1
|
Karmaker S, Rosales PD, Tirumuruhan B, Viravalli A, Boehnke N. More than a delivery system: the evolving role of lipid-based nanoparticles. NANOSCALE 2025; 17:11864-11893. [PMID: 40293317 DOI: 10.1039/d4nr04508d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Lipid-based nanoparticles, including liposomes and lipid nanoparticles (LNPs), make up an important class of drug delivery systems. Their modularity enables encapsulation of a wide range of therapeutic cargoes, their ease of functionalization allows for incorporation of targeting motifs and anti-fouling coatings, and their scalability facilitates rapid translation to the clinic. While the discovery and early understanding of lipid-based nanoparticles is heavily rooted in biology, formulation development has largely focused on materials properties, such as how liposome and lipid nanoparticle composition can be altered to maximize drug loading, stability and circulation. To achieve targeted delivery and enable improved accumulation of therapeutics at target tissues or disease sites, emphasis is typically placed on the use of external modifications, such as peptide, protein, and polymer motifs. However, these approaches can increase the complexity of the nanocarrier and complicate scale up. In this review, we focus on how our understanding of lipid structure and function in biological contexts can be used to design intrinsically functional and targeted nanocarriers. We highlight formulation-based strategies, such as the incorporation of bioactive lipids, that have been used to modulate liposome and lipid nanoparticle properties and improve their functionality while retaining simple nanocarrier designs. We also highlight classes of naturally occurring lipids, their functions, and how they have been incorporated into lipid-based nanoparticles. We will additionally position these approaches into the historical context of both liposome and LNP development.
Collapse
Affiliation(s)
- Senjuti Karmaker
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Plinio D Rosales
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Barath Tirumuruhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Amartya Viravalli
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| | - Natalie Boehnke
- Department of Chemical Engineering and Materials Science, University of Minnesota, Twin Cities Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Wei PS, Thota N, John G, Chang E, Lee S, Wang Y, Ma Z, Tsai YH, Mei KC. Enhancing RNA-lipid nanoparticle delivery: Organ- and cell-specificity and barcoding strategies. J Control Release 2024; 375:366-388. [PMID: 39179112 PMCID: PMC11972657 DOI: 10.1016/j.jconrel.2024.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Recent advancements in RNA therapeutics highlight the critical need for precision gene delivery systems that target specific organs and cells. Lipid nanoparticles (LNPs) have emerged as key vectors in delivering mRNA and siRNA, offering protection against enzymatic degradation, enabling targeted delivery and cellular uptake, and facilitating RNA cargo release into the cytosol. This review discusses the development and optimization of organ- and cell-specific LNPs, focusing on their design, mechanisms of action, and therapeutic applications. We explore innovations such as DNA/RNA barcoding, which facilitates high-throughput screening and precise adjustments in formulations. We address major challenges, including improving endosomal escape, minimizing off-target effects, and enhancing delivery efficiencies. Notable clinical trials and recent FDA approvals illustrate the practical applications and future potential of LNP-based RNA therapies. Our findings suggest that while considerable progress has been made, continued research is essential to resolve existing limitations and bridge the gap between preclinical and clinical evaluation of the safety and efficacy of RNA therapeutics. This review highlights the dynamic progress in LNP research. It outlines a roadmap for future advancements in RNA-based precision medicine.
Collapse
Affiliation(s)
- Pu-Sheng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Nagasri Thota
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Greshma John
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Evelyn Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Sunjae Lee
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Yuanjun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Zitao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Yu-Hsuan Tsai
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA
| | - Kuo-Ching Mei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Johnson City, New York, NY 13790, USA.
| |
Collapse
|
3
|
Cullis PR, Felgner PL. The 60-year evolution of lipid nanoparticles for nucleic acid delivery. Nat Rev Drug Discov 2024; 23:709-722. [PMID: 38965378 DOI: 10.1038/s41573-024-00977-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/06/2024]
Abstract
Delivery of genetic information to the interior of target cells in vivo has been a major challenge facing gene therapies. This barrier is now being overcome, owing in part to dramatic advances made by lipid-based systems that have led to lipid nanoparticles (LNPs) that enable delivery of nucleic acid-based vaccines and therapeutics. Examples include the clinically approved COVID-19 LNP mRNA vaccines and Onpattro (patisiran), an LNP small interfering RNA therapeutic to treat transthyretin-induced amyloidosis (hATTR). In addition, a host of promising LNP-enabled vaccines and gene therapies are in clinical development. Here, we trace this success to two streams of research conducted over the past 60 years: the discovery of the transfection properties of lipoplexes composed of positively charged cationic lipids complexed with nucleic acid cargos and the development of lipid nanoparticles using ionizable cationic lipids. The fundamental insights gained from these two streams of research offer potential delivery solutions for most forms of gene therapies.
Collapse
Affiliation(s)
- P R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
| | - P L Felgner
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA.
| |
Collapse
|
4
|
Watts A. Biophysical Reviews' "Meet the Editors Series"-a profile of Anthony Watts. Biophys Rev 2024; 16:387-396. [PMID: 39309129 PMCID: PMC11415332 DOI: 10.1007/s12551-024-01214-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024] Open
Abstract
Soon after Biophysical Reviews was established as a Journal with Springer Verlag in 2009, I was asked to join the editorial board. I have juggled various editorial board responsibilities for several Journals over more than three decades, viewing this as a service to the ever-growing biophysics community. How I got to be involved with biophysics is a long story, but here are a few relevant explanations, with much omitted. Anthony Watts.
Collapse
Affiliation(s)
- Anthony Watts
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
5
|
Prevete G, Carvalho LG, Del Carmen Razola-Diaz M, Verardo V, Mancini G, Fiore A, Mazzonna M. Ultrasound assisted extraction and liposome encapsulation of olive leaves and orange peels: How to transform biomass waste into valuable resources with antimicrobial activity. ULTRASONICS SONOCHEMISTRY 2024; 102:106765. [PMID: 38232412 PMCID: PMC10827538 DOI: 10.1016/j.ultsonch.2024.106765] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Every year million tons of by-products and waste from olive and orange processing are produced by agri-food industries, thus triggering environmental and economic problems worldwide. From the perspective of a circular economy model, olive leaves and orange peels can be valorized in valuable products due to the presence of bioactive compounds such as polyphenols exhibiting beneficial effects on human health. The aqueous extracts of olive leaves and orange peels rich in phenolic compounds were prepared by ultrasound-assisted extraction. Both extracts were characterized in terms of yield of extraction, total phenolic content and antioxidant capacity; the polyphenolic profiles were deeper investigated by HPLC-MS analysis. Each extract was included in liposomes composed by a natural phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine,and cholesterol prepared according to the thin-layer evaporation method coupled with a sonication process. The antimicrobial activity of the extracts, free and loaded in liposomes, was investigated according to the broth macrodilution method against different strains of potential bacterial pathogenic species: Staphylococcus aureus (NCIMB 9518), Bacillus subtilis (ATCC 6051) and Enterococcus faecalis (NCIMB 775) as Gram-positive, while Escherichia coli (NCIMB 13302), Pseudomonas aeruginosa (NCIMB 9904) and Klebsiella oxytoca (NCIMB 12259) as Gram-negative. The encapsulation of olive leaves extract in liposomes enhanced its antibacterial activity against S. aureus by an order of magnitude.
