1
|
Sánchez-Martín MJ, Urbán P, Pujol M, Haro I, Alsina MA, Busquets MA. Biophysical Investigations of GBV-C E1 Peptides as Potential Inhibitors of HIV-1 Fusion Peptide. Chemphyschem 2011; 12:2816-22. [DOI: 10.1002/cphc.201100407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Indexed: 01/04/2023]
|
2
|
Abstract
Lipid bilayer fusion is a complex process requiring several intermediate steps. Initially, the two bilayers are brought into close contact following removal of intervening water layers and overcoming electrostatic repulsions between opposing bilayer head groups. In this study we monitor by light scattering the reversible aggregation of phosphatidylcholine single shell vesicles during which adhesion occurs but stops prior to a fusion process. Light scattering measurements of dimyristoyl-sn-glycero-3-phosphocholine (DMPC), dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in water show that lowering the temperature of about 0.14 micron single shell vesicles of DPPC (from 20 °C to 5 °C) and about 2 micron vesicles of DSPC (from 20 °C to 15 °C), but not of 1 micron vesicles of DMPC, results in extensive aggregation within 24 hours that is reversible by an increase in temperature. Aggregation of DSPC vesicles was confirmed by direct visual observation. Orientation of lipid head groups parallel to the plane of the bilayer and consequent reduction of the negative surface charge can account for the ability of DPPC and DSPC vesicles to aggregate. Retention of negatively charged phosphates on the surface and the burial of positively charged cholines within the bilayer offer an explanation for the failure of DMPC vesicles to aggregate. Lowering the temperature of 1,2-dipalmitoyl-sn-glycero-3-phosphoserine (DPPS) vesicles from 20 °C to 5 °C failed to increase aggregation within 24 hours at Mg++/DPPS ratios that begin to initiate aggregation and fusion.
Collapse
|
3
|
|
4
|
Meers P, Company TL, Princeton NJ. Liposome-based studies of human neutrophil degranulation and protein-lipid interactions in membrane fusion. J Liposome Res 2008. [DOI: 10.3109/08982109509012680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Meers P, Ali S, Erukulla R, Janoff AS. Novel inner monolayer fusion assays reveal differential monolayer mixing associated with cation-dependent membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1467:227-43. [PMID: 10930525 DOI: 10.1016/s0005-2736(00)00224-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ability to specifically monitor the behavior of the inner monolayer lipids of membranous vesicles during the membrane fusion process is useful technically and experimentally. In this study, we have identified N-NBD-phosphatidylserine as a reducible probe particularly suitable for inner monolayer fusion assays because of its low rate of membrane translocation after reduction of the outer monolayer probes by dithionite. Data are presented on translocation as a function of temperature, vesicle size, membrane composition, and serum protein concentration. Translocation as a result of the fusion event itself was also characterized. We further show here that a second membrane-localized probe, a long wavelength carbocyanine dye referred to a diI(5)C18ds, appears to form a membrane-bound resonance energy transfer pair with N-NBD-PS, and its outer monolayer fluorescence can also be eliminated by dithionite treatment. Lipid dilution of these probes upon fusion with unlabeled membranes leads to an increase in NBD donor fluorescence, and hence is a new type of inner monolayer fusion assay. These inner monolayer probe mixing assays were compared to random lipid labeling and aqueous contents mixing assays for cation-dependent fusion of liposomes composed of phosphatidylserine and phosphatidylethanolamine. The results showed that the inner monolayer fusion assay eliminates certain artifacts and reflects fairly closely the rate of non-leaky mixing of aqueous contents due to fusion, while outer monolayer mixing always precedes mixing of aqueous contents. In fact, vesicle aggregation and outer monolayer lipid mixing were found to occur over very long periods of time without inner monolayer mixing at low cation concentrations. Externally added lysophosphatidylcholine inhibited vesicle aggregation, outer monolayer mixing and any subsequent fusion. The state of vesicle aggregation and outer monolayer exchange that occurs below the fusion threshold may represent a metastable intermediate state that may be useful for further studies of the mechanism of membrane fusion.
Collapse
Affiliation(s)
- P Meers
- The Liposome Company, Princeton, NJ, USA.
| | | | | | | |
Collapse
|
6
|
Ghosh JK, Shai Y. Direct evidence that the N-terminal heptad repeat of Sendai virus fusion protein participates in membrane fusion. J Mol Biol 1999; 292:531-46. [PMID: 10497019 DOI: 10.1006/jmbi.1999.3097] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have demonstrated the importance of heptad repeat regions within envelope proteins of viruses in mediating conformational changes at various stages of viral infection. However, it is not clear if heptad repeats have a direct role in the actual fusion event. Here we have synthesized, fluorescently labeled and functionally and structurally characterized a wild-type 70 residue peptide (SV-117) composed of both the fusion peptide and the N-terminal heptad repeat of Sendai virus fusion protein, two of its mutants, as well as the fusion peptide and heptad repeat separately. One mutation was introduced in the fusion peptide (G119K) and another in the heptad repeat region (I154K). Similar mutations have been shown to drastically reduce the fusogenic ability of the homologous fusion protein of Newcastle disease virus. We found that only SV-117 was active in inducing lipid mixing of egg phosphatidylcholine/phosphatidyiglycerol (PC/PG) large unilamellar vesicles (LUV), and not the mutants nor the mixture of the fusion peptide and the heptad repeat. Functional characterization revealed that SV-117, and to a lesser extent its two mutants, were potent inhibitors of Sendai virus-mediated hemolysis of red blood cells, while the fusion peptide and SV-150 were negligibly active alone or in a mixture. Hemagglutinin assays revealed that none of the peptides disturb the binding of virions to red blood cells. Further studies revealed that SV-117 and its mutants oligomerize similarly in solution and in membrane, and have similar potency in inducing vesicle aggregation. Circular dichroism and FTIR spectroscopy revealed a higher helical content for SV-117 compared to its mutants in 40 % tifluorethanol and in PC/PG multibilayer membranes, respectively, ATR-FTIR studies indicated that SV-117 lies more parallel with the surface of the membrane than its mutants. These observations suggest a direct role for the N-terminal heptad repeat in assisting the fusion peptide in mediating membrane fusion.
Collapse
Affiliation(s)
- J K Ghosh
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | |
Collapse
|
7
|
The Effect of Membrane Charge on Gold Nanoparticle Synthesis via Surfactant Membranes. J Colloid Interface Sci 1999; 210:73-85. [PMID: 9924109 DOI: 10.1006/jcis.1998.5932] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of vesicle membrane structure and charge on the synthesis of gold nanoparticles was investigated. The vesicle membranes were comprised of either negatively charged soy lipids or mixtures of charge neutral and negatively charged soy lipids. Palladium ions bound to the membranes served as the catalyst for metal particle synthesis using an electroless metallization procedure. The size range of particles synthesized using membranes comprised of only negatively charged lipids (5-15 nm) was significantly smaller than those synthesized using mixtures of negatively charged and charge-neutral lipids (2-180 nm). X-ray diffraction revealed that the average crystallite size decreased with increasing palladium ion content of the membranes. It also showed that the average crystallite size was smaller for particles synthesized using vesicles comprised of only soy phoshohydroxyethanol lipids than for particles synthesized using vesicles comprised of only soy phosphatidic acid lipids. Particles synthesized with membranes comprised of only negatively charged lipids were encapsulated within the resulting lipid membrane matrix. FT-IR of the lipid matrix indicated that the matrix was formed as the result of ionic bridging of the lipid phosphate headgroups with gold ions. Copyright 1999 Academic Press.
