1
|
Zhong Z, Wang K, Zhong T, Wang J. Mitochondrial fission regulates midgut muscle assembly and tick feeding capacity. Cell Rep 2025; 44:115505. [PMID: 40184249 DOI: 10.1016/j.celrep.2025.115505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 03/12/2025] [Indexed: 04/06/2025] Open
Abstract
Ticks ingest over 100 times their body weight in blood. As the primary tissue for blood storage and digestion, the tick midgut's regulation in response to this substantial blood volume remains unclear. Here, we show that blood intake triggers stem cell proliferation and mitochondrial fission in the midgut of Haemaphysalis longicornis. While inhibiting stem cell proliferation does not impact feeding behavior, disruption of mitochondrial fission impairs tick feeding capacity. Mitochondrial fission mediated by dynamin 2 (DNM2) regulates ATP generation, which in turn influences the expression of the tropomyosin-anchoring subunit troponin T (TNT). Knockdown of TNT disrupts muscle fiber assembly, hindering midgut enlargement and contraction, thereby preventing blood ingestion. These findings underscore the indispensable role of musculature in facilitating midgut expansion during feeding in ticks.
Collapse
Affiliation(s)
- Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Kun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Davydova S, Liu J, Liu Y, Prince K, Mann J, Kandul NP, Braswell WE, Champer J, Akbari OS, Meccariello A. A self-limiting sterile insect technique alternative for Ceratitis capitata. BMC Biol 2025; 23:97. [PMID: 40221789 PMCID: PMC11993972 DOI: 10.1186/s12915-025-02201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Genetic biocontrol systems have broad applications in population control of insects implicated in both disease spread and food security. Ceratitis capitata (the Mediterranean fruit fly), a major agricultural pest with a global distribution, is one of the appealing targets for such genetic control. RESULTS In this study, we establish and characterise a novel split-CRISPR/Cas9 system we term Sex Conversion Induced by CRISPR (SCIC) in C. capitata. Using the white eye gene for toolkit selection we achieved up to 100% CRISPR/Cas9 efficiency, displaying the feasibility of C. capitata split-CRISPR/Cas9 systems using constitutive promoters. We then induce sex conversion by targeting the transformer gene in a SCIC approach aimed for SIT-mediated releases upon radiation-based sterilisation. Knock-out of transformer induced partial to full female-to-male sex conversion, with the remaining individuals all being intersex and sterile. SCIC population modelling shows a strong potential to outcompete traditional SIT, allowing for faster population elimination with fewer released sterile males. CONCLUSION Overall, we construct an appropriate CRISPR/Cas9 toolkit for the use in C capitata. Our results build the foundation for further genetic pest control methods in the species and related tephritid agricultural pests.
Collapse
Affiliation(s)
- Serafima Davydova
- Department of Life Sciences, Imperial College London, London, SW7 2 AZ, UK
| | - Junru Liu
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Yiran Liu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Kavya Prince
- Department of Life Sciences, Imperial College London, London, SW7 2 AZ, UK
| | - Jonathan Mann
- Department of Life Sciences, Imperial College London, London, SW7 2 AZ, UK
| | - Nikolay P Kandul
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, La Jolla, San Diego, CA, 92093, USA
| | - W Evan Braswell
- USDA APHIS PPQ Science & Technology Insect Management and Molecular Diagnostic Laboratory, 22675 North Moorefield Road, Edinburg, TX, 78541, USA
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, SW7 2 AZ, UK.
| |
Collapse
|
3
|
Guo W, Nan F, Liu X, Liu Q, Feng J, Xie S. Transcriptomic analysis of Virescentia guangxiensis (Rhodophyta: Batrachospermales) revealed differential expression of genes in gametophyte and chantransia life phases. BMC Genomics 2025; 26:202. [PMID: 40016669 PMCID: PMC11869606 DOI: 10.1186/s12864-025-11396-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND The genus Virescentia is a significant member of the Batrachospermaceae, exhibiting distinctive life history characteristics defined by alternating generations. This group of taxa has specific environmental requirements for growth. This paper investigates Virescentia, which primarily thrives in freshwater environments, such as streams and springs, characterized by low light, low temperatures, and high dissolved oxygen levels. Currently, no laboratory simulations of their growth conditions have been reported in culture studies. Additionally, previous studies indicate that comparisons of photosynthetic strength across different life-history stages of the same species have not been conducted, mainly due to the challenges of simultaneously collecting algal strains at both life-history stages. RESULTS During the gametophyte stage, the chloroplast and mitochondrial genomes were measured at 184,899 bp and 26,867 bp, respectively. In the chantransia stage, the lengths of these genomes were 184,887 bp and 27,014 bp, respectively. A comparison of organellar genome covariation and phylogenetic reconstruction revealed that the chloroplast and mitochondrial genomes across different life history stages were highly conserved, with genetic distances of 0 and nucleotide variants of only 9-15 bp. The mitochondrial genome of gametophyte SXU-YN24005 was found to lack two tRNA-Leu (tag) genes compared to that of the chantransia strain. Additionally, a comparative analysis of KEGG pathway transcriptome data from the two life history stages showed that 33 genes related to the ribosomal pathway and 53 genes associated with the photosynthesis pathway exhibited a significant decline in expression during the gametophyte stage compared to the chantransia stage. CONCLUSION In this study, two samples of the same species at different life-history stages were collected from the same location for the first time. The analysis revealed a high degree of conservation between their organelle genomes. Additionally, transcriptome sequencing results indicated substantial differences in gene expression patterns between the two life-history stages. This research will provide reliable data to support the future histological database of freshwater red algae and will establish a theoretical basis for conserving rare and endangered species.
Collapse
Affiliation(s)
- Weinan Guo
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Fangru Nan
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Xudong Liu
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Qi Liu
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Jia Feng
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China
| | - Shulian Xie
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
4
|
Meccariello A, Hou S, Davydova S, Fawcett JD, Siddall A, Leftwich PT, Krsticevic F, Papathanos PA, Windbichler N. Gene drive and genetic sex conversion in the global agricultural pest Ceratitis capitata. Nat Commun 2024; 15:372. [PMID: 38191463 PMCID: PMC10774415 DOI: 10.1038/s41467-023-44399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Homing-based gene drives are recently proposed interventions promising the area-wide, species-specific genetic control of harmful insect populations. Here we characterise a first set of gene drives in a tephritid agricultural pest species, the Mediterranean fruit fly Ceratitis capitata (medfly). Our results show that the medfly is highly amenable to homing-based gene drive strategies. By targeting the medfly transformer gene, we also demonstrate how CRISPR-Cas9 gene drive can be coupled to sex conversion, whereby genetic females are transformed into fertile and harmless XX males. Given this unique malleability of sex determination, we modelled gene drive interventions that couple sex conversion and female sterility and found that such approaches could be effective and tolerant of resistant allele selection in the target population. Our results open the door for developing gene drive strains for the population suppression of the medfly and related tephritid pests by co-targeting female reproduction and shifting the reproductive sex ratio towards males. They demonstrate the untapped potential for gene drives to tackle agricultural pests in an environmentally friendly and economical way.
Collapse
Affiliation(s)
- Angela Meccariello
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - Shibo Hou
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Serafima Davydova
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | - Alexandra Siddall
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Flavia Krsticevic
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Philippos Aris Papathanos
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
5
|
Davydova S, Liu J, Kandul NP, Braswell WE, Akbari OS, Meccariello A. Next-generation genetic sexing strain establishment in the agricultural pest Ceratitis capitata. Sci Rep 2023; 13:19866. [PMID: 37964160 PMCID: PMC10646097 DOI: 10.1038/s41598-023-47276-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/11/2023] [Indexed: 11/16/2023] Open
Abstract
Tephritid fruit fly pests pose an increasing threat to the agricultural industry due to their global dispersion and a highly invasive nature. Here we showcase the feasibility of an early-detection SEPARATOR sex sorting approach through using the non-model Tephritid pest, Ceratitis capitata. This system relies on female-only fluorescent marker expression, accomplished through the use of a sex-specific intron of the highly-conserved transformer gene from C. capitata and Anastrepha ludens. The herein characterized strains have 100% desired phenotype outcomes, allowing accurate male-female separation during early development. Overall, we describe an antibiotic and temperature-independent sex-sorting system in C. capitata, which, moving forward, may be implemented in other non-model Tephritid pest species. This strategy can facilitate the establishment of genetic sexing systems with endogenous elements exclusively, which, on a wider scale, can improve pest population control strategies like sterile insect technique.
Collapse
Affiliation(s)
- Serafima Davydova
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Junru Liu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nikolay P Kandul
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - W Evan Braswell
- USDA APHIS PPQ Science and Technology Insect Management and Molecular Diagnostic Laboratory, 22675 North Moorefield Road, Edinburg, TX, 78541, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Angela Meccariello
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
6
|
Russo E, Di Lelio I, Shi M, Becchimanzi A, Pennacchio F. Aphidius ervi venom regulates Buchnera contribution to host nutritional suitability. JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104506. [PMID: 37011858 DOI: 10.1016/j.jinsphys.2023.104506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 06/02/2023]
Abstract
The association between the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), and the endophagous parasitoid wasp Aphidius ervi Haliday (Hymenoptera: Braconidae) offers a unique model system for studying the molecular mechanisms underlying the complex interactions between the parasitoid, its host and the associated primary symbiont. Here, we investigate in vivo the functional role of the most abundant component of A. ervi venom, Ae-γ-glutamyl transpeptidase (Ae-γ-GT), which is known to induce host castration. Microinjections of double-stranded RNA into A. ervi pupae stably knocked down Ae-γ-GT1 and Ae-γ-GT2 paralogue genes in newly emerged females. These females were used to score the phenotypic changes both in parasitized hosts and in the parasitoid's progeny, as affected by a venom blend lacking Ae-γ-GT. Ae-γ-GT gene silencing enhanced growth both of host and parasitoid, supported by a higher load of the primary bacterial symbiont Buchnera aphidicola. Emerging adults showed a reduced survival and fecundity, suggesting a trade-off with body size. This demonstrates in vivo the primary role of Ae-γ-GT in host ovary degeneration and suggests that this protein counterbalances the proliferation of Buchnera likely triggered by other venom components. Our study provides a new approach to unravelling the complexity of aphid parasitoid venom in vivo, and sheds light on a novel role for Ae-γ-GT in host regulation.
Collapse
Affiliation(s)
- Elia Russo
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy
| | - Ilaria Di Lelio
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples "Federico II", Naples, Italy
| | - Min Shi
- Jiaxing Nanhu University, Jiaxing, China
| | - Andrea Becchimanzi
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples "Federico II", Naples, Italy
| | - Francesco Pennacchio
- University of Naples "Federico II" - Department of Agricultural Sciences, Naples, Italy; BAT Center - Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples "Federico II", Naples, Italy.
| |
Collapse
|
7
|
Transcriptome Analysis Reveals the Mechanisms of Tolerance to High Concentrations of Calcium Chloride Stress in Parachlorella kessleri. Int J Mol Sci 2022; 24:ijms24010651. [PMID: 36614098 PMCID: PMC9821113 DOI: 10.3390/ijms24010651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Salt stress is one of the abiotic stress factors that affect the normal growth and development of higher plants and algae. However, few research studies have focused on calcium stress, especially in algae. In this study, the mechanism of tolerance to high calcium stress of a Parachlorella kessleri strain was explored by the method of transcriptomics combined with physiological and morphological analysis. Concentrations of CaCl2 100 times (3.6 g/L) and 1000 times (36 g/L) greater than the standard culture were set up as stresses. The results revealed the algae could cope with high calcium stress mainly by strengthening photosynthesis, regulating osmotic pressure, and inducing antioxidant defense. Under the stress of 3.6 g/L CaCl2, the algae grew well with normal cell morphology. Although the chlorophyll content was significantly reduced, the photosynthetic efficiency was well maintained by up-regulating the expression of some photosynthesis-related genes. The cells reduced oxidative damage by inducing superoxide dismutase (SOD) activities and selenoprotein synthesis. A large number of free amino acids were produced to regulate the osmotic potential. When in higher CaCl2 stress of 36 g/L, the growth and chlorophyll content of algae were significantly inhibited. However, the algae still slowly grew and maintained the same photosynthetic efficiency, which resulted from significant up-regulation of massive photosynthesis genes. Antioxidant enzymes and glycerol were found to resist oxidative damage and osmotic stress, respectively. This study supplied algal research on CaCl2 stress and provided supporting data for further explaining the mechanism of plant salt tolerance.
