1
|
Gadbery JE, Round JW, Yuan T, Wipperman MF, Story KT, Crowe AM, Casabon I, Liu J, Yang X, Eltis LD, Sampson NS. IpdE1-IpdE2 Is a Heterotetrameric Acyl Coenzyme A Dehydrogenase That Is Widely Distributed in Steroid-Degrading Bacteria. Biochemistry 2020; 59:1113-1123. [PMID: 32101684 PMCID: PMC7081610 DOI: 10.1021/acs.biochem.0c00005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Steroid-degrading bacteria, including Mycobacterium tuberculosis (Mtb), utilize an architecturally distinct subfamily of acyl coenzyme A dehydrogenases (ACADs) for steroid catabolism. These ACADs are α2β2 heterotetramers that are usually encoded by adjacent fadE-like genes. In mycobacteria, ipdE1 and ipdE2 (formerly fadE30 and fadE33) occur in divergently transcribed operons associated with the catabolism of 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP), a steroid metabolite. In Mycobacterium smegmatis, ΔipdE1 and ΔipdE2 mutants had similar phenotypes, showing impaired growth on cholesterol and accumulating 5-OH HIP in the culture supernatant. Bioinformatic analyses revealed that IpdE1 and IpdE2 share many of the features of the α- and β-subunits, respectively, of heterotetrameric ACADs that are encoded by adjacent genes in many steroid-degrading proteobacteria. When coproduced in a rhodococcal strain, IpdE1 and IpdE2 of Mtb formed a complex that catalyzed the dehydrogenation of 5OH-HIP coenzyme A (5OH-HIP-CoA) to 5OH-3aα-H-4α(3'-prop-1-enoate)-7aβ-methylhexa-hydro-1,5-indanedione coenzyme A ((E)-5OH-HIPE-CoA). This corresponds to the initial step in the pathway that leads to degradation of steroid C and D rings via β-oxidation. Small-angle X-ray scattering revealed that the IpdE1-IpdE2 complex was an α2β2 heterotetramer typical of other ACADs involved in steroid catabolism. These results provide insight into an important class of steroid catabolic enzymes and a potential virulence determinant in Mtb.
Collapse
Affiliation(s)
- John E Gadbery
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - James W Round
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Matthew F Wipperman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Clinical & Translational Science Center, Weill Cornell Medicine, New York, New York 10065, United States
| | - Keith T Story
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Adam M Crowe
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Israel Casabon
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jie Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Xinxin Yang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nicole S Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
2
|
Abstract
Most mycolic acid-containing actinobacteria and some proteobacteria use steroids as growth substrates, but the catabolism of the last two steroid rings has yet to be elucidated. In Mycobacterium tuberculosis, this pathway includes virulence determinants and has been proposed to be encoded by the KstR2-regulated genes, which include a predicted coenzyme A (CoA) transferase gene (ipdAB) and an acyl-CoA reductase gene (ipdC). In the presence of cholesterol, ΔipdC and ΔipdAB mutants of either M. tuberculosis or Rhodococcus jostii strain RHA1 accumulated previously undescribed metabolites: 3aα-H-4α(carboxyl-CoA)-5-hydroxy-7aβ-methylhexahydro-1-indanone (5-OH HIC-CoA) and (R)-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA), respectively. A ΔfadE32 mutant of Mycobacterium smegmatis accumulated 4-methyl-5-oxo-octanedioic acid (MOODA). Incubation of synthetic 5-OH HIC-CoA with purified IpdF, IpdC, and enoyl-CoA hydratase 20 (EchA20), a crotonase superfamily member, yielded COCHEA-CoA and, upon further incubation with IpdAB and a CoA thiolase, yielded MOODA-CoA. Based on these studies, we propose a pathway for the final steps of steroid catabolism in which the 5-member ring is hydrolyzed by EchA20, followed by hydrolysis of the 6-member ring by IpdAB. Metabolites accumulated by ΔipdF and ΔechA20 mutants support the model. The conservation of these genes in known steroid-degrading bacteria suggests that the pathway is shared. This pathway further predicts that cholesterol catabolism yields four propionyl-CoAs, four acetyl-CoAs, one pyruvate, and one succinyl-CoA. Finally, a ΔipdAB M. tuberculosis mutant did not survive in macrophages and displayed severely depleted CoASH levels that correlated with a cholesterol-dependent toxicity. Our results together with the developed tools provide a basis for further elucidating bacterial steroid catabolism and virulence determinants in M. tuberculosis. Bacteria are the only known steroid degraders, but the pathway responsible for degrading the last two steroid rings has yet to be elucidated. In Mycobacterium tuberculosis, this pathway includes virulence determinants. Using a series of mutants in M. tuberculosis and related bacteria, we identified a number of novel CoA thioesters as pathway intermediates. Analysis of the metabolites combined with enzymological studies establishes how the last two steroid rings are hydrolytically opened by enzymes encoded by the KstR2 regulon. Our results provide experimental evidence for novel ring-degrading enzymes, significantly advance our understanding of bacterial steroid catabolism, and identify a previously uncharacterized cholesterol-dependent toxicity that may facilitate the development of novel tuberculosis therapeutics.
