of their numerous subunits, particularly the proton-carrying proteolipid (subunit c) of the F(O) and V(0) sectors, have shed new light on this question and raise the possibility of variable coupling ratios modulated by variable proteolipid stoichiometries.
Collapse
Affiliation(s)
- J J Tomashek
- Wayne State University School of Medicine, Department of Biochemistry and Molecular Biology, Detroit, Michigan 48201, USA
| | | |
Collapse
|
7
|
Nazaret C, Heiske M, Thurley K, Mazat JP. Mitochondrial energetic metabolism: a simplified model of TCA cycle with ATP production. J Theor Biol 2008; 258:455-64. [PMID: 19007794 DOI: 10.1016/j.jtbi.2008.09.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 07/18/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Mitochondria play a central role in cellular energetic metabolism. The essential parts of this metabolism are the tricarboxylic acid (TCA) cycle, the respiratory chain and the adenosine triphosphate (ATP) synthesis machinery. Here a simplified model of these three metabolic components with a limited set of differential equations is presented. The existence of a steady state is demonstrated and results of numerical simulations are presented. The relevance of a simple model to represent actual in vivo behavior is discussed.
Collapse
Affiliation(s)
- Christine Nazaret
- IMB UMR CNRS 5251-ESTBB, Université de Bordeaux 2, 146 rue Léo-Saignat, F 33076 Bordeaux-Cedex, France.
| | | | | | | |
Collapse
|
8
|
Tedeschi H. Old and new data, new issues: the mitochondrial DeltaPsi. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1709:195-202. [PMID: 16139788 DOI: 10.1016/j.bbabio.2005.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 07/15/2005] [Accepted: 07/26/2005] [Indexed: 11/25/2022]
Abstract
New and old data pertinent to the electrochemical potentials across the inner mitochondrial membrane are reviewed with the intent of reconciling the various findings in the light of new perspectives provided by more recent knowledge. A careful scrutiny of old data permits ruling out the presence of a significant metabolically dependent electrical membrane potential. Recent technological advances make it possible to test the proposed alternatives. These proposals recast the original idea, and the possible mechanisms that are emerging also invoke a protonmotive force. Our conclusions that DeltaPsi is not involved in oxidative-phosphorylation finds parallel observations in Halobacterium halobium [H. Michel, D. Oesterhelt, Electrochemical proton gradient across the cell membrane of Halobacterium halobium: comparison of the light-induced increase with the increase of intracellular adenosine triphosphate under steady-state illumination, Biochemistry 19 (1980) 4615-4619] and thylakoid vesicles [D.R. Ort, R.A. Dilley, N.E. Good, Photophosphorylation as a function of illumination time II. Effects of permeant buffers, Biochim. Biophys. Acta 449 (1976) 108-129] in which light-induced ATP synthesis occurs in the absence of an apparent DeltaPsi or DeltapH, suggesting the presence of mechanisms similar to the one proposed for mitochondria.
Collapse
Affiliation(s)
- Henry Tedeschi
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA.
| |
Collapse
|
9
|
Dos Santos P, Aliev MK, Diolez P, Duclos F, Besse P, Bonoron-Adèle S, Sikk P, Canioni P, Saks VA. Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction:diffusion mathematical model. J Mol Cell Cardiol 2000; 32:1703-34. [PMID: 10966833 DOI: 10.1006/jmcc.2000.1207] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular mechanisms of regulation of energy fluxes and respiration in contracting heart cells were studied. For this, we investigated the workload dependencies of the rate of oxygen consumption and metabolic parameters in Langendorff-perfused isolated rat hearts.(31)P NMR spectroscopy was used to study the metabolic changes during transition from perfusion with glucose to that with pyruvate with and without active creatine kinase system. The experimental results showed that transition from perfusion with glucose to that with pyruvate increased the phosphocreatine content and stability of its level at increased workloads. Inhibition of creatine kinase reaction by 15-min infusion of iodoacetamide decreased the maximal developed tension and respiration rates by a factor of two.(31)P NMR data were analyzed by a mathematical model of compartmentalized energy transfer, which is independent from the restrictions of the classical concept of creatine kinase equilibrium. The analysis of experimental data by this model shows that metabolic stability-constant levels of phosphocreatine, ATP and inorganic phosphate-at increased energy fluxes is an inherent property of the compartmentalized system. This explains the observed substrate specificity by changes in mitochondrial membrane potential. The decreased maximal respiration rate and maximal work output of the heart with inhibited creatine kinase is well explained by the rise in myoplasmic ADP concentration. This activates the adenylate kinase reaction in the myofibrillar space and in the mitochondria to fulfil the energy transfer and signal transmission functions, usually performed by creatine kinase. The activity of this system, however, is not sufficient to maintain high enough energy fluxes. Therefore, there is a kinetic explanation for the decreased maximal respiration rate of the heart with inhibited creatine kinase: i.e. a kinetically induced switch from an efficient energy transfer pathway (PCr-CK system) to a non-efficient one (myokinase pathway) within the energy transfer network of the cell under conditions of low apparent affinity of mitochondria to ADP in vivo. This may result in a significant decrease in the thermodynamic affinity of compartmentalized ATPase systems and finally in heart failure.