Collapse
|
8
|
Yasuura M, Nakaya Y, Ashiba H, Fukuda T. Investigation on the applicability of a long-range reverse-transcription quantitative polymerase chain reaction assay for the rapid detection of active viruses. BMC Microbiol 2022; 22:300. [PMID: 36510144 PMCID: PMC9743722 DOI: 10.1186/s12866-022-02723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Although conventional polymerase chain reaction (PCR) methods are widely used in diagnosis, the titer of the pathogenic virus is difficult to determine based on the PCR. In our prior report, a long-range reverse-transcription quantitative PCR (LR-RT-qPCR) assay was developed to assess the titer of UV-irradiated influenza A virus (IAV) rapidly. In this research, we focused on whether the LR-RT-qPCR assay could evaluate the titer of IAV inactivated by other methods. METHODS IAV was inactivated by: heating at 100 °C for periods ranging from 1 to 15 min, treating with 0.12% sodium hypochlorite for periods ranging from 3 to 30 min, or treating with 70% ethanol for periods ranging from 10 to 30 min. Fifty percent tissue culture infectious dose (TCID50) assay was performed to confirm the efficacy of the inactivation methods, followed by LR-RT-qPCR to investigate the correlation between infectivity and copy number. RESULTS One minute heating, 3 min sodium hypochlorite treatment, or 10 min ethanol treatment was sufficient to deactivate IAV. Changes before and after the inactivations in the copy numbers on LR-RT-qPCR were significantly different among the inactivation methods. Heat-inactivation drastically decreased the copy number to below the cutoff value around 5 copies/μL after 5 min treatment. The inactivation time of heating estimated using LR-RT-qPCR was marginally higher than that determined using TCID50. However, the treatments with sodium hypochlorite or ethanol moderately and minimally affected the copy numbers obtained using LR-RT-qPCR (~ 1 digit or no copy number decrease), respectively. CONCLUSIONS In addition to good applicability in UV-irradiation previously reported, the LR-RT-qPCR method is suitable for evaluating the effect of heat-inactivation on IAV infectivity. However, minor modifications may be made and investigated in the future to reduce the time intervals with TCID50. Although this method is not applicable for the ethanol inactivation, rapid evaluation of the effects of chlorination on IAV can be determined by comparing copy numbers before and after treatment using the LR-RT-qPCR method.
Collapse
Affiliation(s)
- Masato Yasuura
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Yuki Nakaya
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.,Division of Virology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiroki Ashiba
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Takashi Fukuda
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
9
|
Feng Y, Peng Y, Song X, Wen H, An Y, Tang H, Wang J. Anopheline mosquitoes are protected against parasite infection by tryptophan catabolism in gut microbiota. Nat Microbiol 2022; 7:707-715. [PMID: 35437328 DOI: 10.1038/s41564-022-01099-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
The mosquito microbiota can influence host physiology and vector competence, but a detailed understanding of these processes is lacking. Here we found that the gut microbiota of Anopheles stephensi, a competent malaria vector, is involved in tryptophan metabolism and is responsible for the catabolism of the peritrophic matrix impairing tryptophan metabolites. Antibiotic elimination of the microbiota led to the accumulation of tryptophan and its metabolites-kynurenine, 3-hydroxykynurenine (3-HK) and xanthurenic acid. Of these metabolites, 3-HK impaired the structure of the peritrophic matrix and promoted Plasmodium berghei infection. Among the major gut microbiota members in A. stephensi, Pseudomonas alcaligenes catabolized 3-HK as revealed by whole-genome sequencing and LC-MS metabolic analysis. The genome of P. alcaligenes encodes kynureninase (KynU) that is responsible for the conversion of 3-HK to 3-hydroxyanthranilic acid. Mutation of KynU resulted in a P. alcaligenes strain that was unable to metabolize 3-HK and unable to protect the peritrophic matrix. Colonization of A. stephensi with KynU-mutated P. alcaligenes failed to protect mosquitoes against parasite infection as compared with mosquitoes colonized with wild-type P. alcaligenes. In summary, this study identifies an unexpected function of mosquito gut microbiota in controlling mosquito tryptophan metabolism, with important implications for vector competence.
Collapse
Affiliation(s)
- Yuebiao Feng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Yeqing Peng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Zhongshan Hospital, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Xiumei Song
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Han Wen
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Zhongshan Hospital, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
- Zhongshan Hospital, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China.
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
10
|
Zhong Z, Zhong T, Peng Y, Zhou X, Wang Z, Tang H, Wang J. Symbiont-regulated serotonin biosynthesis modulates tick feeding activity. Cell Host Microbe 2021; 29:1545-1557.e4. [PMID: 34525331 DOI: 10.1016/j.chom.2021.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/22/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022]
Abstract
Ticks are obligate hematophagous arthropods. Blood feeding ensures that ticks obtain nutrients essential for their survival, development, and reproduction while providing routes for pathogen transmission. However, the effectors that determine tick feeding activities remain poorly understood. Here, we demonstrate that reduced abundance of the symbiont Coxiella (CHI) in Haemaphysalis longicornis decreases blood intake. Providing tetracycline-treated ticks with the CHI-derived tryptophan precursor chorismate, tryptophan, or 5-hydroxytryptamine (5-HT; serotonin) restores the feeding defect. Mechanistically, CHI-derived chorismate increases tick 5-HT biosynthesis by stimulating the expression of aromatic amino acid decarboxylase (AAAD), which catalyzes the decarboxylation of 5-hydroxytryptophan (5-HTP) to 5-HT. The increased level of 5-HT in the synganglion and midgut promotes tick feeding. Inhibition of CHI chorismate biosynthesis by treating the colonized tick with the herbicide glyphosate suppresses blood-feeding behavior. Taken together, our results demonstrate an important function of the endosymbiont Coxiella in the regulation of tick 5-HT biosynthesis and feeding.
Collapse
Affiliation(s)
- Zhengwei Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China
| | - Ting Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China
| | - Yeqing Peng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China
| | - Xiaofeng Zhou
- Human Phenome Institute, Fudan University, Shanghai 200433, P. R. China
| | - Zhiqian Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
11
|
Wang M, An Y, Gao L, Dong S, Zhou X, Feng Y, Wang P, Dimopoulos G, Tang H, Wang J. Glucose-mediated proliferation of a gut commensal bacterium promotes Plasmodium infection by increasing mosquito midgut pH. Cell Rep 2021; 35:108992. [PMID: 33882310 PMCID: PMC8116483 DOI: 10.1016/j.celrep.2021.108992] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/06/2020] [Accepted: 03/24/2021] [Indexed: 12/30/2022] Open
Abstract
Plant-nectar-derived sugar is the major energy source for mosquitoes, but its influence on vector competence for malaria parasites remains unclear. Here, we show that Plasmodium berghei infection of Anopheles stephensi results in global metabolome changes, with the most significant impact on glucose metabolism. Feeding on glucose or trehalose (the main hemolymph sugars) renders the mosquito more susceptible to Plasmodium infection by alkalizing the mosquito midgut. The glucose/trehalose diets promote proliferation of a commensal bacterium, Asaia bogorensis, that remodels glucose metabolism in a way that increases midgut pH, thereby promoting Plasmodium gametogenesis. We also demonstrate that the sugar composition from different natural plant nectars influences A. bogorensis growth, resulting in a greater permissiveness to Plasmodium. Altogether, our results demonstrate that dietary glucose is an important determinant of mosquito vector competency for Plasmodium, further highlighting a key role for mosquito-microbiota interactions in regulating the development of the malaria parasite.
Collapse
Affiliation(s)
- Mengfei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, PRC
| | - Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xiaofeng Zhou
- Human Phenome Institute, Fudan University, Shanghai 200433, PRC
| | - Yuebiao Feng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC
| | - Penghua Wang
- Department of Immunology, School of Medicine, The University of Connecticut Health Center, Farmington, CT 06030, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai 200438, PRC.
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, PRC; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, PRC.
| |
Collapse
|
12
|
Meccariello A, Krsticevic F, Colonna R, Del Corsano G, Fasulo B, Papathanos PA, Windbichler N. Engineered sex ratio distortion by X-shredding in the global agricultural pest Ceratitis capitata. BMC Biol 2021; 19:78. [PMID: 33863334 PMCID: PMC8051031 DOI: 10.1186/s12915-021-01010-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genetic sex ratio distorters are systems aimed at effecting a bias in the reproductive sex ratio of a population and could be applied for the area-wide control of sexually reproducing insects that vector disease or disrupt agricultural production. One example of such a system leading to male bias is X-shredding, an approach that interferes with the transmission of the X-chromosome by inducing multiple DNA double-strand breaks during male meiosis. Endonucleases targeting the X-chromosome and whose activity is restricted to male gametogenesis have recently been pioneered as a means to engineer such traits. RESULTS Here, we enabled endogenous CRISPR/Cas9 and CRISPR/Cas12a activity during spermatogenesis of the Mediterranean fruit fly Ceratitis capitata, a worldwide agricultural pest of extensive economic significance. In the absence of a chromosome-level assembly, we analysed long- and short-read genome sequencing data from males and females to identify two clusters of abundant and X-chromosome-specific sequence repeats. When targeted by gRNAs in conjunction with Cas9, cleavage of these repeats yielded a significant and consistent distortion of the sex ratio towards males in independent transgenic strains, while the combination of distinct distorters induced a strong bias (~ 80%). CONCLUSION We provide a first demonstration of CRISPR-based sex distortion towards male bias in a non-model organism, the global pest insect Ceratitis capitata. Although the sex ratio bias reached in our study would require improvement, possibly through the generation and combination of additional transgenic lines, to result in a system with realistic applicability in the field, our results suggest that strains with characteristics suitable for field application can now be developed for a range of medically or agriculturally relevant insect species.
Collapse
Affiliation(s)
- Angela Meccariello
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, UK
| | - Flavia Krsticevic
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Rita Colonna
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, UK
| | - Giuseppe Del Corsano
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, UK
| | - Barbara Fasulo
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, UK
| | - Philippos Aris Papathanos
- Department of Entomology, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel.