Collapse
|
8
|
Abstract
Membrane fusion has been examined in a model system of small unilamellar vesicles of synthetic lipids that can be oligomerized through the lipid headgroups. The oligomerization can be induced either in both bilayer leaflets or in the inner leaflet exclusively. Oligomerization leads to denser lipid headgroup packing, with concomitant reduction of lipid lateral diffusion and membrane permeability. As evidenced by lipid mixing assays, electron microscopy, and light scattering, calcium-induced fusion of the bilayer vesicles is strongly retarded and inhibited by oligomerization. Remarkably, oligomerization of only the inner leaflet of the bilayer is already sufficient to affect fusion. The efficiency of inhibition and retardation of fusion critically depend on the relative amount of oligomeric lipid present, on the concentration of calcium ions, and on temperature. Implications for the mechanism of bilayer membrane fusion are discussed in terms of lipid lateral diffusion and membrane curvature effects.
Collapse
Affiliation(s)
- B J Ravoo
- Department of Organic and Molecular Inorganic Chemistry and Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
9
|
Luk AS, Kaler EW, Lee SP. Protein lipid interaction in bile: effects of biliary proteins on the stability of cholesterol-lecithin vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1390:282-92. [PMID: 9487149 DOI: 10.1016/s0005-2760(97)00161-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The nucleation of cholesterol crystals is an obligatory precursor to cholesterol gallstone formation. Nucleation, in turn, is believed to be preceded by aggregation and fusion of cholesterol-rich vesicles. We have investigated the effects of two putative pro-nucleating proteins, a concanavalin A-binding protein fraction and a calcium-binding protein, on the stability of sonicated small unilamellar cholesterol-lecithin vesicles. Vesicle aggregation is followed by monitoring absorbance, and upon addition of the concanavalin A-binding protein fraction the absorbance of a vesicle dispersion increases continuously with time. Vesicle fusion is probed by a fluorescence contents-mixing assay. Vesicles apparently fuse slowly after the addition of the concanavalin A-binding protein, although inner filter effects confound the quantitative measurement of fusion rates. The rates of change of absorbance and fluorescence increase with the concentration of the protein, and the second-order dimerization rate constant increases with both the protein concentration and the cholesterol content of the vesicles. On the other hand, the calcium-binding protein has no effect on the stability of the vesicle dispersion. This protein may therefore affect cholesterol crystal formation not by promoting the nucleation process, but by enhancing crystal growth and packaging. Our results demonstrate that biliary proteins can destabilize lipid vesicles and that different proteins play different roles in the mechanism of cholesterol gallstone formation.
Collapse
Affiliation(s)
- A S Luk
- Department of Chemical Engineering, Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, DE, USA
| | | | | |
Collapse
|
10
|
Hristova K, Selsted ME, White SH. Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J Biol Chem 1997; 272:24224-33. [PMID: 9305875 DOI: 10.1074/jbc.272.39.24224] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have examined the interactions of the six known rabbit neutrophil defensin antimicrobial peptides with large unilamellar vesicles (LUV) made from various lipid mixtures based on the lipid composition of Escherichia coli membranes. We find that the permeabilization of LUV made from E. coli whole lipid extracts differs dramatically from that of single-component LUV made from palmitoyl-oleoyl-phosphatidylglycerol (POPG). Specifically, defensins NP-1, NP-2, NP-3A, NP-3B, and a natural mixture of the six defensins cause fast nonpreferential leakage of high molecular weight dextrans as well as the low molecular weight fluorophore/quencher pair 8-aminonapthalene-1,3,6 trisulfonic acid (ANTS)/p-xylene-bis-pyridinium bromide (DPX) from E. coli whole lipid LUV through large, transient membrane lesions. In contrast, release of ANTS/DPX from POPG LUV induced by the defensins is slow and graded with preference for DPX (Hristova, K., Selsted, M. E., and White, S. H. (1996) Biochemistry 35, 11888-11894). Interestingly, defensins NP-4 and NP-5 alone do not induce leakage from E. coli whole lipid LUV, whereas only NP-4 is ineffective with POPG LUV. Examination of the sequences of the six defensins suggests that the inactivity of NP-4 and NP-5 may be due to their lower net positive charge and/or the substitution of a Thr for the Arg or Lys that follows the fourth Cys residue. We found the presence of three major lipid components of E. coli whole lipid to be essential for creation of the large lesions observed in LUV: phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Cardiolipin appears to play a key role because no leakage can be induced when only phosphatidylglycerol and phosphatidylethanolamine are present. These results indicate the importance of membrane lipid composition in the permeabilization of cell membranes by rabbit defensins.
Collapse
Affiliation(s)
- K Hristova
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
11
|
Kliger Y, Aharoni A, Rapaport D, Jones P, Blumenthal R, Shai Y. Fusion peptides derived from the HIV type 1 glycoprotein 41 associate within phospholipid membranes and inhibit cell-cell Fusion. Structure-function study. J Biol Chem 1997; 272:13496-505. [PMID: 9153194 DOI: 10.1074/jbc.272.21.13496] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The fusion domain of human immunodeficiency virus (HIV-1) envelope glycoprotein (gp120-gp41) is a conserved hydrophobic region located at the N terminus of the transmembrane glycoprotein (gp41). A V2E mutant has been shown to dominantly interfere with wild-type envelope-mediated syncytium formation and virus infectivity. To understand this phenomenon, a 33-residue peptide (wild type, WT) identical to the N-terminal segment of gp41 and its V2E mutant were synthesized, fluorescently labeled, and characterized. Both peptides inhibited HIV-1 envelope-mediated cell-cell fusion and had similar alpha-helical content in membrane mimetic environments. Studies with fluorescently labeled peptide analogues revealed that both peptides have high affinity for phospholipid membranes, are susceptible to digestion by proteinase-K in their membrane-bound state, and tend to self- and coassemble in the membranes. In SDS-polyacrylamide gel electrophoresis the WT peptide formed dimers as well as higher order oligomers, whereas the V2E mutant only formed dimers. The WT, but not the V2E mutant, induced liposome aggregation, destabilization, and fusion. Moreover, the V2E mutant inhibited vesicle fusion induced by the WT peptide, probably by forming inactive heteroaggregates. These data form the basis for an explanation of the mechanism by which the gp41 V2E mutant inhibits HIV-1 infectivity in cells when co-expressed with WT gp41.