Collapse
Affiliation(s)
- P Dos Santos
- Unité INSERM 441, Avenue du Haut Lévêque, Pessac, 33600, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Marhl M, Schuster S, Brumen M, Heinrich R. Modelling oscillations of calcium and endoplasmic reticulum transmembrane potential. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(98)00130-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Schuster S, Ouhabi R, Rigoulet M, Mazat JP. Modelling the interrelation between the transmembrane potential and pH difference across membranes with electrogenic proton transport upon build-up of the proton-motive force. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0302-4598(98)00092-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Devin A, Guérin B, Rigoulet M. Control of oxidative phosphorylation in rat liver mitochondria: effect of ionic media. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1319:293-300. [PMID: 9131050 DOI: 10.1016/s0005-2728(96)00172-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this work was to compare oxidative phosphorylation activity and its kinetic control on isolated rat liver mitochondria in either various ionic or sucrose isoosmotic media. Whatever the ionic medium, state 3 and uncoupled state respiratory rates were higher in ionic than in sucrose media, although state 4 respiration rate remained constant. Moreover, under isoosmotic conditions, the salt concentration necessary for half state 3 stimulation depends on the cation involved: for inorganic cations, these K0.5 values increased, as did the absolute value of hydratation enthalpy. The ATP/O ratio did not vary in any medium and matrix volume was about 20% increased in ionic media. JO2 versus delta p relationships were left-shifted in ionic media compared to sucrose medium: for the same respiratory rate, the protonmotive force maintained was lesser in ionic media. However, the relationship between JO2 and delta p is unique whatever the ionic medium under study. In ionic media compared to the sucrose medium, kinetic control was increased on one of the protonmotive force generating systems (cytochrome c oxidase) and decreased on one of the protonmotive force dissipating systems (adenine nucleotide translocator), even if the fluxes increased.
Collapse
Affiliation(s)
- A Devin
- Institut de Biochimie et Génétique Cellulaires du CNRS, Université de Bordeaux 2, France
| | | | | |
Collapse
|
13
|
Gunter K, Zuscik M, Gunter T. The Na(+)-independent Ca2+ efflux mechanism of liver mitochondria is not a passive Ca2+/2H+ exchanger. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54685-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Greenbaum NL, Wilson DF. Role of intramitochondrial pH in the energetics and regulation of mitochondrial oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:113-20. [PMID: 1646629 DOI: 10.1016/s0005-2728(05)80227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The dependence of ATP synthesis coupled to electron transfer from 3-hydroxy-butyrate (3-OH-B) to cytochrome c on the intramitochondrial pH (pHi) was investigated. Suspensions of isolated rat liver mitochondria were incubated at constant extramitochondrial pH (pHe) with ATP, ADP, Pi, 3-OH-B, and acetoacetate (acac) (the last two were varied to maintain [3-OH-B]/[acac] constant), with or without sodium propionate to change the intramitochondrial pH. Measurements were made of the steady-state water volume of the mitochondrial matrix, transmembrane pH difference, level of cytochrome c reduction, concentration of metabolites and rate of oxygen consumption. For each experiment, conditions were used for which transmembrane pH was near maximal and minimal values and the measured extramitochondrial [ATP], [ADP], and [Pi] were used to calculate log[ATP]/[ADP][Pi]. When [3-OH-B]/[acac] and [cyt c2+]/[cyt c3+] were constant, and pHi was decreased from approx. 7.7 to 7.2, log [ATP]/[ADP][Pi] at high pHi was significantly (P less than 0.02) greater than at low pHi. The mean slope (delta log [ATP]/[ADP][Pi] divided by the change in pHi) was 1.08 +/- 0.15 (mean +/- S.E.). This agrees with the slope of 1.0 predicted if the energy available for ATP synthesis is dependent upon the pH at which 3-hydroxybutyrate dehydrogenase operates, that is, on the pH of the matrix space. The steady-state respiratory rate and reduction of cytochrome c were measured at different pHi and pHe values. Plots of respiratory rate vs.% cytochrome c reduction at different intra- and extramitochondrial pH values indicated that the respiratory rate is dependent upon pHi and not on pHe. This implies that the matrix space is the source of protons involved in the reduction of oxygen to water in coupled mitochondria.
Collapse
Affiliation(s)
- N L Greenbaum
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | |
Collapse
|
15
|
Rigoulet M. Control processes in oxidative phosphorylation: kinetic constraints and stoichiometry. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1018:185-9. [PMID: 2144185 DOI: 10.1016/0005-2728(90)90245-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Control processes in oxidative phosphorylation have been studied in three experimental models. (1) In isolated yeast mitochondria, external ATP is a regulatory effector of cytochrome-c oxidase activity. In phosphorylating or uncoupling states, the relationships between respiratory rate and delta mu H+, and the respiratory rate and cytochrome-c oxidase reduction level are dependent on this kinetic regulation. (2) In rat liver mitochondria, the response of the respiratory rate to uncoupler addition is age-dependent: liver mitochondria isolated from young rats maintain a greater delta mu H+ than liver mitochondria isolated from adults, with the same respiratory rate obtained with the same concentration of uncoupler. This behaviour is linked to redox proton pump properties, i.e., to the degree of intrinsic uncoupling induced by uncoupler addition. (3) The effect of almitrine, a new kind of ATPase/ATPsynthase inhibitor, was studied in mammalian mitochondria. (i) Almitrine inhibits oligomycin-sensitive ATPase - it decreases the ATPase/O value without any change in delta mu H+; (ii) almitrine increased the mechanistic H+/ATP stoichiometry of ATPase/ATPsynthase; (iii) almitrine-induced changes in H+/ATPase stoichiometry depend on the flux magnitude through ATPase. These results are discussed in terms of the following interdependent parameters; flux value, force, pump efficiency and control coefficient.