Collapse
|
3
|
Holert J, Yücel O, Jagmann N, Prestel A, Möller HM, Philipp B. Identification of bypass reactions leading to the formation of one central steroid degradation intermediate in metabolism of different bile salts inPseudomonassp. strain Chol1. Environ Microbiol 2016; 18:3373-3389. [DOI: 10.1111/1462-2920.13192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Johannes Holert
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | - Onur Yücel
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | - Nina Jagmann
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| | | | | | - Bodo Philipp
- Institut für Molekulare Mikrobiologie und Biotechnologie; Westfälische Wilhelms-Universität Münster; Corrensstr. 3 Münster 48149 Germany
| |
Collapse
|
4
|
Crowe AM, Stogios PJ, Casabon I, Evdokimova E, Savchenko A, Eltis LD. Structural and functional characterization of a ketosteroid transcriptional regulator of Mycobacterium tuberculosis. J Biol Chem 2014; 290:872-82. [PMID: 25406313 DOI: 10.1074/jbc.m114.607481] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Catabolism of host cholesterol is critical to the virulence of Mycobacterium tuberculosis and is a potential target for novel therapeutics. KstR2, a TetR family repressor (TFR), regulates the expression of 15 genes encoding enzymes that catabolize the last half of the cholesterol molecule, represented by 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indane-dione (HIP). Binding of KstR2 to its operator sequences is relieved upon binding of HIP-CoA. A 1.6-Å resolution crystal structure of the KstR2(Mtb)·HIP-CoA complex reveals that the KstR2(Mtb) dimer accommodates two molecules of HIP-CoA. Each ligand binds in an elongated cleft spanning the dimerization interface such that the HIP and CoA moieties interact with different KstR2(Mtb) protomers. In isothermal titration calorimetry studies, the dimer bound 2 eq of HIP-CoA with high affinity (K(d) = 80 ± 10 nm) but bound neither HIP nor CoASH. Substitution of Arg-162 or Trp-166, residues that interact, respectively, with the diphosphate and HIP moieties of HIP-CoA, dramatically decreased the affinity of KstR2(Mtb) for HIP-CoA but not for its operator sequence. The variant of R162M that decreased the affinity for HIP-CoA (ΔΔG = 13 kJ mol(-1)) is consistent with the loss of three hydrogen bonds as indicated in the structural data. A 24-bp operator sequence bound two dimers of KstR2. Structural comparisons with a ligand-free rhodococcal homologue and a DNA-bound homologue suggest that HIP-CoA induces conformational changes of the DNA-binding domains of the dimer that preclude their proper positioning in the major groove of DNA. The results provide insight into KstR2-mediated regulation of expression of steroid catabolic genes and the determinants of ligand binding in TFRs.