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, South Kensington Campus, London, UK.
| |
Collapse
|
13
|
Primo P, Meccariello A, Inghilterra MG, Gravina A, Del Corsano G, Volpe G, Sollazzo G, Aceto S, Robinson MD, Salvemini M, Saccone G. Targeting the autosomal Ceratitis capitata transformer gene using Cas9 or dCas9 to masculinize XX individuals without inducing mutations. BMC Genet 2020; 21:150. [PMID: 33339496 PMCID: PMC7747381 DOI: 10.1186/s12863-020-00941-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Females of the Mediterranean fruit fly Ceratitis capitata (Medfly) are major agricultural pests, as they lay eggs into the fruit crops of hundreds of plant species. In Medfly, female sex determination is based on the activation of Cctransformer (Cctra). A maternal contribution of Cctra is required to activate Cctra itself in the XX embryos and to start and epigenetically maintain a Cctra positive feedback loop, by female-specific alternative splicing, leading to female development. In XY embryos, the male determining Maleness-on-the-Y gene (MoY) blocks this activation and Cctra produces male-specific transcripts encoding truncated CcTRA isoforms and male differentiation occurs. RESULTS With the aim of inducing frameshift mutations in the first coding exon to disrupt both female-specific and shorter male-specific CcTRA open reading frames (ORF), we injected Cas9 ribonucleoproteins (Cas9 and single guide RNA, sgRNA) in embryos. As this approach leads to mostly monoallelic mutations, masculinization was expected only in G1 XX individuals carrying biallelic mutations, following crosses of G0 injected individuals. Surprisingly, these injections into XX-only embryos led to G0 adults that included not only XX females but also 50% of reverted fertile XX males. The G0 XX males expressed male-specific Cctra transcripts, suggesting full masculinization. Interestingly, out of six G0 XX males, four displayed the Cctra wild type sequence. This finding suggests that masculinization by Cas9-sgRNA injections was independent from its mutagenic activity. In line with this observation, embryonic targeting of Cctra in XX embryos by a dead Cas9 (enzymatically inactive, dCas9) also favoured a male-specific splicing of Cctra, in both embryos and adults. CONCLUSIONS Our data suggest that the establishment of Cctra female-specific autoregulation during the early embryogenesis has been repressed in XX embryos by the transient binding of the Cas9-sgRNA on the first exon of the Cctra gene. This hypothesis is supported by the observation that the shift of Cctra splicing from female to male mode is induced also by dCas9. Collectively, the present findings corroborate the idea that a transient embryonic inactivation of Cctra is sufficient for male sex determination.
Collapse
Affiliation(s)
- Pasquale Primo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Angela Meccariello
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | | | - Andrea Gravina
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | | | - Gennaro Volpe
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Germano Sollazzo
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| |
Collapse
|
14
|
Wang M, Wang J. Glucose transporter GLUT1 influences Plasmodium berghei infection in Anopheles stephensi. Parasit Vectors 2020; 13:285. [PMID: 32503601 PMCID: PMC7275331 DOI: 10.1186/s13071-020-04155-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/28/2020] [Indexed: 12/04/2022] Open
Abstract
Background Sugar-feeding provides energy for mosquitoes. Facilitated glucose transporters (GLUTs) are responsible for the uptake of glucose in animals. However, knowledge of GLUTs function in Anopheles spp. is limited. Methods Phylogenetic analysis of GLUTs in Anopheles stephensi was performed by the maximum likelihood and Bayesian inference methods. The spatial and temporal expression patterns of four Asteglut genes were analyzed by qPCR. The function of Asteglut1 was examined using a dsRNA-mediated RNA interference method. Transcriptome analysis was used to investigate the global influence of Asteglut1 on mosquito physiology. Results We identified 4 glut genes, Asteglut1, Asteglutx, Asteglut3 and Asteglut4 in An. stephensi. Asteglut1, Asteglut3 and Asteglut4 were mainly expressed in the midgut. Plasmodium berghei infection differentially regulated the expression of Asteglut genes with significant downregulation of Asteglut1 and Asteglut4, while upregulation of Asteglutx. Only knocking-down Asteglut1 facilitated Plasmodium berghei infection in An. stephensi. This might be due to the accumulation of glucose prior to blood-feeding in dsAsteglut1-treated mosquitoes. Our transcriptome analysis revealed that knockdown of Asteglut1 differentially regulated expression of genes associated with multiple functional clusters, especially those related to detoxification and immunity. The dysregulation of multiple pathways might contribute to the increased P. berghei infection. Conclusions Our study shows that Asteglut1 participates in defense against P. berghei in An. stephensi. The regulation of Asteglut1 on vector competence might through modulating multiple biological processes, such as detoxification and immunity.![]()
Collapse
|
15
|
Nan FR, Feng J, Lv JP, Liu Q, Liu XD, Gao F, Xie SL. Comparison of the transcriptomes of different life history stages of the freshwater Rhodophyte Thorea hispida. Genomics 2020; 112:3978-3990. [PMID: 32650096 DOI: 10.1016/j.ygeno.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/04/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
Thorea hispida exclusively inhabits freshwater environments and is characterized by a triphasic life history. In this study, the organelle genomes and transcriptomes of different life history stages of T. hispida were examined using next generation sequencing. The chloroplast and mitochondrial genomes of the chantransia stage were 175,747 and 25,411 bp in length, respectively. The chantransia stage was highly similar to the gametophyte stage based on comparisons of organelle genomes and phylogenetic reconstruction. Transcriptomic comparisons of two stages found that ribosome-related genes were the most up-regulated in the gametophyte stage of T. hispida. Seven meiosis-specific genes, including SPO11 initiator of meiotic double-stranded breaks(spo11), meiotic nuclear divisions 1(mnd1), RAD51 recombinase(rad51), mutS homolog 4(msh4), mutS homolog 5(msh5), REC8 meiotic recombination protein(rec8), and DNA helicase Mer3(mer3), were differentially regulated between the two life history stages. The organelle genomes and transcriptomes from T. hispida provided in this study will be valuable for future studies of freshwater red algae.
Collapse
Affiliation(s)
- Fang-Ru Nan
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jun-Ping Lv
- School of Life Science, Shanxi University, Taiyuan, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Xu-Dong Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Fan Gao
- School of Life Science, Shanxi University, Taiyuan, China
| | - Shu-Lian Xie
- School of Life Science, Shanxi University, Taiyuan, China.
| |
Collapse
|
16
|
Gao L, Song X, Wang J. Gut microbiota is essential in PGRP-LA regulated immune protection against Plasmodium berghei infection. Parasit Vectors 2020; 13:3. [PMID: 31907025 PMCID: PMC6945779 DOI: 10.1186/s13071-019-3876-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria remains to be one of the deadliest infectious diseases and imposes substantial financial and social costs in the world. Mosquitoes rely on the immune system to control parasite infection. Peptidoglycan recognition proteins (PGRPs), a family of pattern-recognition receptors (PRR), are responsible for initiating and regulating immune signaling pathways. PGRP-LA is involved in the regulation of immune defense against the Plasmodium parasite, however, the underlying mechanism needs to be further elucidated. METHODS The spatial and temporal expression patterns of pgrp-la in Anopheles stephensi were analyzed by qPCR. The function of PGRP-LA was examined using a dsRNA-based RNA interference strategy. Western blot and periodic acid schiff (PAS) staining were used to assess the structural integrity of peritrophic matrix (PM). RESULTS The expression of pgrp-la in An. stephensi was induced in the midgut in response to the rapid proliferating gut microbiota post-blood meal. Knocking down of pgrp-la led to the downregulation of immune effectors that control gut microbiota growth. The decreased expression of these immune genes also facilitated P. berghei infection. However, such dsLA treatment did not influence the structural integrity of PM. When gut microbiota was removed by antibiotic treatment, the regulation of PGRP-LA on immune effectors was abolished and the knock down of pgrp-la failed to increase susceptibility of mosquitoes to parasite infection. CONCLUSIONS PGRP-LA regulates the immune responses by sensing the dynamics of gut microbiota. A mutual interaction between gut microbiota and PGRP-LA contributes to the immune defense against Plasmodium parasites in An. stephensi.
Collapse
Affiliation(s)
- Li Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiumei Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China. .,Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
17
|
Meccariello A, Salvemini M, Primo P, Hall B, Koskinioti P, Dalíková M, Gravina A, Gucciardino MA, Forlenza F, Gregoriou ME, Ippolito D, Monti SM, Petrella V, Perrotta MM, Schmeing S, Ruggiero A, Scolari F, Giordano E, Tsoumani KT, Marec F, Windbichler N, Arunkumar KP, Bourtzis K, Mathiopoulos KD, Ragoussis J, Vitagliano L, Tu Z, Papathanos PA, Robinson MD, Saccone G. Maleness-on-the-Y ( MoY) orchestrates male sex determination in major agricultural fruit fly pests. Science 2019; 365:1457-1460. [PMID: 31467189 DOI: 10.1126/science.aax1318] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
In insects, rapidly evolving primary sex-determining signals are transduced by a conserved regulatory module controlling sexual differentiation. In the agricultural pest Ceratitis capitata (Mediterranean fruit fly, or Medfly), we identified a Y-linked gene, Maleness-on-the-Y (MoY), encoding a small protein that is necessary and sufficient for male development. Silencing or disruption of MoY in XY embryos causes feminization, whereas overexpression of MoY in XX embryos induces masculinization. Crosses between transformed XY females and XX males give rise to males and females, indicating that a Y chromosome can be transmitted by XY females. MoY is Y-linked and functionally conserved in other species of the Tephritidae family, highlighting its potential to serve as a tool for developing more effective control strategies against these major agricultural insect pests.
Collapse
Affiliation(s)
- Angela Meccariello
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Pasquale Primo
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Brantley Hall
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Panagiota Koskinioti
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria.,Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Martina Dalíková
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Andrea Gravina
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | | | - Federica Forlenza
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Maria-Eleni Gregoriou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Domenica Ippolito
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy
| | - Valeria Petrella
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | | | - Stephan Schmeing
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Ennio Giordano
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy
| | - Konstantina T Tsoumani
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - František Marec
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Kallare P Arunkumar
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 039, India
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| | - Kostas D Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Jiannis Ragoussis
- Department of Human Genetics and Bioengineering, McGill University and Genome Quebec Innovation Centre, Montreal, QC H3A 0G1, Canada
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134 Naples, Italy
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Philippos Aris Papathanos
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy. .,Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Mark D Robinson
- Institute of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland.
| | - Giuseppe Saccone
- Department of Biology, University of Naples "Federico II," 80126 Napoli, Italy.
| |
Collapse
|
18
|
Dong L, Ma X, Wang M, Zhu D, Feng Y, Zhang Y, Wang J. Complete Mitochondrial Genome of the Chagas Disease Vector, Triatoma rubrofasciata. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:515-519. [PMID: 30419739 PMCID: PMC6243191 DOI: 10.3347/kjp.2018.56.5.515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/23/2018] [Accepted: 09/30/2018] [Indexed: 11/23/2022]
Abstract
Triatoma rubrofasciata is a wide-spread vector of Chagas disease in Americas. In this study, we completed the mitochondrial genome sequencing of T. rubrofasciata. The total length of T. rubrofasciata mitochondrial genome was 17,150 bp with the base composition of 40.4% A, 11.6% G, 29.4% T and 18.6% C. It included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and one control region. We constructed a phylogenetic tree on the 13 protein-coding genes of T. rubrofasciata and other 13 closely related species to show their phylogenic relationship. The determination of T. rubrofasciata mitogenome would play an important role in understanding the genetic diversity and evolution of triatomine bugs.