Collapse
Affiliation(s)
- M Rigoulet
- Institut de Biochimie Cellulaire et Neurochimie du CNRS, Université de Bordeaux, France
| |
Collapse
|
16
|
Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C755-86. [PMID: 2185657 DOI: 10.1152/ajpcell.1990.258.5.c755] [Citation(s) in RCA: 1270] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It has been firmly established that the rapid uptake of Ca2+ by mitochondria from a wide range of sources is mediated by a uniporter which permits transport of the ion down its electrochemical gradient. Several mechanisms of Ca2+ efflux from mitochondria have also been extensively discussed in the literature. Energized mitochondria must expend a significant amount of energy to transport Ca2+ against its electrochemical gradient from the matrix space to the external space. Two separate mechanisms have been found to mediate this outward transport: a Ca2+/nNa+ exchanger and a Na(+)-independent efflux mechanism. These efflux mechanisms are considered from the perspective of available energy. In addition, a reversible Ca2(+)-induced increase in inner membrane permeability can also occur. The induction of this permeability transition is characterized by swelling of the mitochondria, leakiness to small ions such as K+, Mg2+, and Ca2+, and loss of the mitochondrial membrane potential. It has been suggested that the permeability transition and its reversal may also function as a mitochondrial Ca2+ efflux mechanism under some conditions. The characteristics of each of these mechanisms are discussed, as well as their possible physiological functions.
Collapse
Affiliation(s)
- T E Gunter
- Department of Biophysics, University of Rochester, New York 14642
| | | |
Collapse
|
17
|
Fuchs J, Nitschmann WH, Packer L, Hankovszky OH, Hideg K. pKa values and partition coefficients of nitroxide spin probes for membrane bioenergetics measurements. FREE RADICAL RESEARCH COMMUNICATIONS 1990; 10:315-23. [PMID: 2175281 DOI: 10.3109/10715769009149900] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Knowledge of pKa's is necessary to calculate intracellular/intravesicular pH values from nitroxide accumulation in cells or vesicles as detected with electron spin resonance (ESR) spectroscopy. pKa values were confirmed in lipid vesicles of known internal pH. To help select probes that do not accumulate in lipid membranes, octanol/buffer partition coefficients of uncharged nitroxides were determined. As an application of selected probes, pH gradients and internal aqueous volumes were analyzed in mitochondria (one internal compartment) and in the cyanobacterium Synechococcus 6311 (two internal compartments). The combination of 3-carboxy-, 3-amino- and 3-aminocarbonyl-2,2,5,5-tetramethylpyrrolidin-1-yloxyl was found to be most satisfactory for determinations of internal pH and volumes.
Collapse
Affiliation(s)
- J Fuchs
- Lawrence Berkeley Laboratory, University of California Berkeley 97420
| | | | | | | | | |
Collapse
|
18
|
Kamo N, Demura M, Kobatake Y. Linear equation for calibration of the mitochondrial membrane potential. J Electroanal Chem (Lausanne) 1989. [DOI: 10.1016/0022-0728(89)87190-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Kamo N, Demura M, Kobatake Y. Linear equation for calibration of the mitochondrial membrane potential. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0302-4598(89)87004-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
McCormick K, Mick GJ, Mattson V, Saile D, Starr D. Carnitine palmitoyltransferase: effects of diabetes, fasting, and pH on the reaction that generates acyl CoA. Metabolism 1988; 37:1073-7. [PMID: 3185291 DOI: 10.1016/0026-0495(88)90070-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although carnitine palmitoyltransferase (CPT) has received considerable attention, particularly its regulation by malonyl CoA, most studies have monitored the forward reaction, ie, the formation of acylcarnitine. We examined the opposite or reverse reaction, in which palmitoyl CoA is generated, in osmotically-disrupted rat hepatic mitochondria. Specifically, the effects of pH, fasting, and untreated recent-onset diabetes were investigated. As with the forward (f) reaction, the CPT reverse (r) velocity v pH curve was somewhat parabolic with a pH maximum at approximately 7.2 (except the CPT that was from the diabetic rats). However, as the pH rose, the CPT reverse and forward curves diverged due to a precipitous decline in the forward reaction. This discordance in rates in the alkaline range was apparent in all three groups of CPT but was most prominent in the diabetic preparation (for example, as the pH increased from 7.3 to 8.8, the respective declines in the f and r velocities were 74% and 2%). In addition, under our assay conditions the CPTr from diabetic rats not only had a higher velocity (55.4 +/- 1.4 nmol/min/mg protein) than that from the fed (32.1 +/- 3.1) or fasted (43.1 +/- 3.4) animals, but also the Vmax was found to be twofold greater, even though there was no difference in the Km for palmitoylcarnitine. In summary, diabetes affects the kinetics of the reverse reaction and, regardless of the animal's premortem condition, but more so in the diabetes, this reaction is less attenuated than the forward one as the pH rises.
Collapse
|
21
|
Woelders H, van der Velden T, van Dam K. Unique relationships between the rates of oxidation and phosphorylation and the protonmotive force in rat-liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 934:123-34. [PMID: 2837288 DOI: 10.1016/0005-2728(88)90127-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The rate of ATP synthesis (JP) in isolated rat-liver mitochondria was strongly dependent on the magnitude of the protonmotive force (delta mu H+) across the mitochondrial inner membrane. Addition of different concentrations of various uncouplers or malonate to mitochondrial incubations in State 3 led to a depression of delta mu H+ and a concomitant decrease in JP. A unique relationship between JP and delta mu H+ was obtained, which was independent of the way in which delta mu H+ was varied. This unique relationship was observed when K+ (in the presence of valinomycin) was used as a probe for delta psi. Different relationships between JP and delta mu H+ were observed when K+ was used as a probe for delta psi and when K+ was measured after separation of the mitochondria by centrifugation without silicone oil. This led to a serious underestimation of delta psi, specifically when uncouplers were present, and non-unique flow-force relationships were thus obtained. Anomalous relationships between JP and delta mu H+ were also found when TPMP+ was used as a probe for delta psi. However, in uncoupler incubations the presence of TBP- strongly affected the TPMP+ accumulation ratio without any effect on the K+ accumulation or on JP and in the presence of TBP- unique relationships between JP and delta mu H+ were again obtained. This indicates that the accumulation of TPMP+ inside the mitochondria is not a straightforward function of delta psi but also depends on conditions like the presence of TBP- or uncouplers. We conclude that there is a unique relationship between the rate of phosphorylation and the protonmotive force in mitochondria and that under some conditions the behaviour of TPMP+ is anomalous.