Collapse
Affiliation(s)
- Y Kliger
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | | | | | |
Collapse
|
12
|
Nishiya T, Lam RTT. Interaction of stearylamine-liposomes with erythrocyte ghosts: analysis of membrane lipid mixing and aqueous contents mixing, and the effect of carboxymethyl chitin on the interaction. Colloids Surf B Biointerfaces 1995. [DOI: 10.1016/0927-7765(94)01158-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Nishiya T, Lam RT, Eng F, Zerey M, Lau S. Mechanistic study on toxicity of positively charged liposomes containing stearylamine to blood. ARTIFICIAL CELLS, BLOOD SUBSTITUTES, AND IMMOBILIZATION BIOTECHNOLOGY 1995; 23:505-12. [PMID: 7581836 DOI: 10.3109/10731199509117966] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We studied the interaction of stearylamine (SA) containing liposomes (SA-liposomes) with erythrocyte ghost (EG) or platelets, utilizing the Tb/dipicolinate (Tb/DPA) assay for the mixing of aqueous contents and a resonance energy transfer (RET) assay for the mixing of lipid. The results demonstrate that SA-liposomes and EG, after aggregation, have a great tendency to mix their lipid before the mixing of the internal contents. The mixing of their contents takes place inside the vesicles due to the fusion of SA-liposomes and EG, followed by the leakage of the contents from the vesicles. In the presence of carboxymethyl chitin (CM-chitin), SA-liposomes-EG interaction was inhibited, indicating that CM-chitin reduces the tendency of SA-liposomes to interact with EG. The lipid mixing between SA-liposomes and platelets was not affected by CM-chitin or phagocytosis inhibitors: EDTA, cytochalasin B, or 2,4-dinitrophenol and iodoacetate, indicating the importance of glycoproteins on the platelet membrane surface in the interaction of SA-liposomes with platelets.
Collapse
Affiliation(s)
- T Nishiya
- Artificial Cells & Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
14
|
Glaser PE, Gross RW. Plasmenylethanolamine facilitates rapid membrane fusion: a stopped-flow kinetic investigation correlating the propensity of a major plasma membrane constituent to adopt an HII phase with its ability to promote membrane fusion. Biochemistry 1994; 33:5805-12. [PMID: 8180209 DOI: 10.1021/bi00185a019] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A critical step in membrane fusion involves the formation of a lipid intermediate which shares a conformational similarity with an inverted hexagonal phase (HII). Since plasmenylethanolamines possess a marked propensity for hexagonal phase formation and represent a major lipid constituent of several membrane systems which undergo rapid membrane fusion (e.g., plasma membranes and synaptic vesicle membranes), we compared the relative fusogenicity of lipid vesicles containing plasmenylethanolamine to that of vesicles containing their diacyl phospholipid counterpart (i.e., phosphatidylethanolamine). Vesicles comprised of equimolar mixtures of phosphatidylcholine and phosphatidylethanolamine fused slowly with phosphatidylserine vesicles in the presence of 10 mM CaCl2, as assessed either by lipid mixing (dequenching of octadecyl rhodamine fluorescence, 7.4 Fmax% s-1) or internal contents mixing (fluorescence enhancement from the resultant Tb/dipicolinic acid charge transfer complex, 8.7Fmax% s-1). In stark contrast, vesicles comprised of equimolar mixtures of phosphatidylcholine and plasmenylethanolamine fused three times more rapidly, as assessed by both lipid mixing (22.1 Fmax% s-1) and internal contents mixing (21.4Fmax% s-1) assays. The importance of an HII-like intermediate in membrane fusion was further substantiated by demonstration that plasmenylethanolamines containing arachidonic acid at the sn-2 position (which demonstrate a greater propensity for HII phase formation) exhibited the most rapid rate of membrane fusion (five times greater than phosphatidylethanolamine containing oleic acid at the sn-2 position). Furthermore, vesicles containing plasmenylethanolamines in physiologic ratios with other phospholipids (i.e., PC/PE/PS, 45:45:10, mol/mol) underwent fusion six times more rapidly (4.4Fmax% min-1) than corresponding vesicles in which plasmenylethanolamine was replaced with phosphatidylethanolamine (0.7Fmax% min-1).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P E Glaser
- Division of Bioorganic Chemistry and Molecular Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
15
|
Interaction of fluorescently labeled analogues of the amino-terminal fusion peptide of Sendai virus with phospholipid membranes. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36582-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Little TE, Madani H, Lee SP, Kaler EW. Lipid vesicle fusion induced by phospholipase C activity in model bile. J Lipid Res 1993. [DOI: 10.1016/s0022-2275(20)40748-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Affiliation(s)
- S Nir
- Seagram Centre for Soil and Water Sciences, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
18
|
Affiliation(s)
- N Düzgüneş
- Department of Microbiology, University of Pacific School of Dentistry, San Francisco, California 94115
| | | |
Collapse
|
19
|
Horkovics-Kovats S, Traub P. A mathematical model for protein-induced lipid vesicle leakage: interaction of the intermediate filament protein vimentin and its isolated N-terminus with phosphatidylinositol vesicles. J Theor Biol 1991; 153:89-110. [PMID: 1766255 DOI: 10.1016/s0022-5193(05)80354-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A mathematical model was developed to analyze the leakage of phosphatidylinositol small unilamellar vesicles induced by the intermediate filament protein vimentin and its isolated N-terminal polypeptide. This model describes the kinetic and steady-state characteristics of this vesicle leakage as a direct action of protein on the lipid bilayer. Moreover, qualitative information at the molecular level can be deduced about protein-protein or protein-lipid interactions from the derived initial rate of vesicle leakage and the value of vesicle leakage at steady-state condition as a function of the protein concentration. Additionally, quantitative data on the inhibitory effect of various substances (here Ca2+ or Mg2+) can also be derived. This approach offers a possibility to compare interactions occurring within different protein-lipid systems by determining the characteristic parameters for the respective kinetic and steady-state conditions.
Collapse
|
20
|
Meers P, Hong KL, Papaphadjopoulos D. Role of specific lipids and annexins in calcium-dependent membrane fusion. Ann N Y Acad Sci 1991; 635:259-72. [PMID: 1741587 DOI: 10.1111/j.1749-6632.1991.tb36497.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- P Meers
- Department of Pathology, William B. Castle Hematology Laboratory, Boston University School of Medicine, Massachusetts 02118-2394
| | | | | |
Collapse
|
21
|
Zolese G, Ambrosini A, Bertoli E, Curatola G, Tanfani F. Interaction of the herbicide atrazine with model membranes. II: Effect of atrazine on fusion of phospholipid vesicles. Chem Phys Lipids 1990; 56:101-8. [PMID: 2095988 DOI: 10.1016/0009-3084(90)90093-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effect of atrazine on Ca2+ induced fusion of cardiolipin(CL) and phosphatidylserine (PS) vesicles is studied by Tb3+/dipicolinic acid fluorescence and turbidity measurements. The interaction of herbicide with CL and PS membranes is studied by DPH fluorescence polarization. At low concentrations the pesticide partially inhibits fusion, especially in CL vesicles. Higher concentrations of atrazine decrease inhibition of fusion in CL, while fusion is slightly increased in PS. The Ca2(+)-induced increase of turbidity is not affected by atrazine in both PS and CL aggregation experiments. DPH polarization measurements show a perturbation only of the membrane hydrophobic core of PS, in presence of Ca2+. It is hypothesized that this biphasic effect shown by low and high atrazine concentrations on Ca2(+)-induced fusion of vesicles is due to a different localization of the pesticide in the membrane.