Collapse
Affiliation(s)
- Adam M Crowe
- From the Departments of Biochemistry and Molecular Biology and
| | - Peter J Stogios
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada, and
| | - Israël Casabon
- Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Elena Evdokimova
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada, and The Midwest Center for Structural Genomics (MCSG), Argonne National Laboratory, Argonne, Illinois 60439
| | - Alexei Savchenko
- the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada, and The Midwest Center for Structural Genomics (MCSG), Argonne National Laboratory, Argonne, Illinois 60439
| | - Lindsay D Eltis
- From the Departments of Biochemistry and Molecular Biology and Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada,
| |
Collapse
|
5
|
Barrientos Á, Merino E, Casabon I, Rodríguez J, Crowe AM, Holert J, Philipp B, Eltis LD, Olivera ER, Luengo JM. Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21. Environ Microbiol 2014; 17:47-63. [PMID: 24428272 DOI: 10.1111/1462-2920.12395] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/30/2013] [Accepted: 01/04/2014] [Indexed: 12/15/2022]
Abstract
Pseudomonas putida DOC21, a soil-dwelling proteobacterium, catabolizes a variety of steroids and bile acids. Transposon mutagenesis and bioinformatics analyses identified four clusters of steroid degradation (std) genes encoding a single catabolic pathway. The latter includes three predicted acyl-CoA synthetases encoded by stdA1, stdA2 and stdA3 respectively. The ΔstdA1 and ΔstdA2 deletion mutants were unable to assimilate cholate or other bile acids but grew well on testosterone or 4-androstene-3,17-dione (AD). In contrast, a ΔstdA3 mutant grew poorly in media containing either testosterone or AD. When cells were grown with succinate in the presence of cholate, ΔstdA1 accumulated Δ(1/4) -3-ketocholate and Δ(1,4) -3-ketocholate, whereas ΔstdA2 only accumulated 7α,12α-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC). When incubated with testosterone or bile acids, ΔstdA3 accumulated 3aα-H-4α(3'propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP) or the corresponding hydroxylated derivative. Biochemical analyses revealed that StdA1 converted cholate, 3-ketocholate, Δ(1/4) -3-ketocholate, and Δ(1,4) -3-ketocholate to their CoA thioesters, while StdA2 transformed DHOPDC to DHOPDC-CoA. In contrast, purified StdA3 catalysed the CoA thioesterification of HIP and its hydroxylated derivatives. Overall, StdA1, StdA2 and StdA3 are acyl-CoA synthetases required for the complete degradation of bile acids: StdA1 and StdA2 are involved in degrading the C-17 acyl chain, whereas StdA3 initiates degradation of the last two steroid rings. The study highlights differences in steroid catabolism between Proteobacteria and Actinobacteria.
Collapse
Affiliation(s)
- Álvaro Barrientos
- Departmento de Biología Molecular, Facultad de Veterinaria, Universidad de León, León, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Casabon I, Zhu SH, Otani H, Liu J, Mohn WW, Eltis LD. Regulation of the KstR2 regulon of Mycobacterium tuberculosis by a cholesterol catabolite. Mol Microbiol 2013; 89:1201-12. [PMID: 23879670 DOI: 10.1111/mmi.12340] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2013] [Indexed: 11/28/2022]
Abstract
Cholesterol catabolism is widespread in actinobacteria and is critical for Mycobacterium tuberculosis (Mtb) virulence. Catabolism of steroid nucleus rings C and D is poorly understood: it is initiated by the CoA thioesterification of 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP) by FadD3, whose gene is part of the KstR2 regulon. In Mtb, genes of this regulon were upregulated up to 30- and 22-fold during growth on cholesterol and HIP, respectively, versus another minimal medium. In contrast, genes involved in degrading the cholesterol side-chain and nucleus rings A and B were only upregulated during growth on cholesterol. Similar results were obtained in Rhodococcus jostii RHA1. Moreover, the regulon was not upregulated in a ΔfadD3 mutant unable to produce HIP-CoA. In electrophoretic mobility shift assays, HIP-CoA relieved the binding of KstR2(Mtb) to each of three KstR2 boxes: CoASH, HIP and a related CoA thioester did not. Inspection of the structure of KstR2(RHA1) revealed no obvious HIP-CoA binding pocket. The results establish that Mtb can catabolize the entire cholesterol molecule and that HIP-CoA is an effector of KstR2. They further indicate that KstR2 specifically represses the expression of the HIP degradation genes in actinobacteria, which encode a lower pathway involved in the catabolism of multiple steroids.