Collapse
Affiliation(s)
- H Woelders
- Laboratory of Biochemistry, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
22
|
Jung DW, Davis MH, Brierley GP. Estimation of the pH gradient and donnan potential in de-energized heart mitochondria. Arch Biochem Biophys 1988; 263:19-28. [PMID: 3369862 DOI: 10.1016/0003-9861(88)90609-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transmembrane pH gradient maintained by nonrespiring, uncoupled heart mitochondria has been estimated using the distribution of methylamine and of 5,5-dimethyl-2,4-oxazolidinedione (DMO) and compared with the delta pH reported by the fluorescent probe 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF). Under these conditions the protonmotive force approaches zero and the membrane potential (delta psi) should equal 59 delta pH (P. Mitchell and J. Moyle (1969) Eur. J. Biochem. 7, 471-484). The delta pH reported by DMO corresponds closely to that estimated by BCECF and is consistent with a Donnan potential of no greater than about -30 mV (interior negative) for nonenergized mitochondria in a sucrose medium. This potential appears to result from the presence of immobile negative charges in the matrix and is eliminated by addition of 10 to 25 mM KCl. Measurements of delta pH using the methylamine and of delta tsi using the distribution of 42K+ in the presence of valinomycin result in an apparent overestimation of these parameters due to binding of these components to negative sites on the membrane. Increasing ionic strength decreases this contribution of surface potential, but significant binding can still be detected in 100 mM KCl. These studies suggest that 42K+ (or 86Rb+) is far from an ideal probe for measuring delta tsi in respiring mitochondria and may significantly overestimate this parameter, especially in sucrose media.
Collapse
Affiliation(s)
- D W Jung
- Department of Physiological Chemistry, Ohio State University Medical Center, Columbus 43210
| | | | | |
Collapse
|
23
|
Naumann R. Considerations on the kinetics of an electrochemical model of oxidative phosphorylation. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0302-4598(86)85006-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Jensen BD, Gunter KK, Gunter TE. The efficiencies of the component steps of oxidative phosphorylation. II. Experimental determination of the efficiencies in mitochondria and examination of the equivalence of membrane potential and pH gradient in phosphorylation. Arch Biochem Biophys 1986; 248:305-23. [PMID: 3015029 DOI: 10.1016/0003-9861(86)90427-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the accompanying article (T.E. Gunter and B.D. Jensen, 1986 Arch. Biochem. Biophys. 248, 289-304), a method is described for measuring the efficiencies of individual steps of the process of oxidative phosphorylation. The results of applying this method to the case of state 3 phosphorylation in rat liver mitochondria are reported here. The rate of energy use (or power use) at the gradient generation, leakage, and phosphorylation steps are reported as efficiencies and energy use factors in tabular form. The limits of the degrees of coupling of the gradient generation and phosphorylation steps are also determined and under the current conditions of measurement these degrees of coupling are found to be quite close to unity. The data can be used to show that the only sets of the stoichiometric parameters noH (the charge/2e- ratio in this case from succinate to oxygen), nPH (the H+/ATP ratio), and nTH (number of protons translocated during substrate-product transport) which are simultaneously consistent with both the laws of thermodynamics and with the current data are 8, 3, 1, and 6, 3, 0. The The efficiency of the phosphorylation step which is independent of noH and nTH averages 80% for the control data analyzed. If noH is 8 (succinate to oxygen), the average value of the efficiency of generation of the electrochemical proton gradient is approximately 91 percent. Since very little power (energy) would then be left over to be coupled in parallel to phosphorylation through some other means of coupling, this would place the electrochemical proton gradient in the direct path of power flow and identify it as "an" intermediate in the process. This would suggest that any other intermediate should be considered as being "in series" with the electrochemical proton gradient. The agents butyrate and propionate have been employed to permit investigation over a range of pH gradient and membrane potential. Both butyrate and propionate decrease the efficiency of generation of the electrochemical proton gradient and increase proton leakage. In addition, butyrate activates electron transport whereas propionate inhibits it. By using butyrate to modify the values of pH gradient and membrane potential, it can be shown that the ratio of the efficiency with which the pH gradient is used in phosphorylation to that with which the membrane potential is used is 1.08 +/- 0.38.
Collapse
|
25
|
Gunter TE, Jensen BD. The efficiencies of the component steps of oxidative phosphorylation. I. A simple steady state theory. Arch Biochem Biophys 1986; 248:289-304. [PMID: 2425738 DOI: 10.1016/0003-9861(86)90426-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Most earlier theoretical work on oxidative phosphorylation has emphasized the application of the formalism of nonequilibrium thermodynamics to the overall process. The resultant mathematical development and interpretation of some experimental data is complicated somewhat by the necessity of treating a system which is incompletely coupled (degree of coupling, q less than 1). Here a simple alternative approach is proposed which can be applied to many studies in the field. In this approach the overall process is broken up into sequential steps so that the product of the efficiencies of the steps is equal to the efficiency of the overall process. Steps of interest for which the degree of coupling may be quite close to unity can be "isolated" by this procedure. This approach results in a simple mathematical formalism emphasizing the power use (or energy use) at each step of the energy transduction process. The efficiencies of the steps of the process can be experimentally evaluated as is shown in the accompanying paper (B.D. Jensen, K. K. Gunter, and T. E. Gunter, 1986, Arch. Biochem. Biophys. 248, 305-323) where measurements are performed as dictated by the assumptions of the current theory. This alternative approach simplifies the analysis of changes induced in the process of oxidative phosphorylation as a result of agents added to the system or of changes in conditions. The locus (or loci) of such changes becomes rapidly apparent if the data is treated as suggested. Furthermore, the mathematical formalism lends itself both to the development of expressions and new experimental approaches which minimize the effects of a decrease in a value of q below unity and also to optimal statistical treatment of the data. As a concrete example of the use of this approach we reinvestigate the question of the equivalence of use of energy from the pH gradient and of the membrane potential in phosphorylation.