Collapse
Affiliation(s)
- Giuliana Prevete
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Rome, Italy; CNR-Institute for Biological Systems (ISB), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy.
| | - Loïc G Carvalho
- School of Applied Science, Division of Engineering and Food Science University of Abertay, Bell Street, DD1 1HG Dundee, Scotland, UK.
| | - Maria Del Carmen Razola-Diaz
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Centre, University of Granada, Avda. del Conocimiento s/n., 18100 Armilla, Granada, Spain.
| | - Vito Verardo
- Department of Nutrition and Food Science, University of Granada, Campus of Cartuja s/n, 18071 Granada, Spain; Institute of Nutrition and Food Technology 'José Mataix', Biomedical Research Centre, University of Granada, Avda. del Conocimiento s/n., 18100 Armilla, Granada, Spain.
| | - Giovanna Mancini
- CNR-Institute for Biological Systems (ISB), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy.
| | - Alberto Fiore
- School of Applied Science, Division of Engineering and Food Science University of Abertay, Bell Street, DD1 1HG Dundee, Scotland, UK.
| | - Marco Mazzonna
- CNR-Institute for Biological Systems (ISB), Area della Ricerca di Roma 1, Via Salaria Km 29,300, 00015 Monterotondo, Italy.
| |
Collapse
|
6
|
Lacham-Hartman S, Moshe R, Ben-Zichri S, Shmidov Y, Bitton R, Jelinek R, Papo N. APPI-Derived Cyclic Peptide Enhances Aβ42 Aggregation and Reduces Aβ42-Mediated Membrane Destabilization and Cytotoxicity. ACS Chem Neurosci 2023; 14:3385-3397. [PMID: 37579500 DOI: 10.1021/acschemneuro.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
An amyloid precursor protein inhibitor (APPI) and amyloid beta 42 (Aβ42) are both subdomains of the human transmembrane amyloid precursor protein (APP). In the brains of patients with Alzheimer's disease (AD), Aβ42 oligomerizes into aggregates of various sizes, with intermediate, low-molecular-weight Aβ42 oligomers currently being held to be the species responsible for the most neurotoxic effects associated with the disease. Strategies to ameliorate the toxicity of these intermediate Aβ42 oligomeric species include the use of short, Aβ42-interacting peptides that either inhibit the formation of the Aβ42 oligomeric species or promote their conversion to high-molecular-weight aggregates. We therefore designed such an Aβ42-interacting peptide that is based on the β-hairpin amino acid sequence of the APPI, which exhibits high similarity to the β-sheet-like aggregation site of Aβ42. Upon tight binding of this 20-mer cyclic peptide to Aβ42 (in a 1:1 molar ratio), the formation of Aβ42 aggregates was enhanced, and consequently, Aβ42-mediated cell toxicity was ameliorated. We showed that in the presence of the cyclic peptide, interactions of Aβ42 with both plasma and mitochondrial membranes and with phospholipid vesicles that mimic these membranes were inhibited. Specifically, the cyclic peptide inhibited Aβ42-mediated mitochondrial membrane depolarization and reduced Aβ42-mediated apoptosis and cell death. We suggest that the cyclic peptide modulates Aβ42 aggregation by enhancing the formation of large aggregates─as opposed to low-molecular-weight intermediates─and as such has the potential for further development as an AD therapeutic.
Collapse
Affiliation(s)
- Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Reut Moshe
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Shani Ben-Zichri
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Yulia Shmidov
- Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science &Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science &Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
Świderski G, Kalinowska M, Gołębiewska E, Świsłocka R, Lewandowski W, Kowalczyk N, Naumowicz M, Cudowski A, Pietryczuk A, Nalewajko-Sieliwoniuk E, Wysocka I, Arciszewska Ż, Godlewska-Żyłkiewicz B. Structures, Antioxidant Properties, and Antimicrobial Properties of Eu(III), Gd(III), and Dy(III) Caffeinates and p-Coumarates. Molecules 2023; 28:6506. [PMID: 37764282 PMCID: PMC10535667 DOI: 10.3390/molecules28186506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, we investigated the structures of lanthanide (Eu(III), Dy(III), and Gd(III)) complexes with p-coumaric (p-CAH2) and caffeic (CFAH3) acids using the FTIRKBr, FTIRATR, and Raman spectroscopic methods. The compositions of the solid phase caffeinates and p-coumarates were obtained on the basis of the amounts of hydrogen and carbon determined using an elemental analysis. The degree of hydration and the thermal decomposition of each compound were examined via a thermal analysis of TG, DTG, and DSC. Antioxidant spectroscopic tests were performed using the DPPH (1,1-diphenyl-2-picrylhydrazyl radical), FRAP (ferric reducing antioxidant activity), and ABTS (2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (diammonium salt radical cation) methods. The antimicrobial activity of each compound against Escherichia coli, Bacillus subtilis, and Candida albicans was investigated. The electrical properties of the liposomes which mimicked the microbial surfaces formed in the electrolyte containing the tested compounds were also investigated. The above biological properties of the obtained complexes were compared with the activities of p-CAH2 and CFAH3. The obtained data suggest that lanthanide complexes are much more thermally stable and have higher antimicrobial and antioxidant properties than the ligands (with the exception of CFAH3 in the case of antioxidant activity tests). The Gd(III) complexes revealed the highest biological activity among the studied lanthanide complexes.
Collapse
Affiliation(s)
- Grzegorz Świderski
- Department of Chemistry Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland (E.G.); (N.K.)
| | - Monika Kalinowska
- Department of Chemistry Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland (E.G.); (N.K.)
| | - Ewelina Gołębiewska
- Department of Chemistry Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland (E.G.); (N.K.)
| | - Renata Świsłocka
- Department of Chemistry Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland (E.G.); (N.K.)
| | - Włodzimierz Lewandowski
- Department of Chemistry Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland (E.G.); (N.K.)
| | - Natalia Kowalczyk
- Department of Chemistry Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland (E.G.); (N.K.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland
| | - Adam Cudowski
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Bialystok, Poland; (A.C.); (A.P.)
| | - Anna Pietryczuk
- Department of Water Ecology, Faculty of Biology, University of Bialystok, Ciołkowskiego 1J, 15-245 Bialystok, Poland; (A.C.); (A.P.)
| | - Edyta Nalewajko-Sieliwoniuk
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland (Ż.A.); (B.G.-Ż.)
| | - Izabela Wysocka
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland (Ż.A.); (B.G.-Ż.)
| | - Żaneta Arciszewska
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland (Ż.A.); (B.G.-Ż.)
| | - Beata Godlewska-Żyłkiewicz
- Department of Analytical Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland (Ż.A.); (B.G.-Ż.)
| |
Collapse
|
8
|
Srivastav AK, Karpathak S, Rai MK, Kumar D, Misra DP, Agarwal V. Lipid based drug delivery systems for oral, transdermal and parenteral delivery: Recent strategies for targeted delivery consistent with different clinical application. J Drug Deliv Sci Technol 2023; 85:104526. [DOI: 10.1016/j.jddst.2023.104526] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
9
|
Agha A, Waheed W, Stiharu I, Nerguizian V, Destgeer G, Abu-Nada E, Alazzam A. A review on microfluidic-assisted nanoparticle synthesis, and their applications using multiscale simulation methods. NANOSCALE RESEARCH LETTERS 2023; 18:18. [PMID: 36800044 PMCID: PMC9936499 DOI: 10.1186/s11671-023-03792-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023]
Abstract
Recent years have witnessed an increased interest in the development of nanoparticles (NPs) owing to their potential use in a wide variety of biomedical applications, including drug delivery, imaging agents, gene therapy, and vaccines, where recently, lipid nanoparticle mRNA-based vaccines were developed to prevent SARS-CoV-2 causing COVID-19. NPs typically fall into two broad categories: organic and inorganic. Organic NPs mainly include lipid-based and polymer-based nanoparticles, such as liposomes, solid lipid nanoparticles, polymersomes, dendrimers, and polymer micelles. Gold and silver NPs, iron oxide NPs, quantum dots, and carbon and silica-based nanomaterials make up the bulk of the inorganic NPs. These NPs are prepared using a variety of top-down and bottom-up approaches. Microfluidics provide an attractive synthesis alternative and is advantageous compared to the conventional bulk methods. The microfluidic mixing-based production methods offer better control in achieving the desired size, morphology, shape, size distribution, and surface properties of the synthesized NPs. The technology also exhibits excellent process repeatability, fast handling, less sample usage, and yields greater encapsulation efficiencies. In this article, we provide a comprehensive review of the microfluidic-based passive and active mixing techniques for NP synthesis, and their latest developments. Additionally, a summary of microfluidic devices used for NP production is presented. Nonetheless, despite significant advancements in the experimental procedures, complete details of a nanoparticle-based system cannot be deduced from the experiments alone, and thus, multiscale computer simulations are utilized to perform systematic investigations. The work also details the most common multiscale simulation methods and their advancements in unveiling critical mechanisms involved in nanoparticle synthesis and the interaction of nanoparticles with other entities, especially in biomedical and therapeutic systems. Finally, an analysis is provided on the challenges in microfluidics related to nanoparticle synthesis and applications, and the future perspectives, such as large-scale NP synthesis, and hybrid formulations and devices.
Collapse
Affiliation(s)
- Abdulrahman Agha
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Waqas Waheed
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
- System on Chip Center, Khalifa University, Abu Dhabi, UAE
| | | | | | - Ghulam Destgeer
- Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Eiyad Abu-Nada
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE
| | - Anas Alazzam
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, UAE.