Collapse
Affiliation(s)
- Israël Casabon
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Zimmermann M, Thormann V, Sauer U, Zamboni N. Nontargeted profiling of coenzyme A thioesters in biological samples by tandem mass spectrometry. Anal Chem 2013; 85:8284-90. [PMID: 23895734 DOI: 10.1021/ac401555n] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coenzyme A (CoA) thioesters are ubiquitously present in metabolic networks and play a pivotal role in enzymatic formation and cleavage of carbon-carbon bonds. We present a method allowing nontargeted profiling of CoA-thioesters in biological samples. The reported UHPLC-MS/MS approach employes ion-pairing chromatography to separate CoA-metabolites carrying different chemical functionalities such as hydroxyl or multiple carboxyl groups and to distinguish between isomers. Selective detection of CoA-thioesters is accomplished by precursor ion scanning on a triple quadrupole mass spectrometer and takes advantage of the abundant fragment with m/z = -408 that originates from the CoA-moiety. We used a mixture of 19 commercially available CoA-derivatives to develop and optimize our method. As a proof of concept we demonstrated detection of the major CoA-intermediates of branched chain amino acid degradation in biological samples. We then applied our method to investigate degradation of lipids in the microorganism Mycobacterium smegmatis. Profiling of CoA-thioesters led to the discovery of a novel intermediate of cholesterol degradation. This demonstrates the power of our method for untargeted profiling of CoA-thioesters and adds a missing link in mycobacterial cholesterol catabolism.
Collapse
Affiliation(s)
- Michael Zimmermann
- Institute of Molecular Systems Biology, ETH Zurich, Wolfgang-Pauli Strasse 16, 8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
8
|
Casabon I, Crowe AM, Liu J, Eltis LD. FadD3 is an acyl-CoA synthetase that initiates catabolism of cholesterol rings C and D in actinobacteria. Mol Microbiol 2012; 87:269-83. [PMID: 23146019 DOI: 10.1111/mmi.12095] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2012] [Indexed: 01/28/2023]
Abstract
The cholesterol catabolic pathway occurs in most mycolic acid-containing actinobacteria, such as Rhodococcus jostii RHA1, and is critical for Mycobacterium tuberculosis (Mtb) during infection. FadD3 is one of four predicted acyl-CoA synthetases potentially involved in cholesterol catabolism. A ΔfadD3 mutant of RHA1 grew on cholesterol to half the yield of wild-type and accumulated 3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP), consistent with the catabolism of half the steroid molecule. This phenotype was rescued by fadD3 of Mtb. Moreover, RHA1 but not ΔfadD3 grew on HIP. Purified FadD3(Mtb) catalysed the ATP-dependent CoA thioesterification of HIP and its hydroxylated analogues, 5α-OH HIP and 1β-OH HIP. The apparent specificity constant (k(cat) /K(m) ) of FadD3(Mtb) for HIP was 7.3 ± 0.3 × 10(5) M(-1) s(-1) , 165 times higher than for 5α-OH HIP, while the apparent K(m) for CoASH was 110 ± 10 μM. In contrast to enzymes involved in the catabolism of rings A and B, FadD3(Mtb) did not detectably transform a metabolite with a partially degraded C17 side-chain. Overall, these results indicate that FadD3 is a HIP-CoA synthetase that initiates catabolism of steroid rings C and D after side-chain degradation is complete. These findings are consistent with the actinobacterial kstR2 regulon encoding ring C/D degradation enzymes.
Collapse
Affiliation(s)
- Israël Casabon
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | | | | | | |
Collapse
|
9
|
Horinouchi M, Hayashi T, Kudo T. Steroid degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol 2012; 129:4-14. [PMID: 21056662 DOI: 10.1016/j.jsbmb.2010.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/22/2010] [Accepted: 10/30/2010] [Indexed: 11/22/2022]
Abstract
Steroid degradation by Comamonas testosteroni and Nocardia restrictus have been intensively studied for the purpose of obtaining materials for steroid drug synthesis. C. testosteroni degrades side chains and converts single/double bonds of certain steroid compounds to produce androsta-1,4-diene 3,17-dione or the derivative. Following 9α-hydroxylation leads to aromatization of the A-ring accompanied by cleavage of the B-ring, and aromatized A-ring is hydroxylated at C-4 position, cleaved at Δ4 by meta-cleavage, and divided into 2-hydroxyhexa-2,4-dienoic acid (A-ring) and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid (B,C,D-ring) by hydrolysis. Reactions and the genes involved in the cleavage and the following degradation of the A-ring are similar to those for bacterial biphenyl degradation, and 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid degradation is suggested to be mainly β-oxidation. Genes involved in A-ring aromatization and degradation form a gene cluster, and the genes involved in β-oxidation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid also comprise a large cluster of more than 10 genes. The DNA region between these two main steroid degradation gene clusters contain 3α-hydroxysteroid dehydrogenase gene, Δ5,3-ketosteroid isomerase gene, genes for inversion of an α-oriented-hydroxyl group to a β-oriented-hydroxyl group at C-12 position of cholic acid, and genes possibly involved in the degradation of a side chain at C-17 position of cholic acid, indicating this DNA region of more than 100kb to be a steroid degradation gene hot spot of C. testosteroni. Article from a special issue on steroids and microorganisms.