Collapse
|
26
|
Jacobus WE, Vandegaer KM, Moreadith RW. Aspects of heart respiratory control by the mitochondrial isozyme of creatine kinase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1986; 194:169-91. [PMID: 3529857 DOI: 10.1007/978-1-4684-5107-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
27
|
Adjustable microchemiosmotic character of the proton gradient generated by Systems I and II for photosynthetic phosphorylation in thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90191-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Membrane potential difference of isolated plant vacuoles: positive or negative? II. Comparison of measurements with microelectrodes and cationic probes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1985. [DOI: 10.1016/0005-2736(85)90176-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Andersson BS, Jones DP. Use of digitonin fractionation to determine mitochondrial transmembrane ion distribution in cells during anoxia. Anal Biochem 1985; 146:164-72. [PMID: 3993928 DOI: 10.1016/0003-2697(85)90411-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A method to determine intracellular distribution of ions and metabolites under conditions of low oxygen concentration was developed. The technique involves rapid digitonin fractionation and addition of cyanide to inhibit reoxygenation. Applicability of the procedure was examined by studying the distribution of the lipophilic ion triphenylmethylphosphonium, the weak acid 5,5-dimethyloxazolidine-2,4-dione, and adenine nucleotides.
Collapse
|
30
|
Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex. Biochem J 1985; 225:399-405. [PMID: 2983670 PMCID: PMC1144603 DOI: 10.1042/bj2250399] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The redox states of exogenously added ubiquinone-2 and cytochrome c, and the protonmotive force (delta p) of rat liver mitochondria were measured as the respiration rate was titrated with the uncoupler carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone. The force ratio delta Eh/delta p across the bc1 complex was close to 1:1 in State 4, indicating an H+/e- stoichiometry of 1:1 for the cytochrome bc1 complex, excluding protons moved by pool ubiquinone. Assuming a constant stoichiometry the rate of electron transport increased linearly with the disequilibrium (delta Eh - delta p) across the complex.
Collapse
|
31
|
Wainio WW. An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction. INTERNATIONAL REVIEW OF CYTOLOGY 1985; 96:29-50. [PMID: 2867062 DOI: 10.1016/s0074-7696(08)60593-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It is argued that a proton concentration difference and/or a membrane potential is not the form into which the free energy of the oxidation-reduction reactions of the mitochondrial respiratory chain is first transduced. It is suggested that the search for a chemical intermediate should be continued in spite of the conclusion by some investigators that the chemical hypothesis is untenable. It is asked whether pH changes when measured in solutions containing mitochondria can be interpreted as evidence for H+ movements, also, whether there is a continuous, renewable and stable electrochemical proton concentration difference (delta mu H+) across the mitochondrial membrane, and whether in fact the delta mu H+ is a necessary intermediate in the synthesis of ATP. The four postulates of Mitchell's chemiosmotic hypothesis of energy transduction are discussed point by point. It is agreed that "The systems are plugged through a topologically closed insulating membrane," which probably is not "a nonaqueous osmotic barrier," and which probably does not have an unusually "low permeability to solutes and to H+ and OH- in particular" when compared with other membranes. There is disagreement with the statement that "Respiratory and photoredox systems are chemiosmotic membrane-located protonmotive chains" in that it is suggested by others that chemiosmosis is chemically nonexistent and that thermodynamically it would lack control. The subsequent statement, "having a characteristic----H+/2 epsilon- stoichiometry," is rendered uncertain by the experimental findings of values greater than 2H+/2 epsilon-/site and probably as large as 4H+/2 epsilon-/site. The proposal that "The synthetase is a chemiosmotic membrane-located reversible motive ATPase" requires the assumption that the ATP synthetase is the same enzyme as the ATPase, but functioning in the reverse direction. It is considered possible that there are two enzymes in the multi-subunit ATPase complex: one the hydrolase, and the other the synthetase. The further proposal, "having characteristic----H+/P stoichiometry" requires that the ratio be 2 according to Mitchell. However, values of 3, as well as larger values, have been reported by others, which introduces a large element of uncertainty. There is no disagreement with the statement that "There are proton-linked (or hydroxyl ion-linked) solute porter systems for osmotic stabilization and metabolite transport." In fact, this may be the principal reason for having proton efflux or "proton-pumping.''(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
32
|
Duszyński J, Bogucka K, Wojtczak L. Homeostasis of the protonmotive force in phosphorylating mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 767:540-7. [PMID: 6095904 DOI: 10.1016/0005-2728(84)90053-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The relationship between the respiration rate and the magnitude of the electrochemical proton potential (delta mu H+) in rat liver mitochondria was investigated. (1) Under the active-state conditions, the action of inhibitors of either phosphorylation (oligomycin) or respiration (rotenone, malonate) on the respiration and delta mu H+ was measured. Both inhibitors diminished the respiration, whereas rotenone resulted in a decrease of delta mu H+, and oligomycin produced an increase of this potential. The effect of the inhibitors was much more pronounced on the respiration rate than on delta mu H+; for example, the excess of oligomycin produced a 90% inhibition of the respiration while delta mu H+ was changed only by 9%. (2) Under the resting-state conditions, small concentrations of the uncoupler stimulated the respiration while changing delta mu H+ to a relatively small extent. The uncoupler concentrations which doubled and tripled the respiration rate produced only 5 and 9% decrease of delta mu H+, respectively. (3) The present results enabled us to propose a model describing the interrelationship between respiration and delta mu H+.