Collapse
Affiliation(s)
- G Zolese
- Istituto di Biochimica, Facoltà di Medicina e Chirurgia, Università di Ancona, Italy
| | | | | | | | | |
Collapse
|
22
|
Afdhal NH, Smith BF. Cholesterol crystal nucleation: a decade-long search for the missing link in gallstone pathogenesis. Hepatology 1990; 11:699-702. [PMID: 2184117 DOI: 10.1002/hep.1840110426] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- N H Afdhal
- Section of Gastroenterology and Hepatology, Boston City Hospital, MA 02118
| | | |
Collapse
|
23
|
Papahadjopoulos D, Nir S, Düzgünes N. Molecular mechanisms of calcium-induced membrane fusion. J Bioenerg Biomembr 1990; 22:157-79. [PMID: 2139437 DOI: 10.1007/bf00762944] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have reviewed studies on calcium-induced fusion of lipid bilayer membranes and the role of synexin and other calcium-binding proteins (annexins) in membrane fusion. We have also discussed the roles of other cations, lipid phase transitions, long chain fatty acids and other fusogenic molecules. Finally, we have presented a simple molecular model for the mechanism of lipid membrane fusion, consistent with the experimental evidence and incorporating various elements proposed previously.
Collapse
Affiliation(s)
- D Papahadjopoulos
- Cancer Research Institute, University of California, San Francisco 94143-0128
| | | | | |
Collapse
|
24
|
Gamon BL, Virden JW, Berg JC. The aggregation kinetics of an electrostatically stabilized dipalmitoyl phosphatidylcholine vesicle system. J Colloid Interface Sci 1989. [DOI: 10.1016/0021-9797(89)90223-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Hui SW, Nir S, Stewart TP, Boni LT, Huang SK. Kinetic measurements of fusion of phosphatidylserine-containing vesicles by electron microscopy and fluorometry. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 941:130-40. [PMID: 3132972 DOI: 10.1016/0005-2736(88)90173-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Large unilamellar vesicles (REV) containing phosphatidylserine and phosphatidylethanolamine at a ratio of 1:3 were induced to fuse by adding calcium (4 mM). The kinetics of fusion was monitored by fluorometry using terbium or dipicolinic acid-containing vesicles. The morphology and the states of vesicle aggregation and fusion were examined at approx. 2, 30, 60, 150 and 900 s after calcium addition, by rapid quenching and freeze-fracture electron microscopy. The size and the state of aggregation of vesicles are quantitated from 4000 randomly selected vesicles. The aggregation and fusion kinetics as assayed by fluorescence volume mixing is very well simulated and predicted by the mass action model. The model essentially predicts the time course of the distribution of the aggregates and the increase in size of fused particles as measured by electron microscopy, although in some cases the predicted fusion rate exceeds that by morphometric measurement. No morphological features can be defined as fusion intermediates, although bead-like and rim-like materials may be attributed to the remnants of broken diaphragms between fusion partners.
Collapse
Affiliation(s)
- S W Hui
- Biophysics Department, Roswell Park Memorial Institute, Buffalo, NY 14263
| | | | | | | | | |
Collapse
|
26
|
Cevc G, Seddon JM, Hartung R, Eggert W. Phosphatidylcholine-fatty acid membranes. I. Effects of protonation, salt concentration, temperature and chain-length on the colloidal and phase properties of mixed vesicles, bilayers and nonlamellar structures. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 940:219-40. [PMID: 2835979 DOI: 10.1016/0005-2736(88)90197-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The phase and colloidal properties of phosphatidylcholine/fatty acid (PC/FA) mixed vesicles have been investigated by optical methods, acid-base titration, and theoretically as a function of temperature (5-80 degrees C), molar lipid ratio (0-1), lipid chain length (C14-C18), headgroup ionization (1.5 less than or equal to pH less than or equal to 10), vesicle concentration (0.05-32 mumol vesicle.dm-3, and ionic strength (0.005 less than or equal to J less than or equal to 0.25). Increasing the fatty acid concentration in PC bilayers causes the phase transition temperatures (at 4 less than or equal to pH less than or equal to 5) to rise until, for more than 2 FA molecules per PC molecule, the sample turbidity exhibits only two transitions corresponding to the chain-melting of the 1:2 stoichiometric complexes of PC/FA, and pure fatty acid. The former transition is into a nonlamellar phase and is accompanied by extremely rapid vesicle aggregation (with association rates on the order of Ca approximately 10(7) dm3.mol-1.s-1) and massive lipid precipitation. Fluid-phase vesicles with less than 2 FA per PC associate much more slowly (Ca approximately 10(3) dm3.mol-1.s-1), their aggregation being comparable to that of the ordered-phase liposomes. Under no conditions was the relation between the fatty acid concentration and the vesicle association rate for the fluid-phase vesicles linear. In contrast to the X-ray diffraction data, optical measurements reveal a 'pretransitional region' between the chain-melting temperature of the PC component and the temperature at which the gross transformation into a nonlamellar phase sets in. This is seen for all lipid mixtures investigated. On the relative temperature scale, lipids with different chain lengths behave qualitatively similarly; however, the effective association constants determined for samples of constant lipid concentration seem to decrease somewhat with the number of CH2 groups per chain. Fatty acid protonation, which yields electrically neutral bilayers, invariably increases the rate of vesicle association; we have measured, for example, Ca approximately 10(2) at pH approximately 7 and Ca approximately 10(7) dm3.mol-1.s-1 at pH approximately 4). Protonation of the phosphatidylcholine phosphate groups, which causes a net positive charge to accumulate on the lipid vesicles, initially increases (Ca approximately 10(8) dm3.mol-1.s-1) but ultimately decreases (Ca approximately 10(7) dm3.mol-1.s-1) the rate of association between PC/FA (1:2) mixed vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Cevc
- Laboratorium für exp. Urologie, Universitätsklinikum Essen, F.R.G
| | | | | | | |
Collapse
|
27
|
Bentz J, Alford D, Cohen J, Düzgüneş N. La3+-induced fusion of phosphatidylserine liposomes. Close approach, intermembrane intermediates, and the electrostatic surface potential. Biophys J 1988; 53:593-607. [PMID: 3382713 PMCID: PMC1330232 DOI: 10.1016/s0006-3495(88)83138-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The fusion of large unilamellar phosphatidylserine liposomes (PS LUV) induced by La3+ has been monitored using the 1-aminoapthalene-3,6,8-trisulfonic acid/p-xylenebis(pyridinium bromide) (ANTS/DPX) fluorescence assay for the mixing of aqueous contents. The fusion event is extensive and nonleaky, with up to 95% mixing of contents in the fused liposomes. However, addition of excess EDTA leads to disruption of the fusion products in a way that implies the existence of metastable intermembrane contact sites. The maximal fusion activity occurs between 10 and 100 microM La3+ and fusion can be terminated rapidly, without loss of contents, by the addition of excess La3+, e.g., 1 mM La3+ at pH 7.4. This observation is explained by the very large intrinsic binding constant (approximately 10(5) M-1) of La3+ to the PS headgroup, as measured by microelectrophoresis. Addition of 1 mM La3+ causes charge reversal of the membrane and a large positive surface potential. La3+ binding to PS causes the release of a proton. These data can be explained if La3+ can chelate to PS at two sites, with one of the sites being the primary amino group. This binding model successfully predicts that at pH 4.5 fusion occurs up to 2 mM La3+, due to reduced La3+ binding at low pH. We conclude that the general mechanism of membrane fusion includes three kinetic steps. In addition to (a) aggregation, there is (b) the close approach of the surfaces, or thinning of the hydration layer, and (c) the formation of intermembrane intermediates which determine the extent to which membrane destabilization leads to fusion (mixing of aqueous contents), as opposed to lysis. The lifetime of these intermembrane intermediates appears to depend upon La3+ binding to both PS sites.