- System on Chip Center, Khalifa University, Abu Dhabi, UAE.
| |
Collapse
|
10
|
Applications of liposomes in nanomedicine. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
11
|
Han JY, La Fiandra JN, DeVoe DL. Microfluidic vortex focusing for high throughput synthesis of size-tunable liposomes. Nat Commun 2022; 13:6997. [PMID: 36384946 PMCID: PMC9668976 DOI: 10.1038/s41467-022-34750-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022] Open
Abstract
Control over vesicle size during nanoscale liposome synthesis is critical for defining the pharmaceutical properties of liposomal nanomedicines. Microfluidic technologies capable of size-tunable liposome generation have been widely explored, but scaling these microfluidic platforms for high production throughput without sacrificing size control has proven challenging. Here we describe a microfluidic-enabled process in which highly vortical flow is established around an axisymmetric stream of solvated lipids, simultaneously focusing the lipids while inducing rapid convective and diffusive mixing through application of the vortical flow field. By adjusting the individual buffer and lipid flow rates within the system, the microfluidic vortex focusing technique is capable of generating liposomes with precisely controlled size and low size variance, and may be operated up to the laminar flow limit for high throughput vesicle production. The reliable formation of liposomes as small as 27 nm and mass production rates over 20 g/h is demonstrated, offering a path toward production-scale liposome synthesis using a single continuous-flow vortex focusing device.
Collapse
Affiliation(s)
- Jung Yeon Han
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA
- Department of Bionanotechnology, Gachon University, Seongnam-si, South Korea
| | - Joseph N La Fiandra
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Don L DeVoe
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA.
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
12
|
Lin W, Kampf N, Klein J. Neutral polyphosphocholine-modified liposomes as boundary superlubricants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Arisoy S, Kocas M, Comoglu T, Guderer I, Banerjee S. Development of ACE2 Loaded Decoy Liposomes and their Effect on SARS-CoV-2 for Covid-19 Treatment. Pharm Dev Technol 2022; 27:290-300. [DOI: 10.1080/10837450.2022.2042557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sema Arisoy
- Department of Pharmaceutical Technology, Selcuk University, Faculty of Pharmacy, Konya, TURKEY
| | - Meryem Kocas
- Department of Pharmaceutical Technology, Selcuk University, Faculty of Pharmacy, Konya, TURKEY
- Department of Pharmaceutical Technology, Ankara Univesity, Faculty of Pharmacy, Ankara, TURKEY
| | - Tansel Comoglu
- Department of Pharmaceutical Technology, Ankara Univesity, Faculty of Phamacy, Ankara, TURKEY
| | - Ismail Guderer
- Department of Biological Sciences, Middle East Technical University, Faculty of Arts and Sciences, Ankara, TURKEY
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Faculty of Arts and Sciences, Ankara, TURKEY
| |
Collapse
|
14
|
Anaganti N, Rajan S, Hussain MM. An improved assay to measure the phospholipid transfer activity of microsomal triglyceride transport protein. J Lipid Res 2021; 62:100136. [PMID: 34673018 PMCID: PMC8569553 DOI: 10.1016/j.jlr.2021.100136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022] Open
Abstract
Microsomal triglyceride transfer protein (MTP) is essential for the assembly and secretion of apolipoprotein B-containing lipoproteins. MTP transfers diverse lipids such as triacylglycerol (TAG) and phospholipids (PLs) between vesicles in vitro. Previously, we described methods to measure these transfer activities using N-7-nitro-2-1,3-benzoxadiazol-4-yl (NBD)-labeled lipids. The NBD-TAG transfer assay is sensitive and can measure MTP activity in cell and tissue homogenates. In contrast, the NBD-PL transfer assay shows high background and is less sensitive; therefore, purified MTP is required to measure its PL transfer activity. Here, we optimized the assay to measure also the PL transfer activity of MTP in cell and tissue homogenates. We found that donor vesicles containing dioleoylphosphoethanolamine and palmitoyloleoylphosphoethanolamine result in a low background signal and are suitable to assay the PL transfer activity of MTP. This assay was capable of measuring protein-dependent and substrate-dependent saturation kinetics. Furthermore, the MTP inhibitor lomitapide blocked this transfer activity. One drawback of the PL transfer assay is that it is less sensitive at physiological temperature than at room temperature, and it requires longer incubation times than the TAG transfer assay. Nevertheless, this significantly improved sensitive assay is simple and easy to perform, involves few steps, can be conducted at room temperature, and is suitable for high-throughput screening to identify inhibitors. This assay can be adapted to measure other PL transfer proteins and to address biological and physiological importance of these activities.
Collapse
Affiliation(s)
- Narasimha Anaganti
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Sujith Rajan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA; VA New York Harbor Healthcare System, Brooklyn, NY 11209, USA.
| |
Collapse
|
15
|
Rajan S, de Guzman HC, Palaia T, Goldberg IJ, Hussain MM. A simple, rapid, and sensitive fluorescence-based method to assess triacylglycerol hydrolase activity. J Lipid Res 2021; 62:100115. [PMID: 34508728 PMCID: PMC8488599 DOI: 10.1016/j.jlr.2021.100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
Lipases constitute an important class of water-soluble enzymes that catalyze the hydrolysis of hydrophobic triacylglycerol (TAG). Their enzymatic activity is typically measured using multistep procedures involving isolation and quantification of the hydrolyzed products. We report here a new fluorescence method to measure lipase activity in real time that does not require the separation of substrates from products. We developed this method using adipose triglyceride lipase (ATGL) and lipoprotein lipase (LpL) as model lipases. We first incubated a source of ATGL or LpL with substrate vesicles containing nitrobenzoxadiazole (NBD)-labeled TAG, then measured increases in NBD fluorescence, and calculated enzyme activities. Incorporation of NBD-TAG into phosphatidylcholine (PC) vesicles resulted in some hydrolysis; however, incorporation of phosphatidylinositol into these NBD-TAG/PC vesicles and increasing the ratio of NBD-TAG to PC greatly enhanced substrate hydrolysis. This assay was also useful in measuring the activity of pancreatic lipase and hormone-sensitive lipase. Next, we tested several small-molecule lipase inhibitors and found that orlistat inhibits all lipases, indicating that it is a pan-lipase inhibitor. In short, we describe a simple, rapid, fluorescence-based triacylglycerol hydrolysis assay to assess four major TAG hydrolases: intracellular ATGL and hormone-sensitive lipase, LpL localized at the extracellular endothelium, and pancreatic lipase present in the intestinal lumen. The major advantages of this method are its speed, simplicity, and elimination of product isolation. This assay is potentially applicable to a wide range of lipases, is amenable to high-throughput screening to discover novel modulators of triacylglycerol hydrolases, and can be used for diagnostic purposes.
Collapse
Affiliation(s)
- Sujith Rajan
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA
| | - Hazel C de Guzman
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA; Department of Environmental Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Thomas Palaia
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, and Diabetes and Obesity Research Center, NYU Langone Hospitals - Long Island, Mineola, NY, USA; VA New York Harbor Healthcare System, Brooklyn, NY, USA.
| |
Collapse
|
16
|
Haspinger DC, Klinge S, Holzapfel GA. Numerical analysis of the impact of cytoskeletal actin filament density alterations onto the diffusive vesicle-mediated cell transport. PLoS Comput Biol 2021; 17:e1008784. [PMID: 33939706 PMCID: PMC8130967 DOI: 10.1371/journal.pcbi.1008784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 05/18/2021] [Accepted: 02/09/2021] [Indexed: 11/21/2022] Open
Abstract
The interior of a eukaryotic cell is a highly complex composite material which consists of water, structural scaffoldings, organelles, and various biomolecular solutes. All these components serve as obstacles that impede the motion of vesicles. Hence, it is hypothesized that any alteration of the cytoskeletal network may directly impact or even disrupt the vesicle transport. A disruption of the vesicle-mediated cell transport is thought to contribute to several severe diseases and disorders, such as diabetes, Parkinson’s and Alzheimer’s disease, emphasizing the clinical relevance. To address the outlined objective, a multiscale finite element model of the diffusive vesicle transport is proposed on the basis of the concept of homogenization, owed to the complexity of the cytoskeletal network. In order to study the microscopic effects of specific nanoscopic actin filament network alterations onto the vesicle transport, a parametrized three-dimensional geometrical model of the actin filament network was generated on the basis of experimentally observed filament densities and network geometries in an adenocarcinomic human alveolar basal epithelial cell. Numerical analyzes of the obtained effective diffusion properties within two-dimensional sampling domains of the whole cell model revealed that the computed homogenized diffusion coefficients can be predicted statistically accurate by a simple two-parameter power law as soon as the inaccessible area fraction, due to the obstacle geometries and the finite size of the vesicles, is known. This relationship, in turn, leads to a massive reduction in computation time and allows to study the impact of a variety of different cytoskeletal alterations onto the vesicle transport. Hence, the numerical simulations predicted a 35% increase in transport time due to a uniformly distributed four-fold increase of the total filament amount. On the other hand, a hypothetically reduced expression of filament cross-linking proteins led to sparser filament networks and, thus, a speed up of the vesicle transport. Many vital processes in our eukaryotic cells and organs require an astonishingly precise routing of intermediate products to various intra- and extracellular destinations using vesicles as transporters. This can be illustrated by numerous examples, such as the production and destruction of proteins, the export of neurotransmitters or insulin to the extracellular domain, etc. However, the inside of a cell is tightly packed with numerous structural scaffoldings (filaments), which serve as obstacles and impede the vesicle motion. It is thought that any disturbances of the vesicle-mediated cell transport contribute to numerous degenerative diseases and disorders, which highlights the clinical relevance for investigating this intracellular transport mechanism by developing computational models and performing experimental studies. In this study, we numerically quantified how different specific alterations of the filament density inside a human lung cell—due to changed mechanical loadings or genetic disorders of proteins being responsible for filament branching—affect the diffusion of vesicles inside the intracellular fluid. Therefore, based on the concept of homogenization, a computationally efficient numerical method was developed and utilized to simulate the diffusion of vesicles inside the whole cell, considering the detailed structural information of the filament network.