Collapse
|
33
|
Westerhoff HV, Melandri BA, Venturoli G, Azzone GF, Kell DB. A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 768:257-92. [PMID: 6095906 DOI: 10.1016/0304-4173(84)90019-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Experimental data are reviewed that are not in keeping with the scheme of 'delocalized' protonic coupling in membrane-linked free-energy transduction. It turns out that there are three main types of anomalies: (i) rates of electron transfer and of ATP synthesis do not solely depend on their own driving force and on delta mu H, (ii) the ('static head') ratio of delta Gp to delta mu H varies with delta mu H and (iii) inhibition of either some of the electron-transfer chains or some of the H+-ATPases, does not cause an overcapacity in the other, non-inhibited proton pumps. None of the earlier free-energy coupling schemes, alternative to delocalized protonic coupling, can account for these three anomalies. We propose to add a fifth postulate, namely that of the coupling unit, to the four existing postulates of 'delocalized protonic coupling' and show that, with this postulate, protonic coupling can again account for most experimental observations. We also discuss: (i) how experimental data that might seem to be at odds with the 'coupling unit' hypothesis can be accounted for and (ii) the problem of the spatial arrangement of the electrical field in the different free-energy coupling schemes.
Collapse
|
34
|
Schackmann RW, Christen R, Shapiro BM. Measurement of plasma membrane and mitochondrial potentials in sea urchin sperm. Changes upon activation and induction of the acrosome reaction. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)89832-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
35
|
Haynes RC, Picking RA. The interaction of glucagon treatment and uncoupler concentration on ATPase activity of rat liver mitochondria. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90682-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
36
|
Halestrap AP, Armston AE. A re-evaluation of the role of mitochondrial pyruvate transport in the hormonal control of rat liver mitochondrial pyruvate metabolism. Biochem J 1984; 223:677-85. [PMID: 6095807 PMCID: PMC1144351 DOI: 10.1042/bj2230677] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The inhibitor of mitochondrial pyruvate transport alpha-cyano-beta-(1-phenylindol-3-yl)-acrylate was used to inhibit progressively pyruvate carboxylation by liver mitochondria from control and glucagon-treated rats. The data showed that, contrary to our previous conclusions [Halestrap (1978) Biochem. J. 172, 389-398], pyruvate transport could not regulate metabolism under these conditions. This was confirmed by measuring the intramitochondrial pyruvate concentration, which almost equilibrated with the extramitochondrial pyruvate concentration in control mitochondria, but was significantly decreased in mitochondria from glucagon-treated rats, where rates of pyruvate metabolism were elevated. Computer-simulation studies explain how this is compatible with linear Dixon plots of the inhibition of pyruvate metabolism by alpha-cyano-4-hydroxycinnamate. Parallel measurements of the mitochondrial membrane potential by using [3H]triphenylmethylphosphonium ions showed that it was elevated by about 3 mV after pretreatment of rats with both glucagon and phenylephrine. There was no significant change in the transmembrane pH gradient. It is shown that the increase in pyruvate metabolism can be explained by a stimulation of the respiratory chain, producing an elevation in the protonmotive force and a consequent rise in the intramitochondrial ATP/ADP ratio, which in turn increases pyruvate carboxylase activity. Mild inhibition of the respiratory chain with Amytal reversed the effects of hormone treatment on mitochondrial pyruvate metabolism and ATP concentrations, but not on citrulline synthesis. The significance of these observations for the hormonal regulation of gluconeogenesis from L-lactate in vivo is discussed.
Collapse
|
37
|
Wanders RJ, Van den Berg GB, Tager JM. A re-evaluation of conditions required for an accurate estimation of the extramitochondrial ATP/ADP ratio in isolated rat-liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 767:113-9. [PMID: 6091749 DOI: 10.1016/0005-2728(84)90085-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The values reported in the literature for the extramitochondrial ATP/ADP ratio in resting rat-liver mitochondria (State 4) vary widely. The conditions required for an accurate determination of this parameter were therefore investigated. In experiments with rat-liver mitochondria incubated under State-4 conditions, it was found that the extramitochondrial ATP/ADP ratio, as calculated from the values measured in neutralised perchloric acid extracts, was lower than that estimated from the concentrations of creatine and creatine phosphate, using the metabolite indicator method. The discrepancy is due to hydrolysis of ATP occurring in the presence of perchloric acid. Conditions are described for minimising ATP hydrolysis in the presence of perchloric acid, and include the use of low concentrations of perchloric acid, short times of exposure to the acid before neutralisation, low temperatures and the presence of excess EDTA. Under these conditions, the values obtained for the extramitochondrial ATP/ADP ratio agreed with those calculated by the metabolite indicator method, provided ratios do not exceed the value of 100. In cases where the extramitochondrial ATP/ADP does exceed 100, phenol/chloroform/isoamyl alcohol must be used to quench the reactions, as described by Slater et al. (Slater, E.C., Rosing, J. and Mol, A. (1973) Biochim. Biophys. Acta 292, 534-553). With this method, the extramitochondrial ATP/ADP ratio was found to have a value of more than 1000 in rat-liver mitochondria incubated with succinate + rotenone in the resting state (pH 7.0; T = 37 degrees C), in agreement with Slater et al.