Collapse
Affiliation(s)
- J Bentz
- Department of Pharmacy, School of Pharmacy, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
28
|
Eytan GD, Broza R, Shalitin Y. Gramicidin S and dodecylamine induce leakage and fusion of membranes at micromolar concentrations. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 937:387-97. [PMID: 2447950 DOI: 10.1016/0005-2736(88)90261-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of the antibiotic gramicidin S and the synthetic cationic amphipath dodecylamine on membranes was studied with large unilamellar vesicles containing phosphatidylcholine and varying concentrations of cardiolipin. Fusion of vesicles composed of equal amounts of the two phospholipids occurred with both drugs at concentrations lower than 10 microM. Fusion was accompanied by leakage of the contents, while higher drug concentrations caused complete loss of vesicle contents. Drug concentrations at least one order of magnitude lower were needed to induce leakage from vesicles containing only phosphatidylcholine. Under these conditions, contents leakage occurred with no measurable aggregation or membrane intermixing. On the other hand, much higher concentrations of both drugs were required to induce leakage from vesicles containing predominantly cardiolipin. Release of contents occurred upon aggregation of the vesicles and collapse of the vesicular organization, as well as formation of paracrystalline structure when dodecylamine was employed or amorphous material when gramicidin A was used. In contradistinction to other model systems, phosphatidylcholine was needed for fusion induced by the cationic amphipaths, and its presence reduced the threshold concentration of the drugs needed to induce leakage of the contents. The similar effects of the two drugs on membranes imply that, at least in these model membranes, the relevant feature of both drugs is only their amphiphatic nature.
Collapse
Affiliation(s)
- G D Eytan
- Department of Biology, Technion-Israel Institute of Technology, Haifa
| | | | | |
Collapse
|
29
|
Düzgüneş N, Allen TM, Fedor J, Papahadjopoulos D. Lipid mixing during membrane aggregation and fusion: why fusion assays disagree. Biochemistry 1987; 26:8435-42. [PMID: 3442666 DOI: 10.1021/bi00399a061] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The kinetics of lipid mixing during membrane aggregation and fusion was monitored by two assays employing resonance energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (NBD-PE) and N-(lissamine Rhodamine B sulfonyl)phosphatidylethanolamine (Rh-PE). For the "probe mixing" assay, NBD-PE and Rh-PE were incorporated into separate populations of phospholipid vesicles. For the "probe dilution" assay, both probes were incorporated into one population of vesicles, and the assay monitored the dilution of the molecules into the membrane of unlabeled vesicles. The former assay was found to be very sensitive to aggregation, even when the internal aqueous contents of the vesicles did not intermix. Examples of this case were large unilamellar vesicles (LUV) composed of phosphatidylserine (PS) in the presence of Mg2+ and small unilamellar vesicles (SUV) composed of phosphatidylserine in the presence of high concentrations of Na+. No lipid mixing was detected in these cases by the probe dilution assay. Under conditions where membrane fusion (defined as the intermixing of aqueous contents with concomitant membrane mixing) was observed, such as LUV (PS) in the presence of Ca2+, the rate of probe mixing was faster than that of probe dilution, which in turn was faster than the rate of contents mixing. Two assays monitoring the intermixing of aqueous contents were also compared. The Tb/dipicolinic acid assay reported slower fusion rates than the 1-aminonaphthalene-3,6,8-trisulfonic acid/N,N'-p-xylylene-bis(pyridinium bromide) assay for PS LUV undergoing fusion in the presence of Ca2+. These observations point to the importance of utilizing contents mixing assays in conjunction with lipid mixing assays to obtain the rates of membrane destabilization and fusion.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Düzgüneş
- Cancer Research Institute, University of California, San Francisco 94143-0128
| | | | | | | |
Collapse
|
30
|
Nir S, Stutzin A, Pollard HB. Effect of synexin on aggregation and fusion of chromaffin granule ghosts at pH 6. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 903:309-18. [PMID: 2443172 DOI: 10.1016/0005-2736(87)90221-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fusion of chromaffin granule ghosts was induced by synexin at pH 6, 37 degrees C, in the presence of 10(-7) M Ca2+. To study the kinetics and extent of this fusion process we employed two assays that monitored continuously mixing of aqueous contents or membrane mixing by fluorescence intensity increases. In both assays chromaffin granule ghosts were either labeled on the membrane or in the included aqueous phase. The ratios of blank to labeled chromaffin granule ghosts were varied from 1 to 10. The results were analyzed in terms of a mass action kinetic model, which views the overall fusion reaction as a sequence of a second-order process of aggregation followed by a first-order fusion reaction. The model calculations gave fare simulations and predictions of the experimental results. The rate constants describing membrane mixing are more than 2-fold larger than those for volume mixing. The analysis also indicated that the initial aggregation and fusion processes, up to dimer formation, were extremely fast. The rate constant of aggregation was close to the limit in diffusion-controlled processes, whereas the fusion rate constant was about the same as found in fastest virus-liposome fusion events at pH 5. A small increase in volume was found to accompany the fusion between chromaffin granule ghosts. Using ratios of synexin to chromaffin granule ghost protein of 0.13, 0.41 and 1.15 indicated that the overall fusion rate was larger for the intermediate (0.41) case. The analysis showed that the main activity of synexin was an enhancement of the rate of aggregation. At intermediate or excessive synexin concentrations it, respectively, promoted moderately, or inhibited the actual fusion step.