Collapse
Affiliation(s)
- Li Dong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaoling Ma
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, P. R. China
| | - Mengfei Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, P. R. China
| | - Dan Zhu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Center for Tropical Diseases, Shanghai 200025, P.R. China
| | - Yuebiao Feng
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, P. R. China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Center for Tropical Diseases, Shanghai 200025, P.R. China
| | - Jingwen Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
19
|
Scherbaum S, Hellmann N, Fernández R, Pick C, Burmester T. Diversity, evolution, and function of myriapod hemocyanins. BMC Evol Biol 2018; 18:107. [PMID: 29976142 PMCID: PMC6034248 DOI: 10.1186/s12862-018-1221-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 06/24/2018] [Indexed: 11/16/2022] Open
Abstract
Background Hemocyanin transports O2 in the hemolymph of many arthropod species. Such respiratory proteins have long been considered unnecessary in Myriapoda. As a result, the presence of hemocyanin in Myriapoda has long been overlooked. We analyzed transcriptome and genome sequences from all major myriapod taxa – Chilopoda, Diplopoda, Symphyla, and Pauropoda – with the aim of identifying hemocyanin-like proteins. Results We investigated the genomes and transcriptomes of 56 myriapod species and identified 46 novel full-length hemocyanin subunit sequences in 20 species of Chilopoda, Diplopoda, and Symphyla, but not Pauropoda. We found in Cleidogona sp. (Diplopoda, Chordeumatida) a hemocyanin-like sequence with mutated copper-binding centers, which cannot bind O2. An RNA-seq approach showed markedly different hemocyanin mRNA levels from ~ 6 to 25,000 reads per kilobase per million reads. To evaluate the contribution of hemocyanin to O2 transport, we specifically studied the hemocyanin of the centipede Scolopendra dehaani. This species harbors two distinct hemocyanin subunits with low expression levels. We showed cooperative O2 binding in the S. dehaani hemolymph, indicating that hemocyanin supports O2 transport even at low concentration. Further, we demonstrated that hemocyanin is > 1500-fold more highly expressed in the fertilized egg than in the adult. Conclusion Hemocyanin was most likely the respiratory protein in the myriapod stem-lineage, but multiple taxa may have independently lost hemocyanin and thus the ability of efficient O2 transport. In myriapods, hemocyanin is much more widespread than initially appreciated. Some myriapods express hemocyanin only at low levels, which are, nevertheless, sufficient for O2 supply. Notably, also in myriapods, a non-respiratory protein similar to insect storage hexamerins evolved from the hemocyanin. Electronic supplementary material The online version of this article (10.1186/s12862-018-1221-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Nadja Hellmann
- Institute for Biophysics, Johannes Gutenberg University of Mainz, D-55099, Mainz, Germany
| | - Rosa Fernández
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.,Bioinformatics & Genomics Unit, Center for Genomic Regulation, 08004, Barcelona, Spain
| | - Christian Pick
- Institute of Zoology, University of Hamburg, D-20146, Hamburg, Germany
| | | |
Collapse
|
20
|
Nan F, Feng J, Lv J, Liu Q, Xie S. Transcriptome analysis of the typical freshwater rhodophytes Sheathia arcuata grown under different light intensities. PLoS One 2018; 13:e0197729. [PMID: 29813098 PMCID: PMC5973588 DOI: 10.1371/journal.pone.0197729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/08/2018] [Indexed: 01/25/2023] Open
Abstract
The Rhodophyta Sheathia arcuata is exclusively distributed in freshwater, constituting an important component in freshwater flora. This study presents the first transcriptome profiling of freshwater Rhodophyta taxa. A total of 161,483 assembled transcripts were identified, annotated and classified into different biological categories and pathways based on BLAST against diverse databases. Different gene expression patterns were caused principally by different irradiances considering the similar water conditions of the sampling site when the specimens were collected. Comparison results of gene expression levels under different irradiances revealed that photosynthesis-related pathways significantly up-regulated under the weak light. Molecular responses for improved photosynthetic activity include the transcripts corresponding to antenna proteins (LHCA1 and LHCA4), photosynthetic apparatus proteins (PSBU, PETB, PETC, PETH and beta and gamma subunits of ATPase) and metabolic enzymes in the carbon fixation. Along with photosynthesis, other metabolic activities were also regulated to optimize the growing and development of S. arcuata under appropriate sunlight. Protein-protein interactive networks revealed the most responsive up-expressed transcripts were ribosomal proteins. The de-novo transcriptome assembly of S. arcuata provides a foundation for further investigation on the molecular mechanism of photosynthesis and environmental adaption for freshwater Rhodophyta.
Collapse
Affiliation(s)
- Fangru Nan
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, China
| | - Junping Lv
- School of Life Science, Shanxi University, Taiyuan, China
| | - Qi Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, China
- * E-mail:
| |
Collapse
|
21
|
Tissue Localization and Variation of Major Symbionts in Haemaphysalis longicornis, Rhipicephalus haemaphysaloides, and Dermacentor silvarum in China. Appl Environ Microbiol 2018. [PMID: 29523550 DOI: 10.1128/aem.00029-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ticks are important disease vectors, as they transmit a variety of human and animal pathogens worldwide. Symbionts that coevolved with ticks confer crucial benefits to their host in nutrition metabolism, fecundity, and vector competence. Although over 100 tick species have been identified in China, general information on tick symbiosis is limited. Here, we visualized the tissue distribution of Coxiella sp. and Rickettsia sp. in lab-reared Haemaphysalis longicornis and Rhipicephalus haemaphysaloides by fluorescent in situ hybridization. We found that Coxiella sp. colonized exclusively the Malpighian tubules and ovaries of H. longicornis, while Rickettsia sp. additionally colonized the midgut of R. haemaphysaloides We also investigated the population structure of microbiota in Dermacentor silvarum ticks collected from Inner Mongolia, China, and found that Coxiella, Rickettsia, and Pseudomonas are the three dominant genera. No significant difference in microbiota composition was found between male and female D. silvarum ticks. We again analyzed the tissue localization of Coxiella sp. and Rickettsia sp. and found that they displayed tissue tropisms similar to those in R. haemaphysaloides, except that Rickettsia sp. colonized the nuclei of spermatids instead of ovaries in D. silvarum Altogether, our results suggest that Coxiella sp. and Rickettsia sp. are the main symbionts in the three ticks and reside primarily in midgut, Malpighian tubules, and reproductive tissues, but their tissue distribution varies in association with species and sexes.IMPORTANCE Tick-borne diseases constitute a major public health burden, as they are increasing in frequency and severity worldwide. The presence of symbionts helps ticks to metabolize nutrients, promotes fecundity, and influences pathogen infections. Increasing numbers of tick-borne pathogens have been identified in China; however, knowledge of native ticks, especially tick symbiosis, is limited. In this study, we analyze the distribution of Coxiella sp. and Rickettsia sp. in tissues of laboratory-reared Haemaphysalis longicornis and Rhipicephalus haemaphysaloides and field-collected Dermacentor silvarum We found that the localization patterns of Coxiella sp. in three Chinese tick species were similar to those of other tick species. We also found a previously undefined intracellular localization of Rickettsia sp. in tick midgut and spermatids. In addition, we demonstrate that tissue tropisms of symbionts vary between species and sexes. Our findings provide new insights into the tissue localization of symbionts in native Chinese ticks and pave the way for further understanding of their functional capabilities and symbiotic interactions with ticks.
Collapse
|
22
|
Song X, Wang M, Dong L, Zhu H, Wang J. PGRP-LD mediates A. stephensi vector competency by regulating homeostasis of microbiota-induced peritrophic matrix synthesis. PLoS Pathog 2018; 14:e1006899. [PMID: 29489896 PMCID: PMC5831637 DOI: 10.1371/journal.ppat.1006899] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/23/2018] [Indexed: 12/02/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) and commensal microbes mediate pathogen infection outcomes in insect disease vectors. Although PGRP-LD is retained in multiple vectors, its role in host defense remains elusive. Here we report that Anopheles stephensi PGRP-LD protects the vector from malaria parasite infection by regulating gut homeostasis. Specifically, knock down of PGRP-LD (dsLD) increased susceptibility to Plasmodium berghei infection, decreased the abundance of gut microbiota and changed their spatial distribution. This outcome resulted from a change in the structural integrity of the peritrophic matrix (PM), which is a chitinous and proteinaceous barrier that lines the midgut lumen. Reduction of microbiota in dsLD mosquitoes due to the upregulation of immune effectors led to dysregulation of PM genes and PM fragmentation. Elimination of gut microbiota in antibiotic treated mosquitoes (Abx) led to PM loss and increased vectorial competence. Recolonization of Abx mosquitoes with indigenous Enterobacter sp. restored PM integrity and decreased mosquito vectorial capacity. Silencing PGRP-LD in mosquitoes without PM didn’t influence their vector competence. Our results indicate that PGPR-LD protects the gut microbiota by preventing hyper-immunity, which in turn promotes PM structurally integrity. The intact PM plays a key role in limiting P. berghei infection. Malaria parasites must overcome several obstacles to complete their development in mosquito. Understanding the interactions between parasites and mosquitoes will provide potential targets to control malaria transmission. PGRP-LD is a peptidoglycan recognition protein, of which limit information is available in insects. Here we show that A. stephensi PGRP-LD mediates malaria parasite infection outcomes by influencing homeostasis of the gut microbiota. Reduction of the gut microbiota density, resulting from upregulation of immune activities in PGRP-LD knock down mosquitoes, changes expression of PM genes and causes PM fragmentation. The compromised PM leads to increasing susceptibility to parasite infection. We also discovered that the PM is lost in mosquitoes in which the gut microbiota is removed by antibiotic treatment. Knock down of PGRP-LD in these mosquitoes doesn’t increase their vector competence. Altogether, these results indicate that capacity of Anopheles mosquito to transmit parasites is determined by a finely tuned balance between host immunity, gut microbiota and peritrophic matrix. PGRP-LD is a key mediator in regulating this balance. Our results expand knowledge on interactions between immune system, gut microbiota and Plasmodium, and will shed light on equivalent processes in other disease transmitting vectors.