Collapse
|
38
|
Sundqvist KE, Peuhkurinen KJ, Hiltunen JK, Hassinen IE. Effect of acetate and octanoate on tricarboxylic acid cycle metabolite disposal during propionate oxidation in the perfused rat heart. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 801:429-36. [PMID: 6487652 DOI: 10.1016/0304-4165(84)90149-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tricarboxylic acid cycle pool size is determined by anaplerosis and metabolite disposal. The regulation of the latter during propionate metabolism was studied in isolated perfused rat hearts in the light of the characteristics of NADP-linked malic enzyme, which is inhibited by acetyl-CoA. The acetyl-CoA concentration was varied by infusions of acetate and octanoate, and the rate of metabolite disposal was calculated from a metabolic balance sheet compiled from the relevant metabolic fluxes. Propionate addition increased the tricarboxylic acid cycle pool size 4-fold and co-infusion of acetate or octanoate did not change it further. Propionate caused a decrease in the CoA-SH concentration and a 10-fold increase in the propionyl-CoA concentration. A paradoxical increase in the CoA-SH concentration was observed upon co-infusion of acetate in the presence of propionate, an effect probably caused by competitive inhibition of propionate activation. A more pronounced decline in the propionyl-CoA concentration was observed upon the co-infusion of octanoate. In a metabolic steady state, acetate and octanoate reduced propionate disposal only slightly, but did not increase the tricarboxylic acid cycle pool size. The results are in accord with the notion that the tricarboxylic acid pool size is mainly regulated by the anaplerotic mechanisms.
Collapse
|
39
|
Abstract
A coulombic hypothesis of mitochondrial oxidative phosphorylation is presented, founded upon the evidence for negative fixed charge formation during electron transport chain activity. The intermediary force is electrostatic (psi H) and not electrochemical (delta mu H). The electrochemical potential of the chemiosmotic hypothesis is identified as a "phantom" parameter which owes its delusive existence to the procedures by which it is measured. The connection between psi H and the conditional delta mu H values is examined; it entails the use of a variable conversion factor, f, where delta mu H (mV) = f psi H, and the concept of the "protonic status" of the diffuse double layer. A number of problems which beset the chemiosmotic view are reappraised in the light of the new interpretation, and find authentic solutions.
Collapse
|
40
|
Rottenberg H. Membrane potential and surface potential in mitochondria: uptake and binding of lipophilic cations. J Membr Biol 1984; 81:127-38. [PMID: 6492133 DOI: 10.1007/bf01868977] [Citation(s) in RCA: 179] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The uptake and binding of the lipophilic cations ethidium+, tetraphenylphosphonium+ (TPP+), triphenylmethylphosphonium+ (TPMP+), and tetraphenylarsonium+ (TPA+) in rat liver mitochondria and submitochondrial particles were investigated. The effects of membrane potential, surface potentials and cation concentration on the uptake and binding were elucidated. The accumulation of these cations by mitochondria is described by an uptake and binding to the matrix face of the inner membrane in addition to the binding to the cytosolic face of the inner membrane. The apparent partition coefficients between the external medium and the cytosolic surface of the inner membrane (K'o) and the internal matrix volume and matrix face of the inner membrane (K'i) were determined and were utilized to estimate the membrane potential delta psi from the cation accumulation factor Rc according to the relation delta psi = RT/ZF ln [(RcVo - K'o)/(Vi + K'i)] where Vo and Vi are the volume of the external medium and the mitochondrial matrix, respectively, and Rc is the ratio of the cation content of the mitochondria and the medium. The values of delta psi estimated from this equation are in remarkably good agreement with those estimated from the distribution of 86Rb in the presence of valinomycin. The results are discussed in relation to studies in which the membrane potential in mitochondria and bacterial cells was estimated from the distribution of lipophilic cations.
Collapse
|
41
|
Mitchell RA. Control of forward and reverse electron flow in mitochondria: thermodynamic versus kinetic considerations. CURRENT TOPICS IN CELLULAR REGULATION 1984; 24:387-95. [PMID: 6499525 DOI: 10.1016/b978-0-12-152824-9.50041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
AZZONE GIOVANNIFELICE, PIETROBON DANIELA, ZORATTI MARIO. Determination of the Proton Electrochemical Gradient across Biological Membranes. CURRENT TOPICS IN BIOENERGETICS 1984. [DOI: 10.1016/b978-0-12-152513-2.50008-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Jacobus WE, Moreadith RW, Vandegaer KM. Control of heart oxidative phosphorylation by creatine kinase in mitochondrial membranes. Ann N Y Acad Sci 1983; 414:73-89. [PMID: 6584077 DOI: 10.1111/j.1749-6632.1983.tb31676.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Three important points must be emphasized in summary. First is the idea that a cellular microcompartment need not be limited by a semi-permeable membrane. We recognize microcompartments in multi-enzyme complexes where substrates are covalently transported from subunit to subunit. An example of this is the lipoic acid moiety of the pyruvate dehydrogenase complex. However, to act as a kinetic microcompartment, covalent transfer is not an obligatory requirement. Proximity effects may be sufficient for substantial rate enhancement. Our data clearly show that the kinetics of ADP translocation are influenced by the site of ADP formation. We contend that this represents a newly recognized and important form of cellular microcompartmentation. The second point is that we do not want our results misinterpreted as an overextension of the known data concerning tissue respiration. We believe that the primary parameter controlling heart mitochondrial oxygen consumption is the availability of ADP at the adenine nucleotide translocase. Our data show, however, that this is not a simple process. Secondary control is exerted by the localization of ADP formation, i.e. microcompartmentation. As a result of the kinetic data (Table 3), we conclude that the forward rate of mitochondrial creatine kinase is the preferential reaction controlling ADP delivery to the translocase. We are left, nonetheless, with questions concerning the secondary regulation of this enzyme in vivo by substrate (ATP and creatine) and inhibition by product (phosphocreatine). The nature of this control awaits further experimental data. Finally, the results are consistent with the creatine kinase energy transport hypothesis. Overall, the rate of tissue oxygen consumption reflects the metabolic activity of the organ, determined by the rate of ATP utilization (see right side of Figure 1). This results in the cytoplasmic production of ADP. In heart, this is coupled via the bound cytoplasmic isozymes of creatine kinase to the local rephosphorylation of ADP to ATP and the simultaneous production of creatine.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