Collapse
Affiliation(s)
- S Nir
- Laboratory of Cell Biology and Genetics, NIADDK, Bethesda, MD 20892
| | | | | |
Collapse
|
31
|
|
32
|
Amselem S, Barenholz Y, Loyter A, Nir S, Lichtenberg D. Fusion of Sendai virus with negatively charged liposomes as studied by pyrene-labelled phospholipid liposomes. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 860:301-13. [PMID: 3017417 DOI: 10.1016/0005-2736(86)90527-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sendai virus particles fuse with negatively charged liposomes but not with vesicles made of zwitterionic phospholipids. The liposome-virus fusion process was studied by dilution of the concentration-dependent excimer-forming fluorophore 2-pyrenyldodecanoylphosphatidylcholine contained in the liposomes by the viral lipids. The data were analyzed in the framework of a mass action kinetic model. This provided analytical solutions for the final levels of probe dilution and numerical solutions for the kinetics of the overall fusion process, in terms of rate constants for the liposome-virus adhesion, deadhesion and fusion. This analysis led to the following conclusions: At neutral pH and 37 degrees C, only 15% of the virus particles can fuse with the phospholipid vesicles, although all the virions may aggregate with the liposomes. The rate constants for aggregation, fusion and deadhesion are of the orders of magnitude of 10(7) M-1 X s-1, 10(-3) s-1 and 10(-2), s-1, respectively. The fraction of active virus increases with temperature. At acidic pH, both the fraction of 'fusable' virus and the rate of fusion increase markedly. The optimal pH for fusion is 3-4, where most of the virus particles are active. At higher pH values, an increasing fraction of the virus particles become inactive, probably due to ionization of viral glycoproteins, whereas at pH values below 3.0 the fusion is markedly reduced, most likely due to protonation of the negatively charged vesicles. While only 15% of the virions fuse with the liposomes at pH 7.4 and 37 degrees C, all the liposomes lose their content (Amselem, S., Loyter, A. Lichtenberg, D. and Barenholz, Y. (1985) Biochim. Biophys. Acta 820, 1-10). We therefore propose that release of entrapped solutes is due to liposome-virus aggregation, and not to fusion. Both trypsinization and heat inactivation of the virus particles inhibit not only the fusion process but also the release of carboxyfluorescein. This demonstrates the obligatory role of viral membrane proteins in liposome-virus aggregation. Reconstituted vesicles made of the viral lipid and the hemagglutinin/neuraminidase (HN) glycoprotein fuse with negatively charged liposomes similar to the intact virions. This suggests that the fusion of virions with negatively charged vesicles, unlike the fusion of the virus with biological membranes, requires only the HN and not the fusion glycoprotein.
Collapse
|
33
|
Gad AE, Elyashiv G, Rosenberg N. The induction of large unilamellar vesicle fusion by cationic polypeptides: the effects of mannitol, size, charge density and hydrophobicity of the cationic polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1986. [DOI: 10.1016/0005-2736(86)90528-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Almog S, Kushnir T, Nir S, Lichtenberg D. Kinetic and structural aspects of reconstitution of phosphatidylcholine vesicles by dilution of phosphatidylcholine-sodium cholate mixed micelles. Biochemistry 1986; 25:2597-605. [PMID: 3718967 DOI: 10.1021/bi00357a048] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dilution of mixed micellar dispersions of egg phosphatidylcholine (PC) and sodium cholate beyond a critical value results in formation of cholate-containing PC vesicles. The structure of the resultant vesicles and some mechanistic aspects of this process have been investigated by the use of light scattering and nuclear magnetic resonance techniques. The main findings and conclusions are the following: Both the state of aggregation (micellar or vesicular) and the apparent equilibrium size distribution of micelles or vesicles obtained by dilution of the PC-cholate mixed micellar dispersions are a function of the cholate to PC molar ratio in the mixed aggregates (micelles or vesicles). When this effective ratio (Re) is higher than 0.4, the dispersion is micellar, and the size of the mixed micelles increases with decreasing Re; when Re less than 0.3, the dispersion is essentially vesicular, and the mean hydrodynamic radius of the vesicles is an increasing function of Re; in dispersions with 0.3 less than Re less than 0.4, mixed micelles and vesicles coexist. Addition of cholate to vesicular dispersions, to Re values below 0.3, results in vesicle size growth through a concentration-independent lipid-exchange mechanism. Addition of cholate to higher Re values results in micellization (solubilization) of the vesicles. On the other hand, dilution of vesicular dispersions does not affect the size of the vesicles. Apparent equilibration of a mixed micellar dispersion following dilution to Re values below 0.3 is slow (many hours). The overall process involves a series of three subsequent categories of steps: (i) a rapid (approximately 1-2 min) prevesiculation equilibration of micellar sizes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
35
|
Nir S, Stegmann T, Wilschut J. Fusion of influenza virus with cardiolipin liposomes at low pH: mass action analysis of kinetics and extent. Biochemistry 1986; 25:257-66. [PMID: 3954989 DOI: 10.1021/bi00349a036] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The kinetics and extent of low pH induced fusion between influenza virus and large unilamellar cardiolipin liposomes were investigated with an assay for lipid mixing based on fluorescence resonance energy transfer. The results were analyzed in terms of a mass action kinetic model, which views the overall fusion reaction as a sequence of a second-order process of virus-liposome adhesion or aggregation followed by the first-order fusion reaction itself. The fluorescence development during the course of the fusion process was calculated by numerical integration, employing separate rate constants for the initial aggregation step and for the subsequent fusion reaction. Analytical solutions were found for several limiting cases. Deaggregation of virus--liposome aggregates was explicitly taken into account but was found to be a minor effect under the conditions studied. The calculations gave good simulations and predictions for the kinetics and extent of fusion at different virus/liposome concentrations and ratios. At pH 5.0 and 37 degrees C, very high rate constants for aggregation and fusion were obtained, and essentially all of the virus particles were involved in the fusion process. Experiments at different virus/liposome ratios showed that fusion products may consist of a single virus particle and several liposomes but not of a single liposome and several virus particles. At pH 6.0, the rate constant for aggregation was the same as at pH 5.0, but the rate constant of fusion was about 5-fold lower, and only 25-40% of the virus particles were capable of fusing with the liposomes. The analytical procedure presented enables elucidation of the crucial role of the composition of target membrane vesicles in the initial adhesion and subsequent fusion of the virus at various pH values.
Collapse
|
36
|
Wilschut J, Scholma J, Bental M, Hoekstra D, Nir S. Ca2+-induced fusion of phosphatidylserine vesicles: mass action kinetic analysis of membrane lipid mixing and aqueous contents mixing. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 821:45-55. [PMID: 4063361 DOI: 10.1016/0005-2736(85)90151-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have investigated the initial kinetics of Ca2+-induced aggregation and fusion of phosphatidylserine large unilamellar vesicles at 3, 5 and 10 mM Ca2+ and 15, 25 and 35 degrees C, utilizing the Tb/dipicolinate (Tb/DPA) assay for mixing of aqueous vesicle contents and a resonance energy transfer (RET) assay for mixing of bilayer lipids. Separate rate constants for vesicle aggregation as well as deaggregation and for the fusion reaction itself were determined by analysis of the data in terms of a mass action kinetic model. At 15 degrees C the aggregation rate constants for either assay are the same, indicating that at this temperature all vesicle aggregation events that result in lipid mixing lead to mixing of aqueous contents as well. By contrast, at 35 degrees C the RET aggregation rate constants are higher than the Tb/DPA aggregation rate constants, indicating a significant frequency of reversible vesicle aggregation events that do result in mixing of bilayer lipids, but not in mixing of aqueous vesicle contents. In any conditions, the RET fusion rate constants are considerably higher than the Tb/DPA fusion rate constants, demonstrating the higher tendency of the vesicles, once aggregated, to mix lipids than to mix aqueous contents. This possibly reflects the formation of an intermediate fusion structure. With increasing Ca2+ concentrations the RET and the Tb/DPA fusion rate constants increase in parallel with the respective aggregation rate constants. This suggests that fusion susceptibility is conferred on the vesicles during the process of vesicle aggregation and not solely as a result of the interaction of Ca2+ with isolated vesicles. Aggregation of the vesicles in the presence of Mg2+ produces neither mixing of aqueous vesicle contents nor mixing of bilayer lipids.