Collapse
|
10
|
The steroid catabolic pathway of the intracellular pathogen Rhodococcus equi is important for pathogenesis and a target for vaccine development. PLoS Pathog 2011; 7:e1002181. [PMID: 21901092 PMCID: PMC3161971 DOI: 10.1371/journal.ppat.1002181] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/12/2011] [Indexed: 01/06/2023] Open
Abstract
Rhodococcus equi causes fatal pyogranulomatous pneumonia in foals and immunocompromised animals and humans. Despite its importance, there is currently no effective vaccine against the disease. The actinobacteria R. equi and the human pathogen Mycobacterium tuberculosis are related, and both cause pulmonary diseases. Recently, we have shown that essential steps in the cholesterol catabolic pathway are involved in the pathogenicity of M. tuberculosis. Bioinformatic analysis revealed the presence of a similar cholesterol catabolic gene cluster in R. equi. Orthologs of predicted M. tuberculosis virulence genes located within this cluster, i.e. ipdA (rv3551), ipdB (rv3552), fadA6 and fadE30, were identified in R. equi RE1 and inactivated. The ipdA and ipdB genes of R. equi RE1 appear to constitute the α-subunit and β-subunit, respectively, of a heterodimeric coenzyme A transferase. Mutant strains RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, were impaired in growth on the steroid catabolic pathway intermediates 4-androstene-3,17-dione (AD) and 3aα-H-4α(3′-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone (5α-hydroxy-methylhexahydro-1-indanone propionate; 5OH-HIP). Interestingly, RE1ΔipdAB and RE1ΔfadE30, but not RE1ΔfadA6, also displayed an attenuated phenotype in a macrophage infection assay. Gene products important for growth on 5OH-HIP, as part of the steroid catabolic pathway, thus appear to act as factors involved in the pathogenicity of R. equi. Challenge experiments showed that RE1ΔipdAB could be safely administered intratracheally to 2 to 5 week-old foals and oral immunization of foals even elicited a substantial protective immunity against a virulent R. equi strain. Our data show that genes involved in steroid catabolism are promising targets for the development of a live-attenuated vaccine against R. equi infections. Rhodococcus equi causes fatal pyogranulomatous bronchopneumonia in young foals and is an emerging opportunistic pathogen of immunocompromised humans. Despite its importance, there is currently no safe and effective vaccine against R. equi infections. Like Mycobacterium tuberculosis, the causative agent of human tuberculosis, R. equi is able to infect, survive and multiply inside alveolar macrophages. Recently we have shown that essential steps in the cholesterol catabolic pathway (encoded by the rv3551, rv3552, fadE30 genes) are involved in the pathogenicity of M. tuberculosis. We hypothesized that the orthologous genes in the cholesterol catabolic gene cluster of R. equi also are essential for its virulence mechanism. Analysis of the respective R. equi strain RE1 mutants revealed that they were impaired in growth on intermediates of the steroid catabolic pathway and had attenuated phenotypes in a macrophage infection assay. Mutant RE1ΔipdAB, carrying a deletion of the orthologs of rv3551 and rv3552, could be safely administered to 2–5 week-old foals intratracheally and oral immunization provided a substantial protection against infection by a virulent R. equi strain. Our data show that genes important for methylhexahydroindanone propionate degradation, part of the steroid catabolic pathway, are promising targets for the development of a live-attenuated vaccine against R. equi infections.