44
|
|
45
|
McCarthy JE, Ferguson SJ. Characterisation of membrane vesicles from Paracoccus denitrificans and measurements of the effect of partial uncoupling on their thermodynamics of oxidative phosphorylation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 132:417-24. [PMID: 6301833 DOI: 10.1111/j.1432-1033.1983.tb07379.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Vesicles from Paracoccus denitrificans were prepared by applying an osmotic shock to spheroplasts derived from cells that had been grown anaerobically with succinate as carbon source and nitrate as electron acceptor. In the presence of either phenazinemethosulphate or N,N,N' N',-tetramethyl-p-phenylenediamine, the oxidation of isoascorbate supported the uptake of both S14CN- and 86Rb+ (in the presence of valinomycin), whereas NADH and succinate oxidation resulted only in S14CN- uptake. These observations show that the preparations contain both right-side-out and inside-out vesicles, and are related to the earlier proposal that the stimulation of an NADH-2,6-dichloroindophenol reductase activity by bee venom is an indicator of the proportion of right-side-out vesicles present. The implications impinge on previous conclusions [Burnell, J. N., John. P. and Whatley, F. R. (1975) Biochem. J. 150, 527-536 and FEBS Lett. 58, 215-218] about the mechanisms of sulphate and phosphate transport in P. denitrificans. 2. The relationship between the protonmotive force (delta p; transmembrane proton electrochemical gradient expressed in mV) and the phosphorylation potential (delta Gp) generated by vesicles from P. denitrificans has been studied as a function of the concentration of an uncoupler of oxidative phosphorylation. With either NADH or succinate as substrate, the uncoupler had a more pronounced effect on delta p than on delta Gp, so that the ratio delta Gp/F x delta p increased within a limited range of values of delta p close to the maximum. delta Gp/F x delta p was, however, approximately constant over the remaining range of delta p that was titrated. A fraction of 'highly coupled' vesicles, separated from the initial preparation by centrifugation through a Ficoll pad, showed similar titration behaviour. This demonstrated that heterogeneity within a vesicle preparation was not responsible for significant distortion of the true relationship between delta p and delta Gp. Values of delta p and delta Gp/F x delta p (H+/ATP) from 143-108 mV and 3.9-4.4, respectively, were determined when NADH was substrate, whereas with succinate, delta p ranged from 123-88 mV and delta Gp/F x delta p (H+/ATP) from 4.5-5.6. The variation in the value of delta Gp/F x delta p, which can be equated with a minimum value for the H+/ATP of the ATP synthase enzyme, is similar to, but less pronounced than, some of the data previously reported for mitochondria. Thus the observations with these bacterial vesicles, which represent an experimentally simpler system than mitochondria, might be taken as further evidence that measurements of the bulk phase delta p might not truly reflect the driving force for ATP synthesis sensed by the ATP synthase enzyme. However, other explanations that would make the data consistent with a chemiosmotic mechanism cannot be eliminated...
Collapse
|
46
|
Zoratti M, Pietrobon D, Azzone GF. Studies on the relationship between ATP synthesis and transport and the proton electrochemical gradient in rat liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 723:59-70. [PMID: 6219698 DOI: 10.1016/0005-2728(83)90009-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effect of ATP synthesis on delta mu H in rat liver mitochondria has been analyzed by separating the steps of adenine nucleotide translocation and ATP synthesis in the matrix. Either exchange of ATP, synthesized by substrate level phosphorylation in the matrix of oligomycin-treated mitochondria, for external ADP, or activity of the membrane-bound ATP synthase complex results in delta mu H depression with respect to resting state levels. This depression appears to be more pronounced, under strictly comparable conditions, when arsenate is used to stimulate ATP synthase activity than when the ornithine-citrulline conversion reaction is used for the same purpose.
Collapse
|
47
|
|
48
|
|
49
|
Vallano ML, Sonenberg M. Triphenylmethylphosphonium cation distribution as a measure of hormone-induced alterations in white adipocyte membrane potential. J Membr Biol 1982; 68:57-66. [PMID: 6286974 DOI: 10.1007/bf01872254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Triphenylmethylphosphonium (TPMP+) partitions into the mitochondrial and cytosolic compartments in the rat white adipocyte in a potential-dependent fashion. The relationship between [3H]TPMP+ distribution, intracellular cAMP generation and lipolysis in response to hormones and cAMP-mimetic compounds was examined. Half-maximal [3H]TPMP+ efflux and glycerol release were produced by 15 and 9 nM adrenocorticotropin, 170 and 110 nM 1-epinephrine, 70 and 27 microM isobutylmethylxanthine and 800 and 750 microM dibutyryl cAMP, respectively. Hormone-stimulated cAMP generation was also correlated with [3H]TPMP+ efflux and lipolysis in terms of concentration dependency. In kinetic experiments, glycerol release and [3H]TPMP+ efflux in response to adrenocorticotropin or cholera toxin proceeded over a similar time course, whereas an earlier rise in cAMP generation was detected. The depolarizing effect of lipolytic compounds was localized to the mitochondrial compartment. When cells were incubated in elevated-[K+]0 buffer, the stimulatory effect of dibutyryl cAMP on [3H]TPMP+ efflux and lipolysis persisted, suggesting that maintenance of the plasma membrane potential is not critical for demonstration of these responses. When the extracellular concentration of serum albumin, which provides binding sites for free fatty acids, was increased from 1 to 3%, an increase in glycerol release and a decrease in [3H]TPMP+ efflux was observed. We suggest that intracellular free fatty acid accumulation in response to lipolytic agents causes dissipation of the mitochondrial membrane potential and efflux of [3H]TPMP+ from the organelle and cell.
Collapse
|
50
|
Forman NG, Wilson DF. Energetics and stoichiometry of oxidative phosphorylation from NADH to cytochrome c in isolated rat liver mitochondria. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33601-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|