Collapse
|
37
|
Gad AE, Bental M, Elyashiv G, Weinberg H, Nir S. Promotion and inhibition of vesicle fusion by polylysine. Biochemistry 1985; 24:6277-82. [PMID: 4084519 DOI: 10.1021/bi00343a035] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polylysine induced rapid aggregation of large unilamellar vesicles composed of phosphatidylcholine-cardiolipin (1:1 molar ratio) but not their fusion. Application of the terbium-dipicolinic acid fusion assay showed that addition of polylysine at nanomolar concentrations enabled a significant lowering of the Ca2+ threshold concentration for vesicle fusion from 9 to 1 mM. Analysis of the kinetics of fusion with a mass-action kinetic model showed that polylysine enhanced significantly the rate of aggregation but affected only slightly the rate of fusion per se. Maximal enhancement of overall fusion rates occurred at a charge ratio (polylysine/cardiolipin) of about 0.5. At larger polylysine concentrations, e.g., at charge ratios greater than 3, polylysine inhibited vesicle fusion.
Collapse
|
38
|
Marra J. Controlled deposition of lipid monolayers and bilayers onto mica and direct force measurements between galactolipid bilayers in aqueous solutions. J Colloid Interface Sci 1985. [DOI: 10.1016/0021-9797(85)90197-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Abstract
The initial kinetics of divalent cation (Ca2+, Ba2+, Sr2+) induced fusion of phosphatidylserine (PS) liposomes, LUV, is examined to obtain the fusion rate constant, f11, for two apposed liposomes as a function of bound divalent cation. The aggregation of dimers is rendered very rapid by having Mg2+ in the electrolyte, so that their subsequent fusion is rate limiting to the overall reaction. In this way the fusion kinetics are observed directly. The bound Mg2+, which by itself is unable to induce the PS LUV to fuse, is shown to affect only the aggregation kinetics when the other divalent cations are present. There is a threshold amount of bound divalent cation below which the fusion rate constant f11 is small and above which it rapidly increases with bound divalent cation. These threshold amounts increase in the sequence Ca2+ less than Ba2+ less than Sr2+, which is the same as found previously for sonicated PS liposomes, SUV. While Mg2+ cannot induce fusion of the LUV and much more bound Sr2+ is required to reach the fusion threshold, for Ca2+ and Ba2+ the threshold is the same for PS SUV and LUV. The fusion rate constant for PS liposomes clearly depends upon the amount and identity of bound divalent cation and the size of the liposomes. However, for Ca2+ and Ba2+, this size dependence manifests itself only in the rate of increase of f11 with bound divalent cation, rather than in any greater intrinsic instability of the PS SUV. The destabilization of PS LUV by Mn2+ and Ni2+ is shown to be qualitatively distinct from that induced by the alkaline earth metals.
Collapse
|
40
|
Abstract
A new liposome fusion assay has been developed that monitors the mixing of aqueous contents at neutral and low pH. With this assay we have investigated the ability of H+ to induce membrane destabilization and fusion. The assay involves the fluorophore 1-aminonaphthalene-3,6,8-trisulfonic acid (ANTS) and its quencher N,N'-p-xylylenebis(pyridinium bromide) (DPX). ANTS is encapsulated in one population of liposomes and DPX in another, and fusion results in the quenching of ANTS fluorescence. The results obtained with the ANTS/DPX assay at neutral pH give kinetics for the Ca2+-induced fusion of phosphatidylserine large unilamellar vesicles (PS LUV) that are very similar to those obtained with the Tb3+/dipicolinic acid (DPA) assay [Wilschut, J., & Papahadjopoulos, D. (1979) Nature (London) 281, 690-692]. ANTS fluorescence is relatively insensitive to pH between 7.5 and 4.0. Below pH 4.0 the assay can be used semiquantitatively by correcting for quenching of ANTS due to protonation. For PS LUV it was found that, at pH 2.0, H+ by itself causes mixing of aqueous contents, which makes H+ unique among the monovalent cations. We have shown previously that H+ causes a contact-induced leakage from liposomes composed of phosphatidylethanolamine and the charged cholesteryl ester cholesteryl hemisuccinate (CHEMS) at pH 5.0 or below, where CHEMS becomes protonated. Here we show that H+ causes lipid mixing in this pH range but not mixing of aqueous contents. This result affirms the necessity of using both aqueous space and lipid bilayer assays to comprehend the fusion event between two liposomes.
Collapse
|
41
|
Morris SJ, Gibson CC, Smith PD, Greif PC, Stirk CW, Bradley D, Haynes DH, Blumenthal R. Rapid kinetics of Ca2+-induced fusion of phosphatidylserine/phosphatidylethanolamine vesicles. The effect of bilayer curvature on leakage. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89240-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Braun G, Lelkes PI, Nir S. Effect of cholesterol on Ca2+-induced aggregation and fusion of sonicated phosphatidylserine/cholesterol vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 812:688-94. [PMID: 3970903 DOI: 10.1016/0005-2736(85)90262-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Small unilamellar vesicles composed of phosphatidylserine (PS) and cholesterol at various ratios were employed in studying the effect of cholesterol on Ca2+-induced vesicle aggregation and fusion using the Tb/dipicolinic acid assay. The leakage of preencapsulated Tb3+ was also measured. The analysis of the data provided estimates for the rate of aggregation C11, and the rate of fusion per se, f11. An increase in cholesterol contents results in a decrease in C11 values. Similarly, aggregation of PS/cholesterol vesicles is slower than that of PS vesicles in the presence of 650 mM NaCl. With 100 or 200 mM NaCl, the overall fusion rate of PS/cholesterol vesicles is slower than that of PS vesicles; the rate being reduced by an increase in cholesterol contents. With 600 mM NaCl, the overall fusion rate of PS/cholesterol 9:1 vesicles is faster than that of PS vesicles, and results are well-simulated by assuming no delay in vesicle aggregation up to dimers. Emerging f11 values are larger in PS/cholesterol than in PS vesicles. An analysis of fusion kinetics of several lipid concentrations shows that f11 values of PS/cholesterol 3:1 vesicles are 5-times larger than those of PS vesicles, when fusion occurs in a medium containing 200 mM NaCl and 1.5 mM Ca2+. The increase in Na+ concentration from 100 to 200 mM, or 600 mM results in a 50- or 150-fold reduction in f11 values of PS vesicles. It is suggested that incorporation of cholesterol in PS vesicles results in enhancement of Ca2+-induced fusogenic capacity.
