1
|
Deepika, Madhu, Upadhyay SK. Deciphering the features and functions of serine/arginine protein kinases in bread wheat. PLANT GENE 2024; 38:100451. [DOI: 10.1016/j.plgene.2024.100451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
|
2
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
3
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
4
|
Devare MN, Kim YH, Jung J, Kang WK, Kwon K, Kim J. TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast. Aging Cell 2020; 19:e13151. [PMID: 32449834 PMCID: PMC7294778 DOI: 10.1111/acel.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/20/2020] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.
Collapse
Affiliation(s)
- Mayur Nimbadas Devare
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Yeong Hyeock Kim
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Joohye Jung
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Woo Kyu Kang
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| | - Ki‐Sun Kwon
- Aging Intervention Research Center Korea Research Institute of Bioscience and Biotechnology Daejeon Korea
| | - Jeong‐Yoon Kim
- Department of Microbiology and Molecular Biology College of Bioscience and Biotechnology Chungnam National University Daejeon Korea
| |
Collapse
|
5
|
D’Souza SA, Rajendran L, Bagg R, Barbier L, van Pel DM, Moshiri H, Roy PJ. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006010. [PMID: 27123983 PMCID: PMC4849719 DOI: 10.1371/journal.pgen.1006010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/05/2016] [Indexed: 11/25/2022] Open
Abstract
The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. In most animals, the physical meeting of the pre- and post-synaptic membranes of the neuromuscular junction occurs via axonal extension towards the muscle. In nematodes, however, motor axons do not extend towards the muscle and instead form a dorsal and ventral cord with relatively few branches. To make the physical connection, the body wall muscles extend membrane projections called muscle arms to the motor axons within the dorsal and ventral cords. Through previous genetic and biochemical analyses with the nematode C. elegans, we identified a neuronally-expressed muscle arm chemoattractant (MADD-4) and its muscle-expressed co-receptor complex (UNC-40/EVA-1). Here, we report our discovery of madd-3, which encodes a LAMMER kinase that is expressed in muscles to regulate muscle arm extension. Genetic analyses revealed that MADD-3 may inhibit a p38 MAP kinase pathway whose normal function is to decrease the abundance of the EVA-1 receptor. In the presence of MADD-3, the activity of the p38 pathway is relatively low, and EVA-1 levels are consequently relatively high. Without MADD-3, the p38 pathway is freed to decrease the abundance of EVA-1. The relationships that we have uncovered between MADD-3, the p38 Map Kinase pathway, and the EVA-1 receptor provide one explanation for the muscle arm defects observed in madd-3 mutants.
Collapse
Affiliation(s)
- Serena A. D’Souza
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
| | - Luckshi Rajendran
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Bagg
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Louis Barbier
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Derek M. van Pel
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Houtan Moshiri
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Peter J. Roy
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- The Collaborative Programme in Developmental Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
de Sena-Tomás C, Sutherland JH, Milisavljevic M, Nikolic DB, Pérez-Martín J, Kojic M, Holloman WK. LAMMER kinase contributes to genome stability in Ustilago maydis. DNA Repair (Amst) 2015; 33:70-7. [PMID: 26176563 PMCID: PMC4526389 DOI: 10.1016/j.dnarep.2015.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/20/2015] [Indexed: 11/25/2022]
Abstract
Here we report identification of the lkh1 gene encoding a LAMMER kinase homolog (Lkh1) from a screen for DNA repair-deficient mutants in Ustilago maydis. The mutant allele isolated results from a mutation at glutamine codon 488 to a stop codon that would be predicted to lead to truncation of the carboxy-terminal kinase domain of the protein. This mutant (lkh1(Q488*)) is highly sensitive to ultraviolet light, methyl methanesulfonate, and hydroxyurea. In contrast, a null mutant (lkh1Δ) deleted of the entire lkh1 gene has a less severe phenotype. No epistasis was observed when an lkh1(Q488*)rad51Δ double mutant was tested for genotoxin sensitivity. However, overexpressing the gene for Rad51, its regulator Brh2, or the Brh2 regulator Dss1 partially restored genotoxin resistance of the lkh1Δ and lkh1(Q488*) mutants. Deletion of lkh1 in a chk1Δ mutant enabled these double mutant cells to continue to cycle when challenged with hydroxyurea. lkh1Δ and lkh1(Q488*) mutants were able to complete the meiotic process but exhibited reduced heteroallelic recombination and aberrant chromosome segregation. The observations suggest that Lkh1 serves in some aspect of cell cycle regulation after DNA damage or replication stress and that it also contributes to proper chromosome segregation in meiosis.