Collapse
|
11
|
Yam KC, van der Geize R, Eltis LD. Catabolism of Aromatic Compounds and Steroids by Rhodococcus. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Fujii M, Akita H, Ida Y, Nakagawa T, Nakamura K. Control of chemoselectivity of microbial reaction with resin adsorbent: enhancement of Baeyer–Villiger oxidation over reduction. Appl Microbiol Biotechnol 2007; 77:45-51. [PMID: 17846762 DOI: 10.1007/s00253-007-1146-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/25/2007] [Accepted: 07/31/2007] [Indexed: 11/29/2022]
Abstract
Amberlite XAD-7, a hydrophobic polymer, was used to change microbial reaction of ketones from reduction to Baeyer-Villiger (BV) oxidation. Thus, D. magnusii NBRC 4600 and G. reessii NBRC 1112 could catalyze the BV reaction of ketones in the presence of the polymer while reduction of the substrates proceeded, and BV oxidation was scarcely found in the absence of the polymer.
Collapse
Affiliation(s)
- Mikio Fujii
- School of Pharmaceutical Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, Japan.
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Mahato SB, Banerjee S, Podder S. Oxidative side-chain and ring fission of pregnanes by Arthrobacter simplex. Biochem J 1988; 255:769-74. [PMID: 3214423 PMCID: PMC1135307 DOI: 10.1042/bj2550769] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Metabolic processes involving side-chain and ring cleavage of progesterone, 17-hydroxyprogesterone, 11-deoxycortisol and 16-dehydropregnenolone by Arthrobacter simplex were studied. The formation of the metabolites from progesterone indicates a pathway somewhat different from normal in the enzymic reaction sequence, and the 17-hydroxyprogesterone metabolites reveal a non-enzymic rearrangement step. The presence of a hydroxy group at C-21, as in 11-deoxycortisol, induces reduction of the C-20 carbonyl group. The microbial preparation of a novel androstane analogue, 17 beta-hydroxy-16 alpha-methoxyandrosta-1,4-dien-3-one, by incubation of 16-dehydropregnenolone with the bacterial strain was achieved. The formation of this metabolite is a multistep process involving a novel microbial generation of a methoxy group from a double-bond transformation in a steroid skeleton.
Collapse
Affiliation(s)
- S B Mahato
- Indian Institute of Chemical Biology, Calcutta
| | | | | |
Collapse
|
15
|
Miclo A, Germain P, Lefebvre G. Catabolism of androst-4-ene-3,17-dione by mutant strains ofNacardia restricta. J Basic Microbiol 1986. [DOI: 10.1002/jobm.3620260206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Hayakawa S, Fujiwara T. Microbiological degradation of bile acids, further degradation of a cholic acid metabolite containing the hexahydroindane nucleus by Corynebacterium equi. Biochem J 1977; 162:387-97. [PMID: 849290 PMCID: PMC1164612 DOI: 10.1042/bj1620387] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. The further degradation of a cholic acid (I) metabolite, (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1beta-yl]valeric acid (IIa), by Corynebacterium equi was investigated. This organism effected ring-opening and gave (4R)-4-[2alpha-(2-carboxyethyl)-3beta-(3-carboxypropionyl)-2beta-methylcyclopent-1beta-yl]valeric acid (VI). The new metabolite was isolated as its trimethyl ester and identified by partical synthesis. It was not utilized by C. equi. 2. (4R)-4[4alpha-(2-Carboxyethyl)-3aalpha-decahydro-8abeta-methyl5-oxa-6-oxoazulen-1beta-yl]valeric acid (IVa), which is a hypothetical initial oxidation product in the above degradation, was not converted by C. equi into the expected metabolite (VI), but into 3 - [2beta - [(2S) - tetrahydro - 5 - oxofur - 2 - yl] - 1beta - methyl - 5 - oxocyclopent - 1alpha - yl]-propionic acid (VIII), the structure of which was established by partial synthesis. 3. Both the possible precursors of the metabolite (VI), an isomer of the epsilon-lactone (IVa), the gamma-lactone (XIa), and the open form of these lactones, the hydroxytricarboxylic acid (V), were also not utilized by C. equi. 4. Under some incubation conditions, C. equi also converted compound (IIa) and 3-(3aalpha-hexahydro-7abeta-methyl-1,5-dioxoindan-4alpha-yl)propionic acid (IIb) into 5-methyl-4-oxo-octane-1,8-dioic acid (III), (4R)-4-(2,3,4,6,6abeta,7,8,9,9aalpha,9bbeta-decahydro-6abeta-methyl-3-oxo-1H-cyclopenta[f]quinolin-7beta-yl)valeric acid (VII) and probably a monohydroxy derivative of compound (IIa) and compound (III), respectively. 5. The possibility that an initial step in the degradation of compound (IIa) by C. equi is oxygenation of the Baeyer-Villiger type, yielding compound (IVa), is discussed. Metabolic pathways of compound (IIa) to compounds (III), (VI), (VII) and (VIII) are also considered.