Collapse
Affiliation(s)
| | - Sandra Klinge
- Chair of Structural Mechanics and Analysis, TU Berlin, Berlin, Germany
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Faculty of Engineering Science and Technology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- * E-mail:
| |
Collapse
|
17
|
Pownall HJ, Liu J, Gillard BK, Yelamanchili D, Rosales C. Physico-chemical and physiological determinants of lipo-nanoparticle stability. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102361. [PMID: 33540069 DOI: 10.1016/j.nano.2021.102361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Liposome-based nanoparticles (NPs) comprised mostly of phospholipids (PLs) have been developed to deliver diagnostic and therapeutic agents. Whereas reassembled plasma lipoproteins have been tested as NP carriers of hydrophobic molecules, they are unstable because the components can spontaneously transfer to other PL surfaces-cell membranes and lipoproteins-and can be degraded by plasma lipases. Here we review two strategies for NP stabilization. One is to use PLs that contain long acyl-chains: according to a quantitative thermodynamic model and in vivo tests, increasing the chain length of a PL reduces the spontaneous transfer rate and increases plasma lifetime. A second strategy is to substitute ether for ester bonds which makes the PLs lipase resistant. We conclude with recommendations of simple ex vivo and in vitro tests of NP stability that should be conducted before in vivo tests are begun.
Collapse
Affiliation(s)
- Henry J Pownall
- Center for Bioenergetics, Department of Medicine, Houston Methodist Academic Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA.
| | - Jing Liu
- Center for Bioenergetics, Department of Medicine, Houston Methodist Academic Institute, Houston, TX, USA; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Baiba K Gillard
- Center for Bioenergetics, Department of Medicine, Houston Methodist Academic Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| | - Dedipya Yelamanchili
- Center for Bioenergetics, Department of Medicine, Houston Methodist Academic Institute, Houston, TX, USA
| | - Corina Rosales
- Center for Bioenergetics, Department of Medicine, Houston Methodist Academic Institute, Houston, TX, USA; Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Almarwani B, Phambu N, Hamada YZ, Sunda-Meya A. Interactions of an Anionic Antimicrobial Peptide with Zinc(II): Application to Bacterial Mimetic Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14554-14562. [PMID: 33227202 DOI: 10.1021/acs.langmuir.0c02306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While the majority of known antimicrobial peptides are cationic, a small number consist of short Asp-rich sequences that are anionic. These require metal ions to become biologically active. Here, we report the study of the zinc complexes of the peptide GADDDDD (GAD5), an antimicrobial peptide. Using a combination of dynamic light scattering (DLS), ζ-potential, infrared, Raman, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM), we find that adding zinc ions to GAD5 forces it into a compact structure. Higher amounts of zinc ions favor a larger structure, possibly a dimer. SEM images show that zinc ions reduce the size of the fibrillar structures of GAD5. TGA curves show that the addition of zinc ions increases the thermal stability of the structure of the peptide. TGA and DSC indicate that the association of GAD5 with a zwitterionic phospholipid in the presence of zinc ions is the most stable. The stability of that complex is due to the presence of a sharp endothermic peak in the 200-300 °C range, suggesting the presence of interlamellar water that is essential to the stabilization of the structure. These results indicate that the Zn-GAD5 complex prefers the bacteria-mimicking neutral (zwitterionic) membranes. In the presence of negatively charged phospholipids, the complex remains unordered and unstable. In terms of mechanism of action, the Zn-GAD5 complex promotes a possible endocytic uptake with respect to neutral (zwitterionic) membranes while promoting membrane disruption by forming pores with respect to negatively charged phospholipids.
Collapse
Affiliation(s)
- Bashiyar Almarwani
- Department of Chemistry, Tennessee State University, Nashville, Tennessee 37209, United States
| | - Nsoki Phambu
- Department of Chemistry, Tennessee State University, Nashville, Tennessee 37209, United States
| | - Yahia Z Hamada
- Department of Natural and Mathematical Sciences, LeMoyne-Owen College, Memphis, Tennessee 38126, United States
| | - Anderson Sunda-Meya
- Department of Physics and Computer Science, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
19
|
A conjugated polymer‐liposome complex: A contiguous water‐stable, electronic, and optical interface. VIEW 2020. [DOI: 10.1002/viw.20200081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Liu Y, Kelley EG, Batchu KC, Porcar L, Perez-Salas U. Creating Asymmetric Phospholipid Vesicles via Exchange With Lipid-Coated Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8865-8873. [PMID: 32623897 PMCID: PMC7899156 DOI: 10.1021/acs.langmuir.0c01188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recently, effort has been placed into fabricating model free-floating asymmetric lipid membranes, such as asymmetric vesicles. Here, we report on the use of lipid-coated silica nanoparticles to exchange lipids with initially symmetric vesicles to generate composition-controlled asymmetric vesicles. Our method relies on the simple and natural exchange of lipids between membranes through an aqueous medium. Using a selected temperature, time, and ratio of lipid-coated silica nanoparticles to vesicles, we produced a desired highly asymmetric leaflet composition. At this point, the silica nanoparticles were removed by centrifugation, leaving the asymmetric vesicles in solution. In the present work, the asymmetric vesicles were composed of isotopically distinct dipalmitoylphosphatidylcholine lipids. Lipid asymmetry was detected by both small-angle neutron scattering (SANS) and proton nuclear magnetic resonance (1H NMR). The rate at which the membrane homogenizes at 75 °C was also assessed.
Collapse
Affiliation(s)
- Yangmingyue Liu
- Physics Department, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Elizabeth G Kelley
- NIST Center For Neutron Research, Gaithersburg, Maryland 20889, United States
| | - Krishna C Batchu
- Large Scale Structure Group, Institut Laue-Langevin, Grenoble F-38042, France
| | - Lionel Porcar
- Large Scale Structure Group, Institut Laue-Langevin, Grenoble F-38042, France
| | - Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
21
|
Li N, Mai Y, Liu Q, Gou G, Yang J. Docetaxel-loaded D-α-tocopheryl polyethylene glycol-1000 succinate liposomes improve lung cancer chemotherapy and reverse multidrug resistance. Drug Deliv Transl Res 2020; 11:131-141. [PMID: 32052357 DOI: 10.1007/s13346-020-00720-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, D-alpha-tocopheryl polyethylene glycol-1000 succinate (TPGS)-coated docetaxel-loaded liposomes were developed to reverse multidrug resistance (MDR) and enhance lung cancer therapy. Evaluations were performed using human lung cancer A549 and resistant A549/DDP cells. The reversal multidrug resistant effect was assessed by P-gp inhibition assay, cytotoxicity, cellular uptake, and apoptosis assay. The tumor xenograft model was built by subcutaneous injection of A549/DDP cells in the right dorsal area of nude mice. The tumor volumes and body weights were measured every other day. The TPGS-coated liposomes showed a concentration- and time-dependent cytotoxicity and significantly enhanced the cytotoxicity of docetaxel in A549/DDP cells. Confocal laser scanning images indicated that higher concentrations of coumarin-6 were successfully delivered into the cytoplasm, and the TPGS-coated liposomes enhanced intracellular drug accumulation by inhibiting overexpressed P-glycoprotein. The TPGS-coated liposomes were shown to induce apoptosis. Furthermore, in vivo anti-tumor studies revealed that TPGS-coated docetaxel-loaded liposomes had outstanding anti-tumor efficacy in an A549/DDP xenograft model. The TPGS-coated liposomes, compared with PEG-coated liposomes, showed significant advantages in vitro and in vivo. The TPGS-coated liposomes were able to reverse MDR and enhance lung cancer therapy. Graphical abstract .
