Rauch C, Trieb M, Flader W, Wellenzohn B, Winger RH, Mayer E, Hallbrucker A, Liedl KR. PvuII-endonuclease induces structural alterations at the scissile phosphate group of its cognate DNA.
J Mol Biol 2002;
324:491-500. [PMID:
12445784 DOI:
10.1016/s0022-2836(02)01089-6]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the PvuII endonuclease with its cognate DNA by means of molecular dynamics simulations. Comparing the complexed DNA with a reference simulation of free DNA, we saw structural changes at the scissile phosphodiester bond. At this GpC step, the enzyme induces the highest twist and axial rise, inclination is increased and the minor groove widened. The distance between the scissile phosphate group and the phosphate group of the following thymine base is shortened significantly, indicating a substrate-assisted catalysis. A feasible reason for this vicinity is the catalytically important amino acid residue lysine 70, which bridges the free oxygen atoms of the successive phosphate groups. Due to this geometry, a compact reaction pocket is formed where a water molecule can be held, thus bringing the reaction partners for hydrolysis into contact. The O1-P-O2 angle of the scissile nucleotide is decreased, probably due to a complexation of the negative oxygen atoms through protein and solvent contacts.
Collapse