Collapse
Affiliation(s)
- Xiumei Song
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Mengfei Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Li Dong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Huaimin Zhu
- The 2nd Military Medical University, Shanghai, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
23
|
Medina Munoz M, Pollio AR, White HL, Rio RV. Into the Wild: Parallel Transcriptomics of the Tsetse-Wigglesworthia Mutualism within Kenyan Populations. Genome Biol Evol 2017; 9:2276-2291. [PMID: 28934375 PMCID: PMC5601960 DOI: 10.1093/gbe/evx175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/16/2022] Open
Abstract
Tsetse flies (Diptera: Glossinidae) have medical significance as the obligate vectors of African trypanosomes. In addition, tsetse harbor a simple gut microbiota. A predominant gut microbiota member, the Gammaproteobacterium Wigglesworthia spp., has coevolved with tsetse for a significant portion of Glossina radiation proving critical to tsetse fitness. Although multiple roles have been described for Wigglesworthia within colony flies, little research has been dedicated towards functional characterization within wild tsetse. Here, dual RNA-Seq was performed to characterize the tsetse-Wigglesworthia symbiosis within flies captured in Nguruman, Kenya. A significant correlation in Gene Ontology (GO) distribution between tsetse and Wigglesworthia was observed, with homogeneous enrichment in metabolic and transport categories, likely supporting a hallmark of the symbiosis-bidirectional metabolic exchange. Within field flies, highly transcribed Wigglesworthia loci included those involved in B vitamin synthesis and in substrate translocation, including amino acid transporters and multidrug efflux pumps, providing a molecular means for interaction. The universal expression of several Wigglesworthia and G. pallidipes orthologs, putatively involved in nutrient provisioning and resource allocation, was confirmed in sister tsetse species. These transcriptional profiles varied through host age and mating status likely addressing varying symbiont demands and also confirming their global importance within Glossina. This study, not only supports symbiont nutrient provisioning roles, but also serves as a foundation for insight into novel roles and molecular mechanisms associated with vector-microbiota interactions. The role of symbiont B vitamin provisioning towards impacting host epigenetics is discussed. Knowledge of vector-microbiota interactions may lead to the discovery of novel targets in pest control.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Adam R. Pollio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Hunter L. White
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| | - Rita V.M. Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV
| |
Collapse
|
24
|
Meccariello A, Monti SM, Romanelli A, Colonna R, Primo P, Inghilterra MG, Del Corsano G, Ramaglia A, Iazzetti G, Chiarore A, Patti F, Heinze SD, Salvemini M, Lindsay H, Chiavacci E, Burger A, Robinson MD, Mosimann C, Bopp D, Saccone G. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes. Sci Rep 2017; 7:10061. [PMID: 28855635 PMCID: PMC5577161 DOI: 10.1038/s41598-017-10347-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The Mediterranean fruitfly Ceratitis capitata (medfly) is an invasive agricultural pest of high economic impact and has become an emerging model for developing new genetic control strategies as an alternative to insecticides. Here, we report the successful adaptation of CRISPR-Cas9-based gene disruption in the medfly by injecting in vitro pre-assembled, solubilized Cas9 ribonucleoprotein complexes (RNPs) loaded with gene-specific single guide RNAs (sgRNA) into early embryos. When targeting the eye pigmentation gene white eye (we), a high rate of somatic mosaicism in surviving G0 adults was observed. Germline transmission rate of mutated we alleles by G0 animals was on average above 52%, with individual cases achieving nearly 100%. We further recovered large deletions in the we gene when two sites were simultaneously targeted by two sgRNAs. CRISPR-Cas9 targeting of the Ceratitis ortholog of the Drosophila segmentation paired gene (Ccprd) caused segmental malformations in late embryos and in hatched larvae. Mutant phenotypes correlate with repair by non-homologous end-joining (NHEJ) lesions in the two targeted genes. This simple and highly effective Cas9 RNP-based gene editing to introduce mutations in C. capitata will significantly advance the design and development of new effective strategies for pest control management.
Collapse
Affiliation(s)
- Angela Meccariello
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimaging (IBB), CNR, 80134, Naples, Italy
| | - Alessandra Romanelli
- Department of Pharmacy, University of Naples "Federico II", 80134, Napoli, Italy
| | - Rita Colonna
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Pasquale Primo
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | | | | | - Antonio Ramaglia
- Department of Physics "E. Pancini", University of Naples "Federico II", 80126, Napoli, Italy
| | - Giovanni Iazzetti
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Antonia Chiarore
- Stazione Zoologica Anton Dohrn, Center Villa Dohrn for Benthic Ecology, Punta San Pietro, 80077, Ischia, Italy
| | - Francesco Patti
- Stazione Zoologica Anton Dohrn, Center Villa Dohrn for Benthic Ecology, Punta San Pietro, 80077, Ischia, Italy
| | - Svenia D Heinze
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Marco Salvemini
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy
| | - Helen Lindsay
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, 8057, Switzerland
| | - Elena Chiavacci
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Alexa Burger
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Zürich, 8057, Switzerland
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Daniel Bopp
- Institute of Molecular Life Sciences, University of Zürich, Zürich, 8057, Switzerland
| | - Giuseppe Saccone
- Department of Biology, University of Naples "Federico II", 80126, Napoli, Italy.
| |
Collapse
|
25
|
"Wigglesworthia morsitans" Folate (Vitamin B9) Biosynthesis Contributes to Tsetse Host Fitness. Appl Environ Microbiol 2015; 81:5375-86. [PMID: 26025907 DOI: 10.1128/aem.00553-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/26/2015] [Indexed: 01/31/2023] Open
Abstract
Closely related ancient endosymbionts may retain minor genomic distinctions through evolutionary time, yet the biological relevance of these small pockets of unique loci remains unknown. The tsetse fly (Diptera: Glossinidae), the sole vector of lethal African trypanosomes (Trypanosoma spp.), maintains an ancient and obligate mutualism with species belonging to the gammaproteobacterium Wigglesworthia. Extensive concordant evolution with associated Wigglesworthia species has occurred through tsetse species radiation. Accordingly, the retention of unique symbiont loci between Wigglesworthia genomes may prove instrumental toward host species-specific biological traits. Genome distinctions between "Wigglesworthia morsitans" (harbored within Glossina morsitans bacteriomes) and the basal species Wigglesworthia glossinidia (harbored within Glossina brevipalpis bacteriomes) include the retention of chorismate and downstream folate (vitamin B9) biosynthesis capabilities, contributing to distinct symbiont metabolomes. Here, we demonstrate that these W. morsitans pathways remain functionally intact, with folate likely being systemically disseminated through a synchronously expressed tsetse folate transporter within bacteriomes. The folate produced by W. morsitans is demonstrated to be pivotal for G. morsitans sexual maturation and reproduction. Modest differences between ancient symbiont genomes may still play key roles in the evolution of their host species, particularly if loci are involved in shaping host physiology and ecology. Enhanced knowledge of the Wigglesworthia-tsetse mutualism may also provide novel and specific avenues for vector control.
Collapse
|
26
|
Ott BM, Rickards A, Gehrke L, Rio RVM. Characterization of shed medicinal leech mucus reveals a diverse microbiota. Front Microbiol 2015; 5:757. [PMID: 25620963 PMCID: PMC4288373 DOI: 10.3389/fmicb.2014.00757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/12/2014] [Indexed: 11/13/2022] Open
Abstract
Microbial transmission through mucosal-mediated mechanisms is widespread throughout the animal kingdom. One example of this occurs with Hirudo verbana, the medicinal leech, where host attraction to shed conspecific mucus facilitates horizontal transmission of a predominant gut symbiont, the Gammaproteobacterium Aeromonas veronii. However, whether this mucus may harbor other bacteria has not been examined. Here, we characterize the microbiota of shed leech mucus through Illumina deep sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. Additionally, Restriction Fragment Length Polymorphism (RFLP) typing with subsequent Sanger Sequencing of a 16S rRNA gene clone library provided qualitative confirmation of the microbial composition. Phylogenetic analyses of full-length 16S rRNA sequences were performed to examine microbial taxonomic distribution. Analyses using both technologies indicate the dominance of the Bacteroidetes and Proteobacteria phyla within the mucus microbiota. We determined the presence of other previously described leech symbionts, in addition to a number of putative novel leech-associated bacteria. A second predominant gut symbiont, the Rikenella-like bacteria, was also identified within mucus and exhibited similar population dynamics to A. veronii, suggesting persistence in syntrophy beyond the gut. Interestingly, the most abundant bacterial genus belonged to Pedobacter, which includes members capable of producing heparinase, an enzyme that degrades the anticoagulant, heparin. Additionally, bacteria associated with denitrification and sulfate cycling were observed, indicating an abundance of these anions within mucus, likely originating from the leech excretory system. A diverse microbiota harbored within shed mucus has significant potential implications for the evolution of microbiomes, including opportunities for gene transfer and utility in host capture of a diverse group of symbionts.
Collapse
Affiliation(s)
- Brittany M Ott
- Department of Biology, West Virginia University Morgantown, WV, USA
| | - Allen Rickards
- Department of Biology, West Virginia University Morgantown, WV, USA
| | - Lauren Gehrke
- Department of Biology, West Virginia University Morgantown, WV, USA
| | - Rita V M Rio
- Department of Biology, West Virginia University Morgantown, WV, USA
| |
Collapse
|
27
|
Delgado C, García G. Coevolution between Contracaecum (Nematoda, Anisakidae) and Austrolebias (Cyprinodontiformes, Rivulidae) host-parasite complex from SW Atlantic coastal basins. Parasitol Res 2014; 114:913-27. [PMID: 25544701 DOI: 10.1007/s00436-014-4257-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/15/2014] [Indexed: 11/26/2022]
Abstract
In recent years, molecular studies in host-parasite interactions in terms of coevolution have become important. Larvae (L3) of two species of Contracaecum were found parasitizing species of Rivulidae in the Atlantic coastal basins from Uruguay. The aim of this study is to determine the patterns of differentiation of this host-parasite complex in order to clarify possible coevolutionary events in such interaction throughout phylogeographic approach using both nuclear and mitochondrial molecular markers (internal transcribed spacers (ITS) and cytochrome oxidase subunit 1 (cox-1)). Based on both markers, intraspecific variation in Contracaecum species was lower than 2 %, while interspecific variation was greater than 10 %. Both species of Contracaecum constitute monophyletic groups. Contracaecum resulted in a paraphyletic genus when incorporating other Contracaecum species and closely related nematode sequences from GenBank. ITS regions showed that Contracaecum sp. 1 is more closely related to other species of the same genus than with their counterparts from Atlantic coastal basins in Uruguay. Haplotype network for both markers corroborate the existence of two distinct taxa. While ITS pairwise FST comparisons and the indirect estimate of gene flow confirm the existence of two distinct Contracaecum species, mitochondrial gene detected low levels of migrants between some of the populations from both species. Our results suggest that coevolution in this host-parasite complex species is plausible. Parasite cladogenetic events occur almost simultaneously with the separation of the hypothetical ancestors of each species complex of Austrolebias during Pliocene. Additionally, the two lineages of Contracaecum colonize differently the species within each of the Austrolebias complexes.
Collapse
Affiliation(s)
- Cecilia Delgado
- Sección Genética Evolutiva, Facultad de Ciencias, UdelaR, Iguá 4225, 11400, Montevideo, Uruguay,
| | | |
Collapse
|
28
|
Borner J, Rehm P, Schill RO, Ebersberger I, Burmester T. A transcriptome approach to ecdysozoan phylogeny. Mol Phylogenet Evol 2014; 80:79-87. [PMID: 25124096 DOI: 10.1016/j.ympev.2014.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/15/2014] [Accepted: 08/01/2014] [Indexed: 11/20/2022]
Abstract
The monophyly of Ecdysozoa, which comprise molting phyla, has received strong support from several lines of evidence. However, the internal relationships of Ecdysozoa are still contended. We generated expressed sequence tags from a priapulid (penis worm), a kinorhynch (mud dragon), a tardigrade (water bear) and five chelicerate taxa by 454 transcriptome sequencing. A multigene alignment was assembled from 63 taxa, which comprised after matrix optimization 24,249 amino acid positions with high data density (2.6% gaps, 19.1% missing data). Phylogenetic analyses employing various models support the monophyly of Ecdysozoa. A clade combining Priapulida and Kinorhyncha (i.e. Scalidophora) was recovered as the earliest branch among Ecdysozoa. We conclude that Cycloneuralia, a taxon erected to combine Priapulida, Kinorhyncha and Nematoda (and others), are paraphyletic. Rather Arthropoda (including Onychophora) are allied with Nematoda and Tardigrada. Within Arthropoda, we found strong support for most clades, including monophyletic Mandibulata and Pancrustacea. The phylogeny within the Euchelicerata remained largely unresolved. There is conflicting evidence on the position of tardigrades: While Bayesian and maximum likelihood analyses of only slowly evolving genes recovered Tardigrada as a sister group to Arthropoda, analyses of the full data set, and of subsets containing genes evolving at fast and intermediate rates identified a clade of Tardigrada and Nematoda. Notably, the latter topology is also supported by the analyses of indel patterns.