Collapse
Affiliation(s)
- Na Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan, 750004, People's Republic of China
| | - Yaping Mai
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan, 750004, People's Republic of China
| | - Qiang Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan, 750004, People's Republic of China
| | - Guojing Gou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan, 750004, People's Republic of China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan, 750004, People's Republic of China.
| |
Collapse
|
22
|
Fandzloch M, Jaromin A, Zaremba-Czogalla M, Wojtczak A, Lewińska A, Sitkowski J, Wiśniewska J, Łakomska I, Gubernator J. Nanoencapsulation of a ruthenium(ii) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Trans 2020; 49:1207-1219. [PMID: 31903475 DOI: 10.1039/c9dt03464a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Two types of ruthenium(ii) complexes containing 1,2,4-triazolo[1,5-a]pyrimidines of the general formulas [RuCl2(dmso)3(L)] ((1)-(3)) and [RuCl2(dmso)2(L)2] ((4)-(6)), where L represents 1,2,4-triazolo[1,5-a]pyrimidine (tp for (1)), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp for (2)), 7-isobutyl-5-methyl-1,2,4-trizolo[1,5-a]pyrimidine (ibmtp for (3)), 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine (detp for (4)), 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp for (5)) and 5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp for (6)), have been synthesized and characterized by elemental analysis, infrared, multinuclear magnetic resonance spectroscopic techniques (1H, 13C, and 15N), and X-ray (for (3), (4), and (5)). All these complexes have been thoroughly screened for their in vitro cytotoxicity against melanoma cell lines A375 and Hs294T, indicating cis,cis,cis-[RuCl2(dbtp)2(dmso)2] (5) as the most active representative, in addition to being non-toxic to normal human fibroblasts (NHDF) and not inducing hemolysis of human erythrocytes. In order to develop an intravenous formulation for (5), liposomes composed of soybean phosphatidylcholine (SPC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-PEG2000) were prepared and subsequently characterized. (5)-Loaded liposomes, with spherical morphology, assessed by transmission electron microscope (TEM), exhibited satisfactory encapsulation efficiency and stability. In in vitro experiments, PEG-modified (5)-loaded liposomes were more effective (10-fold) than free (5) for growth inhibition of both human melanoma cell lines. Furthermore, such an approach resulted in the reduction of cancer cell viability that was even 10-fold greater than that observed for free cisplatin.
Collapse
Affiliation(s)
- Marzena Fandzloch
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland and Institute of Low Temperature and Structure Research, PAS, Okólna 2, 50-422 Wrocław, Poland.
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Zaremba-Czogalla
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Andrzej Wojtczak
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Agnieszka Lewińska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Jerzy Sitkowski
- National Institutes of Medicines, Chełmska 30/34, 00-725 Warszawa, Poland and Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Joanna Wiśniewska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Iwona Łakomska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
23
|
Lefrançois P, Goudeau B, Arbault S. Dynamic monitoring of a bi-enzymatic reaction at a single biomimetic giant vesicle. Analyst 2020; 145:7922-7931. [DOI: 10.1039/d0an01273d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Giant unilamellar vesicles were used as individual biomimetic micro-reactors wherein a model bi-enzymatic reaction involving a glucose oxidase (GOx) and horseradish peroxidase (HRP) was monitored by confocal microscopy.
Collapse
|
24
|
How is the interaction of a chloride channel blocker with phospholipids influenced by divalent metal ions? Effect of unsaturation on the lipid side chain. Colloids Surf B Biointerfaces 2019; 188:110743. [PMID: 31884083 DOI: 10.1016/j.colsurfb.2019.110743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
The present study reveals the effect of various divalent ions (Ca2+, Mg2+and Zn2+) on the binding interaction of a prospective chloride channel blocker, 9-methylanthroate (9MA), with liposome membranes, namely, dimyristoylphosphatidylcholine (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The liposome membranes DMPC and POPC differ in the unsaturation of the side-chain. The drug (9MA) is found to experience a greater degree of partitioning into the POPC lipid bilayer (containing unsaturated side-chain) in comparison to DMPC (containing saturated side-chain). The stronger 9MA-POPC binding interaction is found to be only nominally perturbed by the presence of metal salts. On the contrary, the 9MA-DMPC binding interaction is found to be significantly perturbed by the presence of metal salts and is manifested on the environment-responsive spectroscopic properties of the drug. The steady-state and picosecond-resolved fluorescence spectroscopic results reveal the effect of metal ions on DMPC bilayer to follow the trend Ca2+ < Mg2+ < Zn2+. This is also quantified by evaluating the partition coefficient of the drug into DMPC lipid in the presence of various divalent ions which is found to follow the same sequence. The degree of penetration of these cations has been rationalized on the basis of adsorption of cations on DMPC headgroup region resulting in dehydration of the headgroup along with shrinking of it.
Collapse
|
25
|
Shen Z, Loe DT, Fisher A, Kröger M, Rouge JL, Li Y. Polymer stiffness governs template mediated self-assembly of liposome-like nanoparticles: simulation, theory and experiment. NANOSCALE 2019; 11:20179-20193. [PMID: 31617539 DOI: 10.1039/c9nr07063j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study suggests that the self-assembly of a template-mediated liposome (TML) can be utilized as a general method to produce liposomes with controlled sizes. A polymer tethered core is used here as a starting configuration of a TML. Lipids anchored to the free ends of the tethered polymers direct the self-assembly of surrounding free lipid molecules to form liposome-like nanoparticles. Characterizing the flexibility of polymers by their persistence lengths, we performed large scale molecular simulations to investigate the self-assembly process of TMLs with tethered polymers of different stiffness values. The stiffness of tethered polymer is found to play a crucial role in the self-assembly process of TMLs. The flexible and rigid-like polymers can accelerate and delay the self-assembly of TMLs, respectively. In addition, the critical grafting of tethered polymers and required lipid concentrations to from perfectly encapsulated TMLs are found to increase with the flexibility of tethered polymers. To scrutinize these simulation-based findings, we synthesized DNA-polyethylene glycol (PEG) TMLs and performed corresponding experiments. To this end we incorporate increasing concentrations of DNA as a proxy for increasing the rigidity of the tethered polymers. We find that the resulting structures are indeed consistent with the simulated ones. Finally, a theory is developed that allows one to estimate the required free lipid number (or lipid concentration) and grafting density analytically for polymers of a given persistence length. Through these combined computational, experimental, and theoretical studies, we present a predictive model for determining the effect of polymer stiffness on the self-assembly of TMLs, which can be used as a general approach for obtaining perfectly encapsulated TMLs as potential drug delivery vehicles.
Collapse
Affiliation(s)
- Zhiqiang Shen
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - David T Loe
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Alessandro Fisher
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Martin Kröger
- Department of Materials, Polymer Physics, ETH Zürich, CH-8093 Zurich, Switzerland
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Ying Li
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA. and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
26
|
Naumowicz M, Kusaczuk M, Kruszewski MA, Gál M, Krętowski R, Cechowska-Pasko M, Kotyńska J. The modulating effect of lipid bilayer/p-coumaric acid interactions on electrical properties of model lipid membranes and human glioblastoma cells. Bioorg Chem 2019; 92:103242. [DOI: 10.1016/j.bioorg.2019.103242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
|
27
|
The Main (Glyco) Phospholipid (MPL) of Thermoplasma acidophilum. Int J Mol Sci 2019; 20:ijms20205217. [PMID: 31640225 PMCID: PMC6834173 DOI: 10.3390/ijms20205217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
The main phospholipid (MPL) of Thermoplasma acidophilum DSM 1728 was isolated, purified and physico-chemically characterized by differential scanning calorimetry (DSC)/differential thermal analysis (DTA) for its thermotropic behavior, alone and in mixtures with other lipids, cholesterol, hydrophobic peptides and pore-forming ionophores. Model membranes from MPL were investigated; black lipid membrane, Langmuir-Blodgett monolayer, and liposomes. Laboratory results were compared to computer simulation. MPL forms stable and resistant liposomes with highly proton-impermeable membrane and mixes at certain degree with common bilayer-forming lipids. Monomeric bacteriorhodopsin and ATP synthase from Micrococcus luteus were co-reconstituted and light-driven ATP synthesis measured. This review reports about almost four decades of research on Thermoplasma membrane and its MPL as well as transfer of this research to Thermoplasma species recently isolated from Indonesian volcanoes.