Collapse
|
43
|
Bentz J, Düzgüneş N, Nir S. Temperature dependence of divalent cation induced fusion of phosphatidylserine liposomes: evaluation of the kinetic rate constants. Biochemistry 1985; 24:1064-72. [PMID: 3994991 DOI: 10.1021/bi00325a039] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of temperature and divalent cation binding (Ca2+, Sr2+, Ba2+) on the kinetic rate constants of aggregation and fusion of large phosphatidylserine liposomes is measured for the first time. Fusion is monitored by the Tb3+/dipicolinate assay. Fusion rate constants increase with temperature (15-35 degrees C) in a roughly linear fashion. These rate constants are not otherwise sensitive to whether the temperature is above or below the phase transition temperature of the Ba2+ or Sr2+ complex of phosphatidylserine, as measured by differential scanning calorimetry. Hence, the isothermal transition of the acyl chains from liquid-crystalline to gel phase induced by the cations is not the driving force of the initial fusion event. The aggregation rate constants increase with temperature, and it is the temperature dependence of the energetics of close approach of the liposomes which underlies this increase. On the other hand, the aggregation becomes more reversible at higher temperatures, which has also been observed with monovalent cation induced liposome aggregation where there is no fusion. Calculations on several cases show that the potential energy minimum holding the liposome dimer aggregates together is approximately 5-6 kT deep. This result implies that the aggregation step is highly reversible; i.e., if fusion were not occurring, no stable aggregates would form.
Collapse
|
44
|
Wilschut J, Düzgüneş N, Hoekstra D, Papahadjopoulos D. Modulation of membrane fusion by membrane fluidity: temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Biochemistry 1985; 24:8-14. [PMID: 3994974 DOI: 10.1021/bi00322a002] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have investigated the temperature dependence of the fusion of phospholipid vesicles composed of pure bovine brain phosphatidylserine (PS) induced by Ca2+ or Mg2+. Aggregation of the vesicles was monitored by 90 degrees light-scattering measurements, fusion by the terbium/dipicolinic acid assay for mixing of internal aqueous volumes, and release of vesicle contents by carboxyfluorescein fluorescence. Membrane fluidity was determined by diphenylhexatriene fluorescence polarization measurements. Small unilamellar vesicles (SUV, diameter 250 A) or large unilamellar vesicles (LUV, diameter 1000 A) were used, and the measurements were done in 0.1 M NaCl at pH 7.4. The following results were obtained: (1) At temperatures (0-5 degrees C) below the phase transition temperature (Tc) of the lipid, LUV (PS) show very little fusion in the presence of Ca2+, although vesicle aggregation is rapid and extensive. With increasing temperature, the initial rate of fusion increases dramatically. Leakage of contents at the higher temperatures remains limited initially, but subsequently complete release occurs as a result of collapse of the internal aqueous space of the fusion products. (2) SUV (PS) are still in the fluid state down to 0 degree C, due to the effect of bilayer curvature, and fuse rapidly in the entire temperature range from 0 to 35 degrees C in the presence of Ca2+. The initial rate of leakage is low relative to the rate of fusion. At higher temperatures (15 degrees C and above), subsequent collapse of the vesicles' internal space causes complete release.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
45
|
Abstract
Polylysine promoted extensive membrane mixing of liposomes only if the buffer pH was below the pKa of the lysyl residues. This observation suggested that fusion could be regulated in a physiological pH range if the homopolymer of L-histidine was substituted as fusogen. Microgram quantities of polyhistidine were added to liposomes composed of soybean phospholipids, or to defined phospholipid-cholesterol mixtures which simulate the lipid composition of plasma membranes. A quantitative resonance energy transfer assay determined the extent of lipid phase mixing related to fusion. No fusion was detected at pH 7.4, but when the pH was lowered to 6.5 or below, fusion was rapid and substantial. The extent of membrane mixing increased with progressive acidification of the vesicle-fusogen suspension. The charge density of each polyhistidine molecule, not the total cationic charge per vesicle, influenced the extent of fusion. The kinetics of the fusion reaction were rapid, as membrane mixing was completed within 1 min. If the vesicle suspension was acidified before fusogen addition, the rate of membrane mixing slowed 4-fold. This, as well as a slight increase in light scattering noted whenever polyhistidine was added at pH 7.4, suggests an enhancement of fusion kinetics by preaggregation of vesicles at neutral pH. The lipid composition, regulation of membrane mixing by pH in a physiological range, and rapid kinetics suggest that this model of liposome fusion may be pertinent to understanding some biological fusion events.
Collapse
|
46
|
Pollard HB, Ornberg R, Levine M, Kelner K, Morita K, Levine R, Forsberg E, Brocklehurst KW, Duong L, Lelkes PI. Hormone secretion by exocytosis with emphasis on information from the chromaffin cell system. VITAMINS AND HORMONES 1985; 42:109-96. [PMID: 3913120 DOI: 10.1016/s0083-6729(08)60062-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
|
48
|
Nir S. A model for cation adsorption in closed systems: Application to calcium binding to phospholipid vesicles. J Colloid Interface Sci 1984. [DOI: 10.1016/0021-9797(84)90231-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Ababei L, Hildenbrand K. Kinetics of calcium-induced mixing of lipids and aqueous contents of large unilamellar phosphatidylserine vesicles. Chem Phys Lipids 1984. [DOI: 10.1016/0009-3084(84)90031-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Nir S, Düzgüneş N, Bentz J. Binding of monovalent cations to phosphatidylserine and modulation of Ca2+- and Mg2+-induced vesicle fusion. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 735:160-72. [PMID: 6626545 DOI: 10.1016/0005-2736(83)90271-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The effect of several monovalent cations on the Ca2+-induced aggregation and fusion of sonicated phosphatidylserine (PS) vesicles is studied by monitoring the mixing of internal compartments of the fusing vesicles using the Tb/dipicolinic acid assay. The dissociation of the fluorescent Tb-dipicolinate complex which accompanies Ca2+-induced vesicle fusion is determined directly and is due to leakage of contents and entry of medium into vesicles. PS vesicles do not fuse when the medium contains only monovalent cations (at pH 7.4), regardless of the cation concentration or whether there is aggregation of the vesicles. A mass-action kinetic analysis of the data provides estimates for the rate of aggregation, C11, and for the rate of fusion per se, f11. Values of f11 increase dramatically with reduction in monovalent cation concentration and are primarily determined by binding ratios of Ca2+ or Mg2+ per PS. With 300 mM of monovalent cations, the fusion per se is essentially rate-limiting to the overall fusion process and values of f11 are significantly larger with the monovalent cations which bind the least, i.e., according to the sequence tetramethylammonium greater than K+ greater than Na+ greater than Li+. With monovalent cations in concentrations of 100 mM or less, the aggregation is rate-limiting to the fusion and the overall initial fusion rates are determined by an interplay between aggregation and fusion rates. Under conditions of fast aggregation, the Ca2+-induced fusion of small PS vesicles can occur within milliseconds or less.
Collapse
|