Collapse
Affiliation(s)
- Janus Borner
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany
| | - Peter Rehm
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany
| | - Ralph O Schill
- Zoology, Biological Institute, University of Stuttgart, Germany
| | - Ingo Ebersberger
- Department for Applied Bioinformatics, University of Frankfurt, Institute for Cell Biology and Neuroscience, Germany
| | - Thorsten Burmester
- Institute of Zoology and Zoological Museum, University of Hamburg, D-20146 Hamburg, Germany.
| |
Collapse
|
29
|
Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH. Expansion of the APC superfamily of secondary carriers. Proteins 2014; 82:2797-811. [PMID: 25043943 DOI: 10.1002/prot.24643] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 11/07/2022]
Abstract
The amino acid-polyamine-organoCation (APC) superfamily is the second largest superfamily of secondary carriers currently known. In this study, we establish homology between previously recognized APC superfamily members and proteins of seven new families. These families include the PAAP (Putative Amino Acid Permease), LIVCS (Branched Chain Amino Acid:Cation Symporter), NRAMP (Natural Resistance-Associated Macrophage Protein), CstA (Carbon starvation A protein), KUP (K⁺ Uptake Permease), BenE (Benzoate:H⁺ Virginia Symporter), and AE (Anion Exchanger). The topology of the well-characterized human Anion Exchanger 1 (AE1) conforms to a UraA-like topology of 14 TMSs (12 α-helical TMSs and 2 mixed coil/helical TMSs). All functionally characterized members of the APC superfamily use cation symport for substrate accumulation except for some members of the AE family which frequently use anion:anion exchange. We show how the different topologies fit into the framework of the common LeuT-like fold, defined earlier (Proteins. 2014 Feb;82(2):336-46), and determine that some of the new members contain previously undocumented topological variations. All new entries contain the two 5 or 7 TMS APC superfamily repeat units, sometimes with extra TMSs at the ends, the variations being greatest within the CstA family. New, functionally characterized members transport amino acids, peptides, and inorganic anions or cations. Except for anions, these are typical substrates of established APC superfamily members. Active site TMSs are rich in glycyl residues in variable but conserved constellations. This work expands the APC superfamily and our understanding of its topological variations.
Collapse
Affiliation(s)
- Ake Vastermark
- Department of Molecular Biology, University of California at San Diego, La Jolla, California, 92093-0116
| | | | | | | | | |
Collapse
|
30
|
Hitchhiking of host biology by beneficial symbionts enhances transmission. Sci Rep 2014; 4:5825. [PMID: 25059557 PMCID: PMC5376049 DOI: 10.1038/srep05825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/02/2014] [Indexed: 12/30/2022] Open
Abstract
Transmission plays a key role in the evolution of symbiosis. Mixed mode transmission combines horizontal and vertical mechanisms for symbiont acquisition. However, features that enable mixed transmission are poorly understood. Here, we determine the mechanistic basis for the recruitment of the beneficial bacterium, Aeromonas veronii by the leech, Hirudo verbana. We demonstrate that host mucosal secretions complement imperfect symbiont vertical transmission. First, we show that the A. veronii population within secretions originates from the host digestive tract and proliferates synchronously with shedding frequency, demonstrating the coupling of partner biology. Furthermore, leeches are attracted to these castings with oral contact proving sufficient for symbiont transmission. Leech attraction to mucus is not affected by the symbiont state of either the host or mucus, suggesting that A. veronii exploits preexisting host behavior and physiological traits. A dual transmission mode, integrating multiple layers of host contributions, may prove evolutionarily advantageous for a wide range of symbioses. Using such a strategy, host infection is ensured, while also providing access to a higher genetic diversity of symbionts. Countless host-associated microbes exhibit mixed mode transmission, supporting the use of the leech symbiosis as a model for enhancing our understanding of the specificity, establishment and persistence of microbiotas.
Collapse
|
31
|
Sagonas K, Poulakakis N, Lymberakis P, Parmakelis A, Pafilis P, Valakos ED. Molecular systematics and historical biogeography of the green lizards (Lacerta) in Greece: Insights from mitochondrial and nuclear DNA. Mol Phylogenet Evol 2014; 76:144-54. [DOI: 10.1016/j.ympev.2014.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/24/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
|
32
|
Rehm P, Meusemann K, Borner J, Misof B, Burmester T. Phylogenetic position of Myriapoda revealed by 454 transcriptome sequencing. Mol Phylogenet Evol 2014; 77:25-33. [PMID: 24732681 DOI: 10.1016/j.ympev.2014.04.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 02/02/2023]
Abstract
Myriapods had been considered closely allied to hexapods (insects and relatives). However, analyses of molecular sequence data have consistently placed Myriapoda either as a sister group of Pancrustacea, comprising crustaceans and hexapods, and thereby supporting the monophyly of Mandibulata, or retrieved Myriapoda as a sister group of Chelicerata (spiders, ticks, mites and allies). In addition, the relationships among the four myriapod groups (Pauropoda, Symphyla, Diplopoda, Chilopoda) are unclear. To resolve the phylogeny of myriapods and their relationship to other main arthropod groups, we collected transcriptome data from the symphylan Symphylella vulgaris, the centipedes Lithobius forficatus and Scolopendra dehaani, and the millipedes Polyxenus lagurus, Glomeris pustulata and Polydesmus angustus by 454 sequencing. We concatenated a multiple sequence alignment that contained 1550 orthologous single copy genes (1,109,847 amino acid positions) from 55 euarthropod and 14 outgroup taxa. The final selected alignment included 181 genes and 37,425 amino acid positions from 55 taxa, with eight myriapods and 33 other euarthropods. Bayesian analyses robustly recovered monophyletic Mandibulata, Pancrustacea and Myriapoda. Most analyses support a sister group relationship of Symphyla in respect to a clade comprising Chilopoda and Diplopoda. Inclusion of additional sequence data from nine myriapod species resulted in an alignment with poor data density, but broader taxon average. With this dataset we inferred Diplopoda+Pauropoda as closest relatives (i.e., Dignatha) and recovered monophyletic Helminthomorpha. Molecular clock calculations suggest an early Cambrian emergence of Myriapoda ∼513 million years ago and a late Cambrian divergence of myriapod classes. This implies a marine origin of the myriapods and independent terrestrialization events during myriapod evolution.
Collapse
Affiliation(s)
- Peter Rehm
- Zoologisches Institut & Museum, Biozentrum Grindel, Martin-Luther-King Platz 3, D-20146 Hamburg, Germany
| | - Karen Meusemann
- Zoologisches Forschungsmuseum Alexander Koenig, Zentrum für Molekulare Biodiversitätsforschung (zmb), Adenauerallee 160, D-53113 Bonn, Germany; CSIRO Ecosystem Sciences, Australian National Insect Collection, Clunies Ross Street, Acton, ACT 2601, Australia
| | - Janus Borner
- Zoologisches Institut & Museum, Biozentrum Grindel, Martin-Luther-King Platz 3, D-20146 Hamburg, Germany
| | - Bernhard Misof
- Zoologisches Forschungsmuseum Alexander Koenig, Zentrum für Molekulare Biodiversitätsforschung (zmb), Adenauerallee 160, D-53113 Bonn, Germany
| | - Thorsten Burmester
- Zoologisches Institut & Museum, Biozentrum Grindel, Martin-Luther-King Platz 3, D-20146 Hamburg, Germany.
| |
Collapse
|
33
|
Pick C, Scherbaum S, Hegedüs E, Meyer A, Saur M, Neumann R, Markl J, Burmester T. Structure, diversity and evolution of myriapod hemocyanins. FEBS J 2014; 281:1818-33. [DOI: 10.1111/febs.12742] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/23/2014] [Accepted: 02/06/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Christian Pick
- Institute of Zoology and Zoological Museum; University of Hamburg; Germany
| | - Samantha Scherbaum
- Institute of Zoology and Zoological Museum; University of Hamburg; Germany
| | - Elöd Hegedüs
- Institute of Zoology and Zoological Museum; University of Hamburg; Germany
| | - Andreas Meyer
- Institute of Zoology and Zoological Museum; University of Hamburg; Germany
| | - Michael Saur
- Institute of Zoology; Johannes Gutenberg University of Mainz; Germany
| | - Ruben Neumann
- Institute of Zoology; Johannes Gutenberg University of Mainz; Germany
| | - Jürgen Markl
- Institute of Zoology; Johannes Gutenberg University of Mainz; Germany
| | - Thorsten Burmester
- Institute of Zoology and Zoological Museum; University of Hamburg; Germany
| |
Collapse
|
34
|
Siozios S, Ioannidis P, Klasson L, Andersson SGE, Braig HR, Bourtzis K. The diversity and evolution of Wolbachia ankyrin repeat domain genes. PLoS One 2013; 8:e55390. [PMID: 23390535 PMCID: PMC3563639 DOI: 10.1371/journal.pone.0055390] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/21/2012] [Indexed: 11/25/2022] Open
Abstract
Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.
Collapse
Affiliation(s)
- Stefanos Siozios
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
| | - Panagiotis Ioannidis
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
| | - Lisa Klasson
- Department of Molecular Evolution, Uppsala University, Uppsala, Sweden
| | | | - Henk R. Braig
- School of Biological Sciences Bangor University, Bangor Gwynedd, United Kingdom
| | - Kostas Bourtzis
- Department of Environmental and Natural Resources Management, University of Western Greece, Agrinio, Greece
- Biomedical Sciences Research Center Al. Fleming, Vari, Greece
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
35
|
Population genetic structure of Aedes (Stegomyia) aegypti (L.) at a micro-spatial scale in Thailand: implications for a dengue suppression strategy. PLoS Negl Trop Dis 2013; 7:e1913. [PMID: 23326609 PMCID: PMC3542184 DOI: 10.1371/journal.pntd.0001913] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 10/04/2012] [Indexed: 11/19/2022] Open
Abstract
Background The genetic population structure of Aedes (Stegomyia) aegypti (L.), the main vector of dengue virus, is being investigated in areas where a novel dengue suppression program is to be implemented. The aim of the program is to release and establish mosquito populations with impaired virus transmission capabilities. To model effects of the release and devise protocols for its implementation, information about the genetic structure of populations at a range of spatial scales is required. Methodology/Principal Findings This study investigates a potential release site in the Hua Sam Rong Subdistrict of Plaeng Yao District, Chachoengsao Province, in eastern Thailand which comprises a complex of five villages within a 10 km radius. Aedes aegypti resting indoors was sampled at four different times of year from houses within the five villages. Genetic markers were used to screen the mosquitoes: two Exon Primed Intron Crossing (EPIC) markers and five microsatellite markers. The raw allele size was determined using several statistical software packages to analyze the population structure of the mosquito. Estimates of effective population size for each village were low, but there was no evidence of genetic isolation by geographic distance. Conclusions The presence of temporary genetic structure is possibly caused by genetic drift due to large contributions of adults from a few breeding containers. This suggests that the introduction of mosquitoes into an area needs to proceed through multiple releases and targeting of sites where mosquitoes are emerging in large numbers. Knowledge about population structure of Aedes (Stegomyia) aegypti (L.), the main vector of dengue virus, is vital in designing dengue suppression programs. To design a release of dengue resistant mosquitoes, we require information about population structure at a range of spatial scales. This study looked at a small-scale complex of five villages at four sampling periods and mosquitoes from individual houses within the five villages. Genetic markers were used to screen the field-collected mosquitoes in order to characterize population genetic structure. Our results indicated that the effective population size of Ae. aegypti in each village was low. Genetic structure was apparent at local spatial scales, but there was no evidence of genetic isolation by geographic distance. The temporary genetic structure observed may be caused by related individuals emerging from a few productive containers in each village. Our findings could be applied in an effective dengue suppression program by planning multiple releases of dengue resistant mosquitoes in targeted households of each village where large numbers of adult mosquitoes have emerged from identified productive breeding containers instead of making a release in one area and expecting rapid spread throughout the complex.