Collapse
|
28
|
Sen S, Paul BK, Guchhait N. Interaction of a sphingolipid with human serum albumin in the native, thermally denatured and chemically denatured states: Emission wavelength-dependent photophysical revelation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Tanaka TQ, Tokuoka SM, Nakatani D, Hamano F, Kawazu SI, Wellems TE, Kita K, Shimizu T, Tokumasu F. Polyunsaturated fatty acids promote Plasmodium falciparum gametocytogenesis. Biol Open 2019; 8:bio.042259. [PMID: 31221627 PMCID: PMC6679406 DOI: 10.1242/bio.042259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The molecular triggers of sexual differentiation into gametocytes by blood stage Plasmodium falciparum, the most malignant human malaria parasites, are subject of much investigation for potential transmission-blocking strategies. The parasites are readily grown in vitro with culture media supplemented by the addition of human serum (10%) or by a commercially available substitute (0.5% AlbuMAX). We found better gametocytemia with serum than AlbuMAX, suggesting suboptimal concentrations of some components in the commercial product; consistent with this hypothesis, substantial concentration differences of multiple fatty acids were detected between serum- and AlbuMAX-supplemented media. Mass spectroscopy analysis distinguished the lipid profiles of gametocyte- and asexual stage-parasite membranes. Delivery of various combinations of unsaturated fatty-acid-containing phospholipids to AlbuMAX-supported gametocyte cultures improved gametocyte production to the levels achieved with human-serum-supplemented media. Maturing gametocytes readily incorporated externally supplied d5-labeled glycerol with fatty acids into unsaturated phospholipids. Phospholipids identified in this work thus may be taken up from extracellular sources or generated internally for important steps of gametocyte development. Further study of polyunsaturated fatty-acid metabolism and phospholipid profiles will improve understanding of gametocyte development and malaria parasite transmission.
Collapse
Affiliation(s)
- Takeshi Q Tanaka
- International Medical Zoology, Graduate School of Medicine, Kagawa University, Kagawa, 761-0793, Japan.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA.,Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan
| | - Daichi Nakatani
- Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Fumie Hamano
- Lipid Signaling Project, Research Institute National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shin-Ichiro Kawazu
- Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan.,Lipid Signaling Project, Research Institute National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Fuyuki Tokumasu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA .,Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan
| |
Collapse
|
30
|
Inohara K, Asano S, Maki T, Mae K. Synthesis of Small Lipid Nanoparticles Using an Inkjet Mixing System Aiming to Reduce Drug Loss. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201900041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kota Inohara
- Kyoto UniversityDepartment of Chemical Engineering, Graduate School of Engineering Kyoto-daigaku Katsura, Nishikyo-ku 615-8510 Kyoto Japan
| | - Shusaku Asano
- Kyushu UniversityInstitute for Materials Chemistry and Engineering 6-1, Kasuga Koen, Kasuga 816-8580 Fukuoka Japan
| | - Taisuke Maki
- Kyoto UniversityDepartment of Chemical Engineering, Graduate School of Engineering Kyoto-daigaku Katsura, Nishikyo-ku 615-8510 Kyoto Japan
| | - Kazuhiro Mae
- Kyoto UniversityDepartment of Chemical Engineering, Graduate School of Engineering Kyoto-daigaku Katsura, Nishikyo-ku 615-8510 Kyoto Japan
| |
Collapse
|
31
|
Abstract
Membrane permeabilizing peptides (MPPs) are as ubiquitous as the lipid bilayer membranes they act upon. Produced by all forms of life, most membrane permeabilizing peptides are used offensively or defensively against the membranes of other organisms. Just as nature has found many uses for them, translational scientists have worked for decades to design or optimize membrane permeabilizing peptides for applications in the laboratory and in the clinic ranging from antibacterial and antiviral therapy and prophylaxis to anticancer therapeutics and drug delivery. Here, we review the field of membrane permeabilizing peptides. We discuss the diversity of their sources and structures, the systems and methods used to measure their activities, and the behaviors that are observed. We discuss the fact that "mechanism" is not a discrete or a static entity for an MPP but rather the result of a heterogeneous and dynamic ensemble of structural states that vary in response to many different experimental conditions. This has led to an almost complete lack of discrete three-dimensional active structures among the thousands of known MPPs and a lack of useful or predictive sequence-structure-function relationship rules. Ultimately, we discuss how it may be more useful to think of membrane permeabilizing peptides mechanisms as broad regions of a mechanistic landscape rather than discrete molecular processes.
Collapse
Affiliation(s)
- Shantanu Guha
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Jenisha Ghimire
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - Eric Wu
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| | - William C Wimley
- Department of Biochemistry and Molecular Biology Tulane University School of Medicine , New Orleans , Louisiana 70112 , United States
| |
Collapse
|
32
|
Jimenez CJ, Tan J, Dowell KM, Gadbois GE, Read CA, Burgess N, Cervantes JE, Chan S, Jandaur A, Karanik T, Lee JJ, Ley MC, McGeehan M, McMonigal A, Palazzo KL, Parker SA, Payman A, Soria M, Verheyden L, Vo VT, Yin J, Calkins AL, Fuller AA, Stokes GY. Peptoids advance multidisciplinary research and undergraduate education in parallel: Sequence effects on conformation and lipid interactions. Biopolymers 2019; 110:e23256. [PMID: 30633339 PMCID: PMC6590334 DOI: 10.1002/bip.23256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 01/05/2023]
Abstract
Peptoids are versatile peptidomimetic molecules with wide-ranging applications from drug discovery to materials science. An understanding of peptoid sequence features that contribute to both their three-dimensional structures and their interactions with lipids will expand functions of peptoids in varied fields. Furthermore, these topics capture the enthusiasm of undergraduate students who prepare and study diverse peptoids in laboratory coursework and/or in faculty led research. Here, we present the synthesis and study of 21 peptoids with varied functionality, including 19 tripeptoids and 2 longer oligomers. We observed differences in fluorescence spectral features for 10 of the tripeptoids that correlated with peptoid flexibility and relative positioning of chromophores. Interactions of representative peptoids with sonicated glycerophospholipid vesicles were also evaluated using fluorescence spectroscopy. We observed evidence of conformational changes effected by lipids for select peptoids. We also summarize our experiences engaging students in peptoid-based projects to advance both research and undergraduate educational objectives in parallel.
Collapse
Affiliation(s)
- Christian J. Jimenez
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jiacheng Tan
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Kalli M. Dowell
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Gillian E. Gadbois
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Cameron A. Read
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Nicole Burgess
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jesus E. Cervantes
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Shannon Chan
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Anmol Jandaur
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Tara Karanik
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jaenic J. Lee
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Mikaela C. Ley
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Molly McGeehan
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Ann McMonigal
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Kira L. Palazzo
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Samantha A. Parker
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Andre Payman
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Maritza Soria
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Lauren Verheyden
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Vivian T. Vo
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Jennifer Yin
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Anna L. Calkins
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Amelia A. Fuller
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| | - Grace Y. Stokes
- Department of Chemistry & BiochemistrySanta Clara UniversitySanta ClaraCaliforniaU.S.A.
| |
Collapse
|
33
|
Macromolecular crowding and membrane binding proteins: The case of phospholipase A1. Chem Phys Lipids 2019; 218:91-102. [DOI: 10.1016/j.chemphyslip.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/10/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022]
|
34
|
Mohapatra M, Mishra AK. Excited state proton transfer based fluorescent molecular probes and their application in studying lipid bilayer membranes. Photochem Photobiol Sci 2019; 18:2830-2848. [DOI: 10.1039/c9pp00294d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The distribution and prototropic equilibria of 1-naphthol (NpOH) in lipid bilayer membrane.