Collapse
|
17
|
Hayakawa S, Kanematsu Y, Fujiwara T, Kako H. Microbiological degradation of bile acids. The preparation of some hypothetical metabolites involved in cholic acid degradation. Biochem J 1976; 154:577-87. [PMID: 942388 PMCID: PMC1172758 DOI: 10.1042/bj1540577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
1. To identify the intermediates involved in the degradation of cholic acid, the further degradation of (4R)-4-[4alpha-(2-carboxyethyl)-3aalpha-hexahydro-7abeta-methyl-5-oxoindan-1beta-yl]valeric acid (IVa) by Arthrobacter simplex was attempted. The organism could not utilize this acid but some hypothetical intermediate metabolities of compound (IVa) were prepared for later use as reference compounds. 2. The nor homologue (IIIa) and the dinor homologue (IIIb) of compound (IVa) were prepared by exposure of 3-oxo-24-nor-5beta-cholan-23-oic acid (I) and (20S)-3beta-hydroxy-5-pregnene-20-carboxylic acid (II) to A. simplex respectively. These compounds correspond to the respective metabolites produced by the shortening of the valeric acid side chain of compound (IVa) in a manner analogous to the conventional fatty acid alpha- and beta-oxidation mechanisms. Their structures were confirmed by partial synthesis. 3. The following authentic samples of reduction products of the oxodicarboxylic acids (IIIa), (IIIb) and (IVa) were also synthesized as hypothetical metabolities: (4R)-4-[3aalpha-hexahydro-5alpha-hydroxy-4alpha-(3-hydroxypropyl)-7abeta-methylindan-1beta-yl]valeric acid (Vb) and its nor homologue (VIIa) and dinor homologue (IXa);(4R)-4-[3Aaalpha-hexahydro-5alpha-hydroxy-4alpha-(3-hydroxypropyl)-7abeta-methylindan-1beta-yl]-pentan-1-ol (Vc); and their respective 5beta epimers (Ve), (VIIc), (IXc) and (Vf). 4. In connexion with the non-utilization of compound (IVa) by A. simplex, the possibility that not all the metabolites formed from cholic acid by a certain micro-organism can be utilized by the same organism is considered.
Collapse
|
18
|
|
19
|
Abstract
"We would suspect a bacterial pyelonephritis in any nephrotic child who required an unusually large dose of steroids for improvement."
Collapse
|
20
|
|
21
|
|
22
|
Hayakawa S, Hashimoto S. (+)-(5R)-methyl-4-oxo-octane-1,8-dioic acid, microbiological degradation product from rings C and D of cholic acid. Biochem J 1969; 112:127-8. [PMID: 5774490 PMCID: PMC1187649 DOI: 10.1042/bj1120127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
23
|
Hörhold C, Böhme KH, Schubert K. [The breakdown of steroids by microorganisms]. ZEITSCHRIFT FUR ALLGEMEINE MIKROBIOLOGIE 1969; 9:235-46. [PMID: 5380073 DOI: 10.1002/jobm.3630090311] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Kondo E, Stein B, Sih C. Microbial metabolism of tetra- and hexahydroindanpro-pionic acid derivatives. ACTA ACUST UNITED AC 1969. [DOI: 10.1016/0005-2760(69)90082-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Schubert K, Böhme KH, Ritter F, Hörhold C. Mikrobieller abbau von progesteron zu α-ketoglutarsäure und bernsteinsäure. ACTA ACUST UNITED AC 1968. [DOI: 10.1016/0005-2760(68)90050-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|