Collapse
|
36
|
The tsetse fly obligate mutualist Wigglesworthia morsitans alters gene expression and population density via exogenous nutrient provisioning. Appl Environ Microbiol 2012; 78:7792-7. [PMID: 22904061 DOI: 10.1128/aem.02052-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate mutualist Wigglesworthia morsitans provisions nutrients to tsetse flies. The symbiont's response to thiamine (B(1)) supplementation of blood meals, specifically towards the regulation of thiamine biosynthesis and population density, is described. Despite an ancient symbiosis and associated genome tailoring, Wigglesworthia responds to nutrient availability, potentially accommodating a decreased need.
Collapse
|
37
|
Wang J, Brelsfoard C, Wu Y, Aksoy S. Intercommunity effects on microbiome and GpSGHV density regulation in tsetse flies. J Invertebr Pathol 2012; 112 Suppl:S32-9. [PMID: 22874746 DOI: 10.1016/j.jip.2012.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/28/2012] [Accepted: 03/30/2012] [Indexed: 02/05/2023]
Abstract
Tsetse flies have a highly regulated and defined microbial fauna made of 3 bacterial symbionts (obligate Wigglesworthia glossinidia, commensal Sodalis glossinidius and parasitic Wolbachia pipientis) in addition to a DNA virus (Glossina pallidipes Salivary gland Hypertrophy Virus, GpSGHV). It has been possible to rear flies in the absence of either Wigglesworthia or in totally aposymbiotic state by dietary supplementation of tsetse's bloodmeal. In the absence of Wigglesworthia, tsetse females are sterile, and adult progeny are immune compromised. The functional contributions for Sodalist are less known, while Wolbachia cause reproductive manupulations known as cytoplasmic incompatibility (CI). High GpSGHV virus titers result in reduced fecundity and lifespan, and have compromised efforts to colonize flies in the insectary for large rearing purposes. Here we investigated the within community effects on the density regulation of the individual microbiome partners in tsetse lines with different symbiotic compositions. We show that absence of Wigglesworthia results in loss of Sodalis in subsequent generations possibly due to nutritional dependancies between the symbiotic partners. While an initial decrease in Wolbachia and GpSGHV levels are also noted in the absence of Wigglesworthia, these infections eventually reach homeostatic levels indicating adaptations to the new host immune environment or nutritional ecology. Absence of all bacterial symbionts also results in an initial reduction of viral titers, which recover in the second generation. Our findings suggest that in addition to the host immune system, interdependencies between symbiotic partners result in a highly tuned density regulation for tsetse's microbiome.
Collapse
Affiliation(s)
- Jingwen Wang
- Division of Epidemiology of Microbial Disease, Yale School of Public Health, Yale University, New Haven, CT, USA
| | | | | | | |
Collapse
|
38
|
Weiss BL, Maltz M, Aksoy S. Obligate symbionts activate immune system development in the tsetse fly. THE JOURNAL OF IMMUNOLOGY 2012; 188:3395-403. [PMID: 22368278 DOI: 10.4049/jimmunol.1103691] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many insects rely on the presence of symbiotic bacteria for proper immune system function. However, the molecular mechanisms that underlie this phenomenon are poorly understood. Adult tsetse flies (Glossina spp.) house three symbiotic bacteria that are vertically transmitted from mother to offspring during this insect's unique viviparous mode of reproduction. Larval tsetse that undergo intrauterine development in the absence of their obligate mutualist, Wigglesworthia, exhibit a compromised immune system during adulthood. In this study, we characterize the immune phenotype of tsetse that develop in the absence of all of their endogenous symbiotic microbes. Aposymbiotic tsetse (Glossina morsitans morsitans [Gmm(Apo)]) present a severely compromised immune system that is characterized by the absence of phagocytic hemocytes and atypical expression of immunity-related genes. Correspondingly, these flies quickly succumb to infection with normally nonpathogenic Escherichia coli. The susceptible phenotype exhibited by Gmm(Apo) adults can be reversed when they receive hemocytes transplanted from wild-type donor flies prior to infection. Furthermore, the process of immune system development can be restored in intrauterine Gmm(Apo) larvae when their mothers are fed a diet supplemented with Wigglesworthia cell extracts. Our finding that molecular components of Wigglesworthia exhibit immunostimulatory activity within tsetse is representative of a novel evolutionary adaptation that steadfastly links an obligate symbiont with its host.
Collapse
Affiliation(s)
- Brian L Weiss
- Division of Epidemiology of Microbial Diseases, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
39
|
Riegler M, Iturbe-Ormaetxe I, Woolfit M, Miller WJ, O'Neill SL. Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia. BMC Microbiol 2012; 12 Suppl 1:S12. [PMID: 22375862 PMCID: PMC3287509 DOI: 10.1186/1471-2180-12-s1-s12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Strains of the endosymbiotic bacterium Wolbachia pipientis are extremely diverse both genotypically and in terms of their induced phenotypes in invertebrate hosts. Despite extensive molecular characterisation of Wolbachia diversity, little is known about the actual genomic diversity within or between closely related strains that group tightly on the basis of existing gene marker systems, including Multiple Locus Sequence Typing (MLST). There is an urgent need for higher resolution fingerprinting markers of Wolbachia for studies of population genetics, horizontal transmission and experimental evolution. Results The genome of the wMel Wolbachia strain that infects Drosophila melanogaster contains inter- and intragenic tandem repeats that may evolve through expansion or contraction. We identified hypervariable regions in wMel, including intergenic Variable Number Tandem Repeats (VNTRs), and genes encoding ankyrin (ANK) repeat domains. We amplified these markers from 14 related Wolbachia strains belonging to supergroup A and were successful in differentiating size polymorphic alleles. Because of their tandemly repeated structure and length polymorphism, the markers can be used in a PCR-diagnostic multilocus typing approach, analogous to the Multiple Locus VNTR Analysis (MLVA) established for many other bacteria and organisms. The isolated markers are highly specific for supergroup A and not informative for other supergroups. However, in silico analysis of completed genomes from other supergroups revealed the presence of tandem repeats that are variable and could therefore be useful for typing target strains. Conclusions Wolbachia genomes contain inter- and intragenic tandem repeats that evolve through expansion or contraction. A selection of polymorphic tandem repeats is a novel and useful PCR diagnostic extension to the existing MLST typing system of Wolbachia, as it allows rapid and inexpensive high-throughput fingerprinting of closely related strains for which polymorphic markers were previously lacking.
Collapse
|
40
|
Snyder AK, Adkins KZ, Rio RVM. Use of the Internal Transcribed Spacer (ITS) Regions to Examine Symbiont Divergence and as a Diagnostic Tool for Sodalis-Related Bacteria. INSECTS 2011; 2:515-31. [PMID: 26467831 PMCID: PMC4553445 DOI: 10.3390/insects2040515] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 12/11/2022]
Abstract
Bacteria excel in most ecological niches, including insect symbioses. A cluster of bacterial symbionts, established within a broad range of insects, share high 16S rRNA similarities with the secondary symbiont of the tsetse fly (Diptera: Glossinidae), Sodalis glossinidius. Although 16S rRNA has proven informative towards characterization of this clade, the gene is insufficient for examining recent divergence due to selective constraints. Here, we assess the application of the internal transcribed spacer (ITS) regions, specifically the ITS(glu) and ITS(ala,ile), used in conjunction with 16S rRNA to enhance the phylogenetic resolution of Sodalis-allied bacteria. The 16S rRNA + ITS regions of Sodalis and allied bacteria demonstrated significant divergence and were robust towards phylogenetic resolution. A monophyletic clade of Sodalis isolates from tsetse species, distinct from other Enterobacteriaceae, was consistently observed suggesting diversification due to host adaptation. In contrast, the phylogenetic distribution of symbionts isolated from hippoboscid flies and various Hemiptera and Coleoptera were intertwined suggesting either horizontal transfer or a recent establishment from an environmental source. Lineage splitting of Sodalis-allied bacteria into symbiotic and free-living sister groups was also observed. Additionally, we propose an ITS region as a diagnostic marker for the identification of additional Sodalis-allied symbionts in the field. These results expand our knowledge of informative genome regions to assess genetic divergence since splitting from the last common ancestor, of this versatile insect symbiont clade that have become increasingly recognized as valuable towards our understanding of the evolution of symbiosis. These facultative and recently associated symbionts may provide a novel source of traits adaptable to the dynamic ecologies encountered by diverse host backgrounds.
Collapse
Affiliation(s)
- Anna K Snyder
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Kenneth Z Adkins
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| | - Rita V M Rio
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
41
|
Snyder AK, McMillen CM, Wallenhorst P, Rio RVM. The phylogeny of Sodalis-like symbionts as reconstructed using surface-encoding loci. FEMS Microbiol Lett 2011; 317:143-51. [PMID: 21251054 DOI: 10.1111/j.1574-6968.2011.02221.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phylogenetic analyses of 16S rRNA support close relationships between the Gammaproteobacteria Sodalis glossinidius, a tsetse (Diptera: Glossinidae) symbiont, and bacteria infecting diverse insect orders. To further examine the evolutionary relationships of these Sodalis-like symbionts, phylogenetic trees were constructed for a subset of putative surface-encoding genes (i.e. ompA, spr, slyB, rcsF, ycfM, and ompC). The ompA and ompC loci were used toward examining the intra- and interspecific diversity of Sodalis within tsetse, respectively. Intraspecific analyses of ompA support elevated nonsynonymous (dN) polymorphism with an excess of singletons, indicating diversifying selection, specifically within the tsetse Glossina morsitans. Additionally, interspecific ompC comparisons between Sodalis and Escherichia coli demonstrate deviation from neutrality, with higher fixed dN observed at sites associated with extracellular loops. Surface-encoding genes varied in their phylogenetic resolution of Sodalis and related bacteria, suggesting conserved vs. host-specific roles. Moreover, Sodalis and its close relatives exhibit genetic divergence at the rcsF, ompA, and ompC loci, indicative of initial molecular divergence. The application of outer membrane genes as markers for further delineating the systematics of recently diverged bacteria is discussed. These results increase our understanding of insect symbiont evolution, while also identifying early genome alterations occurring upon integration of microorganisms with eukaryotic hosts.
Collapse
Affiliation(s)
- Anna K Snyder
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
42
|
Variable infection frequency and high diversity of multiple strains of Wolbachia pipientis in Perkinsiella Planthoppers. Appl Environ Microbiol 2011; 77:2165-8. [PMID: 21278277 DOI: 10.1128/aem.02878-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This survey of Wolbachia infections in populations of the planthoppers Perkinsiella saccharicida and Perkinsiella vitiensis revealed variable frequencies, low-titer infections, and high phylogenetic diversities of strains. These observations add to the growing realization that Wolbachia infections may be extremely common within invertebrates and yet occur infrequently within populations and at low titer within individuals.