Collapse
Affiliation(s)
| | - Ashok Kumar Mishra
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600036
- India
| |
Collapse
|
35
|
Tomioka K, Yamaguchi T, Inoue M, Kajiwara K. Liposome-linked immunosorbent assay enhanced by immuno-PCR using plasmid-encapsulated liposomes. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
37
|
Ekanayake V, Nisan D, Ryzhov P, Yao Y, Marassi FM. Lipoprotein Particle Formation by Proapoptotic tBid. Biophys J 2018; 115:533-542. [PMID: 30017071 DOI: 10.1016/j.bpj.2018.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022] Open
Abstract
The interactions of Bcl-2 family proteins with intracellular lipids are essential for the regulation of apoptosis, a mechanism of programmed cell death that is central to the health and development of multicellular organisms. Bid and its caspase-8 cleavage product, tBid, promote the permeabilization of the mitochondrial outer membrane and sequester antiapoptotic Bcl-2 proteins to counter their cytoprotective activity. Bid and tBid also promote lipid exchange, a characteristic trait of apoptosis. Here, we show that tBid is capable of associating with phospholipids to form soluble, nanometer-sized lipoprotein particles that retain binding affinity for the antiapoptotic protein Bcl-xL. The tBid lipoprotein particles form with a lipid/protein stoichiometry in the range of 20/1 and have a diameter of ∼11.5 nm. Lipoparticle-bound tBid retains an α-helical structure and binds Bcl-xL through its third Bcl-2 homology motif, forming a soluble, lipid-associated heteroprotein complex. The results shed light on the role of lipids in mediating Bcl-2 protein mobility and interactions.
Collapse
Affiliation(s)
- Vindana Ekanayake
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Danielle Nisan
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Pavel Ryzhov
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yong Yao
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Francesca M Marassi
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
38
|
Location of fluorescent probes (2′-hydroxy derivatives of 2,5-diaryl-1,3-oxazole) in lipid membrane studied by fluorescence spectroscopy and molecular dynamics simulation. Biophys Chem 2018; 235:9-18. [DOI: 10.1016/j.bpc.2018.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 11/20/2022]
|
39
|
Viger-Gravel J, Schantz A, Pinon AC, Rossini AJ, Schantz S, Emsley L. Structure of Lipid Nanoparticles Containing siRNA or mRNA by Dynamic Nuclear Polarization-Enhanced NMR Spectroscopy. J Phys Chem B 2018; 122:2073-2081. [DOI: 10.1021/acs.jpcb.7b10795] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jasmine Viger-Gravel
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | - Arthur C. Pinon
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aaron J. Rossini
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department
of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | | | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
40
|
Liposomes entrapping β-cyclodextrin/ibuprofen inclusion complex: Role of the host and the guest on the bilayer integrity and microviscosity. Chem Phys Lipids 2017; 209:61-65. [DOI: 10.1016/j.chemphyslip.2017.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 11/22/2022]
|
41
|
Dong YD, Tchung E, Nowell C, Kaga S, Leong N, Mehta D, Kaminskas LM, Boyd BJ. Microfluidic preparation of drug-loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration. J Liposome Res 2017; 29:1-9. [DOI: 10.1080/08982104.2017.1391285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yao-Da Dong
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Estefania Tchung
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Cameron Nowell
- Drug Delivery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Sadik Kaga
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
- Department of Chemistry, Bogazici University, Istanbul, Turkey
| | - Nathania Leong
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Dharmini Mehta
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Lisa M. Kaminskas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia, Australia
| | - Ben J. Boyd
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
- ARC Centre of Excellence in Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
42
|
Bagchi D, Dutta S, Singh P, Chaudhuri S, Pal SK. Essential Dynamics of an Effective Phototherapeutic Drug in a Nanoscopic Delivery Vehicle: Psoralen in Ethosomes for Biofilm Treatment. ACS OMEGA 2017; 2:1850-1857. [PMID: 30023647 PMCID: PMC6044814 DOI: 10.1021/acsomega.7b00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/28/2017] [Indexed: 05/18/2023]
Abstract
Appropriate localization of a drug and its structure/functional integrity in a delivery agent essentially dictates the efficacy of the vehicle and the medicinal activity of the drug. In the case of a phototherapeutic drug, its photoinduced dynamics becomes an added parameter. Here, we have explored the photoinduced dynamical events of a model phototherapeutic drug psoralen (PSO) in a potential delivery vehicle called an ethosome. Dynamic light scattering confirms the structural integrity of the ethosome vehicle after the encapsulation of PSO. Steady state and picosecond resolved polarization gated spectroscopy, including the well-known strategy of solvation and Förster resonance energy transfer, reveal the localization of the drug in the vehicle and the environment in the proximity of PSO. We have also investigated the efficacy of drug delivery to various individual bacteria (Gram-negative: Escherichia coli; Gram-positive: Staphylococcus aureus) and bacterial biofilms. Our optical and electron microscopic studies reveal a significant reduction in bacterial survival (∼70%) and the destruction of bacterial adherence following a change in the morphology of the biofilms after phototherapy. Our studies are expected to find relevance in the formulation of drug delivery agents in several skin diseases and biofilm formation in artificial implants.
Collapse
Affiliation(s)
| | | | | | | | - Samir Kumar Pal
- E-mail: . Telephone: +91 033 2335 5706-08. Fax: +91 033
2335 3477
| |
Collapse
|
43
|
Deshpande S, Birnie A, Dekker C. On-chip density-based purification of liposomes. BIOMICROFLUIDICS 2017; 11:034106. [PMID: 28529672 PMCID: PMC5422205 DOI: 10.1063/1.4983174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/26/2017] [Indexed: 05/05/2023]
Abstract
Due to their cell membrane-mimicking properties, liposomes have served as a versatile research tool in science, from membrane biophysics and drug delivery systems to bottom-up synthetic cells. We recently reported a novel microfluidic method, Octanol-assisted Liposome Assembly (OLA), to form cell-sized, monodisperse, unilamellar liposomes with excellent encapsulation efficiency. Although OLA provides crucial advantages over alternative methods, it suffers from the presence of 1-octanol droplets, an inevitable by-product of the production process. These droplets can adversely affect the system regarding liposome stability, channel clogging, and imaging quality. In this paper, we report a density-based technique to separate the liposomes from droplets, integrated on the same chip. We show that this method can yield highly pure (>95%) liposome samples. We also present data showing that a variety of other separation techniques (based on size or relative permittivity) were unsuccessful. Our density-based separation approach favourably decouples the production and separation module, thus allowing freshly prepared liposomes to be used for downstream on-chip experimentation. This simple separation technique will make OLA a more versatile and widely applicable tool.
Collapse
Affiliation(s)
- Siddharth Deshpande
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Anthony Birnie
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
44
|
Wah B, Breidigan JM, Adams J, Horbal P, Garg S, Porcar L, Perez-Salas U. Reconciling Differences between Lipid Transfer in Free-Standing and Solid Supported Membranes: A Time-Resolved Small-Angle Neutron Scattering Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3384-3394. [PMID: 28300412 DOI: 10.1021/acs.langmuir.6b04013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Maintaining compositional lipid gradients across membranes in animal cells is essential to biological function, but what is the energetic cost to maintain these differences? It has long been recognized that studying the passive movement of lipids in membranes can provide insight into this toll. Confusingly the reported values of inter- and, particularly, intra-lipid transport rates of lipids in membranes show significant differences. To overcome this difficulty, biases introduced by experimental approaches have to be identified. The present study addresses the difference in the reported intramembrane transport rates of dimyristoylphosphatidylcholine (DMPC) on flat solid supports (fast flipping) and in curved free-standing membranes (slow flipping). Two possible scenarios are potentially at play: one is the difference in curvature of the membranes studied and the other the presence (or not) of the support. Using DMPC vesicles and DMPC supported membranes on silica nanoparticles of different radii, we found that an increase in curvature (from a diameter of 30 nm to a diameter of 100 nm) does not change the rates significantly, differing only by factors of order ∼1. Additionally, we found that the exchange rates of DMPC in supported membranes are similar to the ones in vesicles. And as previously reported, we found that the activation energies for exchange on free-standing and supported membranes are similar (84 and 78 kJ/mol, respectively). However, DMPC's flip-flop rates increase significantly when in a supported membrane, surpassing the exchange rates and no longer limiting the exchange process. Although the presence of holes or cracks in supported membranes explains the occurrence of fast lipid flip-flop in many studies, in defect-free supported membranes we find that fast flip-flop is driven by the surface's induced disorder of the bilayer's acyl chain packing as evidenced from their broad melting temperature behavior.
Collapse
Affiliation(s)
- Benny Wah
- Physics Department, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Jeffrey M Breidigan
- Physics Department, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Joseph Adams
- Physics Department, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Piotr Horbal
- Physics Department, University of Illinois at Chicago , Chicago, Illinois 60607, United States
| | - Sumit Garg
- Physics Department, University of Illinois at Chicago , Chicago, Illinois 60607, United States
- Materials Science Division, Argonne National Laboratory , Lemont, Illinois 60439, United States
| | - Lionel Porcar
- Large Scale Structure Group, Institut Laue-Langevin , Grenoble F-38042, France
- Department of Chemical Engineering, Colburn Laboratory, University of Delaware , Newark, Delaware 19716, United States
| | - Ursula Perez-Salas
- Physics Department, University of Illinois at Chicago , Chicago, Illinois 60607, United States
- Materials Science Division, Argonne National Laboratory , Lemont, Illinois 60439, United States
| |
Collapse
|
45
|
Abstract
mRNA vaccines elicit a potent immune response including antibodies and cytotoxic T cells. mRNA vaccines are currently evaluated in clinical trials for cancer immunotherapy applications, but also have great potential as prophylactic vaccines. Efficient delivery of mRNA vaccines will be key for their success and translation to the clinic. Among potential nonviral vectors, lipid nanoparticles are particularly promising. Indeed, lipid nanoparticles can be synthesized with relative ease in a scalable manner, protect the mRNA against degradation, facilitate endosomal escape, can be targeted to the desired cell type by surface decoration with ligands, and as needed, can be codelivered with adjuvants.
Collapse
|
46
|
Exactin: A specific inhibitor of Factor X activation by extrinsic tenase complex from the venom of Hemachatus haemachatus. Sci Rep 2016; 6:32036. [PMID: 27558950 PMCID: PMC4997346 DOI: 10.1038/srep32036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/02/2016] [Indexed: 11/17/2022] Open
Abstract
Unwanted clots lead to heart attack and stroke that result in a large number of deaths. Currently available anticoagulants have some drawbacks including their non-specific actions. Therefore novel anticoagulants that target specific steps in the coagulation pathway are being sought. Here we describe the identification and characterization of a novel anticoagulant protein from the venom of Hemachatus haemachatus (African Ringhals cobra) that specifically inhibits factor X (FX) activation by the extrinsic tenase complex (ETC) and thus named as exactin. Exactin belongs to the three-finger toxin (3FTx) family, with high sequence identity to neurotoxins and low identity to the well-characterized 3FTx anticoagulants-hemextin and naniproin. It is a mixed-type inhibitor of ETC with the kinetic constants, Ki’ and Ki determined as 30.62 ± 7.73 nM and 153.75 ± 17.96 nM, respectively. Exactin does not bind to the active site of factor VIIa and factor Xa based on its weak inhibition (IC50 ≫ 300 μM) to the amidolytic activities of these proteases. Exactin shows exquisite macromolecular specificity to FX activation as compared to factor IX activation by ETC. Exactin thus displays a distinct mechanism when compared to other anticoagulants targeting ETC, with its selective preference to ETC-FX [ES] complex.
Collapse
|
47
|
Yingchoncharoen P, Kalinowski DS, Richardson DR. Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacol Rev 2016; 68:701-87. [PMID: 27363439 PMCID: PMC4931871 DOI: 10.1124/pr.115.012070] [Citation(s) in RCA: 466] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading cause of death in many countries around the world. However, the efficacy of current standard treatments for a variety of cancers is suboptimal. First, most cancer treatments lack specificity, meaning that these treatments affect both cancer cells and their normal counterparts. Second, many anticancer agents are highly toxic, and thus, limit their use in treatment. Third, a number of cytotoxic chemotherapeutics are highly hydrophobic, which limits their utility in cancer therapy. Finally, many chemotherapeutic agents exhibit short half-lives that curtail their efficacy. As a result of these deficiencies, many current treatments lead to side effects, noncompliance, and patient inconvenience due to difficulties in administration. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems known commonly as nanoparticles. Among these delivery systems, lipid-based nanoparticles, particularly liposomes, have shown to be quite effective at exhibiting the ability to: 1) improve the selectivity of cancer chemotherapeutic agents; 2) lower the cytotoxicity of anticancer drugs to normal tissues, and thus, reduce their toxic side effects; 3) increase the solubility of hydrophobic drugs; and 4) offer a prolonged and controlled release of agents. This review will discuss the current state of lipid-based nanoparticle research, including the development of liposomes for cancer therapy, different strategies for tumor targeting, liposomal formulation of various anticancer drugs that are commercially available, recent progress in liposome technology for the treatment of cancer, and the next generation of lipid-based nanoparticles.
Collapse
Affiliation(s)
- Phatsapong Yingchoncharoen
- Molecular Pharmacology and Pathology Program, Department of Pathology, Faculty of Medicine, Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology, Faculty of Medicine, Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology, Faculty of Medicine, Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
48
|
Majumdar A, Sarkar M. Small Mismatches in Fatty Acyl Tail Lengths Can Effect Non Steroidal Anti-Inflammatory Drug Induced Membrane Fusion. J Phys Chem B 2016; 120:4791-802. [PMID: 27153337 DOI: 10.1021/acs.jpcb.6b03583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anupa Majumdar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF,
Bidhannagar, Kolkata 700064, India
| | - Munna Sarkar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF,
Bidhannagar, Kolkata 700064, India
| |
Collapse
|
49
|
Cifelli JL, Dozier L, Chung TS, Patrick GN, Yang J. Benzothiazole Amphiphiles Promote the Formation of Dendritic Spines in Primary Hippocampal Neurons. J Biol Chem 2016; 291:11981-92. [PMID: 27022020 DOI: 10.1074/jbc.m115.701482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Indexed: 12/31/2022] Open
Abstract
The majority of excitatory synapses in the brain exist on dendritic spines. Accordingly, the regulation of dendritic spine density in the hippocampus is thought to play a central role in learning and memory. The development of novel methods to control spine density could, therefore, have important implications for treatment of a host of neurodegenerative and developmental cognitive disorders. Herein, we report the design and evaluation of a new class of benzothiazole amphiphiles that exhibit a dose-dependent response leading to an increase in dendritic spine density in primary hippocampal neurons. Cell exposure studies reveal that the increase in spine density can persist for days in the presence of these compounds, but returns to normal spine density levels within 24 h when the compounds are removed, demonstrating the capability to reversibly control spinogenic activity. Time-lapse imaging of dissociated hippocampal neuronal cultures shows that these compounds promote a net increase in spine density through the formation of new spines. Biochemical studies support that promotion of spine formation by these compounds is accompanied by Ras activation. These spinogenic molecules were also capable of inhibiting a suspected mechanism for dendritic spine loss induced by Alzheimer-related aggregated amyloid-β peptides in primary neurons. Evaluation of this new group of spinogenic agents reveals that they also exhibit relatively low toxicity at concentrations displaying activity. Collectively, these results suggest that small molecules that promote spine formation could be potentially useful for ameliorating cognitive deficiencies associated with spine loss in neurodegenerative diseases such as Alzheimer disease, and may also find use as general cognitive enhancers.
Collapse
Affiliation(s)
| | - Lara Dozier
- the Section of Neurobiology in the Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0358
| | - Tim S Chung
- From the Department of Chemistry and Biochemistry and
| | - Gentry N Patrick
- the Section of Neurobiology in the Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0358
| | - Jerry Yang
- From the Department of Chemistry and Biochemistry and
| |
Collapse
|
50
|
Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat Chem 2016; 8:476-83. [PMID: 27102682 PMCID: PMC5021307 DOI: 10.1038/nchem.2472] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/03/2016] [Indexed: 12/22/2022]
Abstract
Artificial lipid-bilayer membranes are valuable tools for the study of membrane structure and dynamics. For applications such as the study of vesicular transport and drug delivery, there is a pressing need for artificial vesicles with controlled size. However, controlling vesicle size and shape with nanometre precision is challenging, and approaches to achieve this can be heavily affected by lipid composition. Here, we present a bio-inspired templating method to generate highly monodispersed sub-100-nm unilamellar vesicles, where liposome self-assembly was nucleated and confined inside rigid DNA nanotemplates. Using this method, we produce homogeneous liposomes with four distinct predefined sizes. We also show that the method can be used with a variety of lipid compositions and probe the mechanism of templated liposome formation by capturing key intermediates during membrane self-assembly. The DNA nanotemplating strategy represents a conceptually novel way to guide lipid bilayer formation and could be generalized to engineer complex membrane/protein structures with nanoscale precision.
Collapse
|