Collapse
|
43
|
Takahashi E, Kobayashi H, Yamanaka H, Nair GB, Takeda Y, Arimoto S, Negishi T, Okamoto K. Inhibition of biosynthesis of metalloprotease of Aeromonas sobria by sodium chloride in the medium. Microbiol Immunol 2010; 55:60-5. [DOI: 10.1111/j.1348-0421.2010.00282.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Snyder AK, Deberry JW, Runyen-Janecky L, Rio RVM. Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc Biol Sci 2010; 277:2389-97. [PMID: 20356887 PMCID: PMC2894912 DOI: 10.1098/rspb.2010.0364] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 03/09/2010] [Indexed: 11/12/2022] Open
Abstract
Host-associated microbial interactions may involve genome complementation, driving-enhanced communal efficiency and stability. The tsetse fly (Diptera: Glossinidae), the obligate vector of African trypanosomes (Trypanosoma brucei subspp.), harbours two enteric Gammaproteobacteria symbionts: Wigglesworthia glossinidia and Sodalis glossinidius. Host coevolution has streamlined the Wigglesworthia genome to complement the exclusively sanguivorous tsetse lifestyle. Comparative genomics reveal that the Sodalis genome contains the majority of Wigglesworthia genes. This significant genomic overlap calls into question why tsetse maintains the coresidence of both symbionts and, furthermore, how symbiont homeostasis is maintained. One of the few distinctions between the Wigglesworthia and Sodalis genomes lies in thiamine biosynthesis. While Wigglesworthia can synthesize thiamine, Sodalis lacks this capability but retains a thiamine ABC transporter (tbpAthiPQ) believed to salvage thiamine. This genetic complementation may represent the early convergence of metabolic pathways that may act to retain Wigglesworthia and evade species antagonism. We show that thiamine monophosphate, the specific thiamine derivative putatively synthesized by Wigglesworthia, impacts Sodalis thiamine transporter expression, proliferation and intracellular localization. A greater understanding of tsetse symbiont interactions may generate alternative control strategies for this significant medical and agricultural pest, while also providing insight into the evolution of microbial associations within hosts.
Collapse
Affiliation(s)
- Anna K. Snyder
- Department of Biology, West Virginia University, 53 Campus Drive 5106 LSB, Morgantown, WV 26506, USA
| | - Jason W. Deberry
- Department of Biology, West Virginia University, 53 Campus Drive 5106 LSB, Morgantown, WV 26506, USA
| | | | - Rita V. M. Rio
- Department of Biology, West Virginia University, 53 Campus Drive 5106 LSB, Morgantown, WV 26506, USA
| |
Collapse
|
45
|
Characterization of hemocyanin from the peacock mantis shrimp Odontodactylus scyllarus (Malacostraca: Hoplocarida). J Comp Physiol B 2010; 180:1235-45. [PMID: 20640429 DOI: 10.1007/s00360-010-0495-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Hemocyanin is the blue respiratory protein of many arthropod species. While its structure, evolution, and physiological function have been studied in detail in Decapoda, there is little information on hemocyanins from other crustacean taxa. Here, we have investigated the hemocyanin of the peacock mantis shrimp Odontodactylus scyllarus, which belongs to the Stomatopoda (Hoplocarida). O. scyllarus hemocyanin forms a dodecamer (2 × 6-mer), which is composed of at least four distinct subunit types. We obtained the full-length cDNA sequences of three hemocyanin subunits, while a fourth cDNA was incomplete at its 5' end. The complete full-length cDNAs of O. scyllarus hemocyanin translate into polypeptides of 650-662 amino acids, which include signal peptides of 16 or 17 amino acids. The predicted molecular masses of 73.1-75.1 kDa correspond well with the main hemolymph proteins detected by SDS-PAGE and Western blotting using various anti-hemocyanin antibodies. Phylogenetic analyses show that O. scyllarus hemocyanins belong to the β-type of malacostracan hemocyanin subunits, which diverged from the other subunits before the radiation of the malacostracan subclasses around 520 million years ago. Molecular clock analysis revealed an ancient and complex pattern of hemocyanin subunit evolution in Malacostraca and also allowed dating divergence times of malacostracan taxa.
Collapse
|
46
|
Meusemann K, von Reumont BM, Simon S, Roeding F, Strauss S, Kück P, Ebersberger I, Walzl M, Pass G, Breuers S, Achter V, von Haeseler A, Burmester T, Hadrys H, Wägele JW, Misof B. A phylogenomic approach to resolve the arthropod tree of life. Mol Biol Evol 2010; 27:2451-64. [PMID: 20534705 DOI: 10.1093/molbev/msq130] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Arthropods were the first animals to conquer land and air. They encompass more than three quarters of all described living species. This extraordinary evolutionary success is based on an astoundingly wide array of highly adaptive body organizations. A lack of robustly resolved phylogenetic relationships, however, currently impedes the reliable reconstruction of the underlying evolutionary processes. Here, we show that phylogenomic data can substantially advance our understanding of arthropod evolution and resolve several conflicts among existing hypotheses. We assembled a data set of 233 taxa and 775 genes from which an optimally informative data set of 117 taxa and 129 genes was finally selected using new heuristics and compared with the unreduced data set. We included novel expressed sequence tag (EST) data for 11 species and all published phylogenomic data augmented by recently published EST data on taxonomically important arthropod taxa. This thorough sampling reduces the chance of obtaining spurious results due to stochastic effects of undersampling taxa and genes. Orthology prediction of genes, alignment masking tools, and selection of most informative genes due to a balanced taxa-gene ratio using new heuristics were established. Our optimized data set robustly resolves major arthropod relationships. We received strong support for a sister group relationship of onychophorans and euarthropods and strong support for a close association of tardigrades and cycloneuralia. Within pancrustaceans, our analyses yielded paraphyletic crustaceans and monophyletic hexapods and robustly resolved monophyletic endopterygote insects. However, our analyses also showed for few deep splits that were recently thought to be resolved, for example, the position of myriapods, a remarkable sensitivity to methods of analyses.
Collapse
Affiliation(s)
- Karen Meusemann
- Zoologisches Forschungsmuseum Alexander Koenig, Molecular Biology Unit, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rio RVM, Maltz M, McCormick B, Reiss A, Graf J. Symbiont succession during embryonic development of the European medicinal leech, Hirudo verbana. Appl Environ Microbiol 2009; 75:6890-5. [PMID: 19648363 PMCID: PMC2772434 DOI: 10.1128/aem.01129-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/28/2009] [Indexed: 11/20/2022] Open
Abstract
The European medicinal leech, Hirudo verbana, harbors simple microbial communities in the digestive tract and bladder. The colonization history, infection frequency, and growth dynamics of symbionts through host embryogenesis are described using diagnostic PCR and quantitative PCR. Symbiont species displayed diversity in temporal establishment and proliferation through leech development.
Collapse
Affiliation(s)
- Rita V M Rio
- West Virginia University, Department of Biology, 53 Campus Dr. 5106 LSB, Morgantown, WV 26506, USA.
| | | | | | | | | |
Collapse
|
48
|
Pick C, Burmester T. A putative hexamerin from a Campodea sp. suggests an independent origin of haemocyanin-related storage proteins in Hexapoda. INSECT MOLECULAR BIOLOGY 2009; 18:673-679. [PMID: 19754744 DOI: 10.1111/j.1365-2583.2009.00910.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Haemocyanins are copper-containing respiratory proteins in the arthropod haemolymph. In hexapods, haemocyanins gave rise to hexamerins, which have lost the ability to bind copper and thus oxygen. Hexamerins are thought to act mainly as storage proteins in nonfeeding periods. So far, hexamerins have only been identified in ectognathan hexapods, but not in Entognatha. Here we report the identification of a putative hexamerin from Campodea sp. (Diplura). The full-length cDNA of Campodea sp. hexamerin 1 (CspHex1) measures 2188 bp and translates into a native polypeptide of 667 amino acids. As in other hexamerins, the six copper-coordinating histidines are not conserved. However, sequence comparison and phylogenetic analyses demonstrated that CspHex1 is not closely related to other hexapod hexamerins, which derive from hexapod type 1 haemocyanin subunits in the ectognathan lineage, but rather resembles a derivative of hexapod type 2 haemocyanin subunits. Hence, haemocyanin-related storage proteins emerged at least two times independently in Hexapoda.
Collapse
Affiliation(s)
- C Pick
- Institute of Zoology, University of Hamburg, Hamburg, Germany
| | | |
Collapse
|
49
|
A 454 sequencing approach for large scale phylogenomic analysis of the common emperor scorpion (Pandinus imperator). Mol Phylogenet Evol 2009; 53:826-34. [PMID: 19695333 DOI: 10.1016/j.ympev.2009.08.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 08/02/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
In recent years, phylogenetic tree reconstructions that rely on multiple gene alignments that had been deduced from expressed sequence tags (ESTs) have become a popular method in molecular systematics. Here, we present a 454 pyrosequencing approach to infer the transcriptome of the Emperor scorpion Pandinus imperator. We obtained 428,844 high-quality reads (mean length=223+/-50 b) from total cDNA, which were assembled into 8334 contigs (mean length 422+/-313 bp) and 26,147 singletons. About 1200 contigs were successfully annotated by BLAST and orthology search. Specific analyses of eight distinct hemocyanin sequences provided further proof for the quality of the 454 reads and the assembly process. The P. imperator sequences were included in a concatenated alignment of 149 orthologous genes of 67 metazoan taxa that covers 39,842 amino acids. After removal of low-quality regions, 11,168 positions were employed for phylogenetic reconstructions. Using Bayesian and maximum likelihood methods, we obtained strongly supported monophyletic Ecdysozoa, Arthropoda (excluding Tardigrada), Euarthropoda, Pancrustacea and Hexapoda. We also recovered the Myriochelata (Chelicerata+Myriapoda). Within the chelicerates, Pycnogonida form the sister group of Euchelicerata. However, Arachnida were found paraphyletic because the Acari (mites and ticks) were recovered as sister group of a clade comprising Xiphosura, Scorpiones and Araneae. In summary, we have shown that 454 pyrosequencing is a cost-effective method that provides sufficient data and coverage depth for gene detection and multigene-based phylogenetic analyses.
Collapse
|
50
|
Kalosaka K, Soumaka E, Politis N, Mintzas AC. Thermotolerance and HSP70 expression in the Mediterranean fruit fly Ceratitis capitata. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:568-573. [PMID: 19418596 DOI: 10.1016/j.jinsphys.2009.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The relationship between Hsp70 expression and thermotolerance has been well documented in Drosophila melanogaster. However, there is limited information on this relationship in other insect species. In this report we describe the Hsp70-thermotolerance relationship in one of the major fruit fly pests, Ceratitis capitata (medfly). Hsp70 expression and thermotolerance were assayed at a range of temperatures in several stages of medfly development. The most thermotolerant stage was found to be the late larval stage (100% survival at 41 degrees C) followed by adult flies and late embryos (100% survival at 39 degrees C). These three stages showed a positive relationship between Hsp70 expression and thermotolerance. Mid-larval and mid-embryonic stages were found less thermotolerant and the Hsp70-thermotolerance relationship was not evident. Early embryos did not express Hsp70 at any temperature and exhibited the lowest thermotolerance. The relationship between Hsp70 and inducible thermotolerance was also studied in late larvae. A pretreatment at 37-39 degrees C increased thermotolerance at higher temperatures by approximately 1 degrees C. In parallel, the pretreatment increased Hsp70 expression suggesting a close link between Hsp70 expression and inducible thermotolerance. The increased Hsp70 levels after pretreatment were found to be due to the increased levels of the hsp70 RNA.
Collapse
Affiliation(s)
- Katerina Kalosaka
- Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | | | | | | |
Collapse
|