Collapse
Affiliation(s)
- Carmen de Sena-Tomás
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jeanette H Sutherland
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mira Milisavljevic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | - Dragana B Nikolic
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | - José Pérez-Martín
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas CSIC, Salamanca, Spain
| | - Milorad Kojic
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA; Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Serbia
| | - William K Holloman
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
7
|
Multifunctional RNA processing protein SRm160 induces apoptosis and regulates eye and genital development in Drosophila. Genetics 2014; 197:1251-65. [PMID: 24907259 DOI: 10.1534/genetics.114.164434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
SRm160 is an SR-like protein implicated in multiple steps of RNA processing and nucleocytoplasmic export. Although its biochemical functions have been extensively described, its genetic interactions and potential participation in signaling pathways remain largely unknown, despite the fact that it is highly phosphorylated in both mammalian cells and Drosophila. To begin elucidating the functions of the protein in signaling and its potential role in developmental processes, we characterized mutant and overexpression SRm160 phenotypes in Drosophila and their interactions with the locus encoding the LAMMER protein kinase, Doa. SRm160 mutations are recessive lethal, while its overexpression generates phenotypes including roughened eyes and highly disorganized internal eye structure, which are due at least in part to aberrantly high levels of apoptosis. SRm160 is required for normal somatic sex determination, since its alleles strongly enhance a subtle sex transformation phenotype induced by Doa kinase alleles. Moreover, modification of SRm160 by DOA kinase appears to be necessary for its activity, since Doa alleles suppress phenotypes induced by SRm160 overexpression in the eye and enhance those in genital discs. Modification of SRm160 may occur through direct interaction because DOA kinase phosphorylates it in vitro. Remarkably, SRm160 protein was concentrated in the nuclei of precellular embryos but was very rapidly excluded from nuclei or degraded coincident with cellularization. Also of interest, transcripts are restricted almost exclusively to the developing nervous system in mature embryos.
Collapse
|
8
|
Serpinskaya AS, Tuphile K, Rabinow L, Gelfand VI. Protein kinase Darkener of apricot and its substrate EF1γ regulate organelle transport along microtubules. J Cell Sci 2013; 127:33-9. [PMID: 24163433 DOI: 10.1242/jcs.123885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Regulation of organelle transport along microtubules is important for proper distribution of membrane organelles and protein complexes in the cytoplasm. RNAi-mediated knockdown in cultured Drosophila S2 cells demonstrates that two microtubule-binding proteins, a unique isoform of Darkener of apricot (DOA) protein kinase, and its substrate, translational elongation factor EF1γ, negatively regulate transport of several classes of membrane organelles along microtubules. Inhibition of transport by EF1γ requires its phosphorylation by DOA on serine 294. Together, our results indicate a new role for two proteins that have not previously been implicated in regulation of the cytoskeleton. These results further suggest that the biological role of some of the proteins binding to the microtubule track is to regulate cargo transport along these tracks.
Collapse
Affiliation(s)
- Anna S Serpinskaya
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 616011, USA
| | | | | | | |
Collapse
|
9
|
Yamaguchi A, Iwatani M, Ogawa M, Kitano H, Matsuyama M. In vitro characterization of the RS motif in N-terminal head domain of goldfish germinal vesicle lamin B3 necessary for phosphorylation of the p34cdc2 target serine by SRPK1. FEBS Open Bio 2013; 3:165-76. [PMID: 23772390 PMCID: PMC3668540 DOI: 10.1016/j.fob.2013.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 11/28/2022] Open
Abstract
The nuclear envelopes surrounding the oocyte germinal vesicles of lower vertebrates (fish and frog) are supported by the lamina, which consists of the protein lamin B3 encoded by a gene found also in birds but lost in the lineage leading to mammals. Like other members of the lamin family, goldfish lamin B3 (gfLB3) contains two putative consensus phosphoacceptor p34cdc2 sites (Ser-28 and Ser-398) for the M-phase kinase to regulate lamin polymerization on the N- and C-terminal regions flanking a central rod domain. Partial phosphorylation of gfLB3 occurs on Ser-28 in the N-terminal head domain in immature oocytes prior to germinal vesicle breakdown, which suggests continual rearrangement of lamins by a novel lamin kinase in fish oocytes. We applied the expression-screening method to isolate lamin kinases by using phosphorylation site Ser-28-specific monoclonal antibody and a vector encoding substrate peptides from a goldfish ovarian cDNA library. As a result, SRPK1 was screened as a prominent lamin kinase candidate. The gfLB3 has a short stretch of the RS repeats (9-SRASTVRSSRRS-20) upstream of the Ser-28, within the N-terminal head. This stretch of repeats is conserved among fish lamin B3 but is not found in other lamins. In vitro phosphorylation studies and GST-pull down assay revealed that SRPK1 bound to the region of sequential RS repeats (9–20) with affinity and recruited serine into the active site by a grab-and-pull manner. These results indicate SRPK1 may phosphorylate the p34cdc2 site in the N-terminal head of GV-lamin B3 at the RS motifs, which have the general property of aggregation. SRPK1 was screened as a prominent lamin kinase candidate from goldfish ovary. The goldfish lamin B3 (LB3) has RS repeats upstream of the cdc2 target site. The RS repeats are conserved among fish LB3s but are not found in other lamins. SRPK1 binds to the RS repeats with affinity and phosphorylates cdc2 site by a grab-and-pull manner.
Collapse
Affiliation(s)
- Akihiko Yamaguchi
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
10
|
LAMMER Kinase LkhA plays multiple roles in the vegetative growth and asexual and sexual development of Aspergillus nidulans. PLoS One 2013; 8:e58762. [PMID: 23516554 PMCID: PMC3596290 DOI: 10.1371/journal.pone.0058762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/06/2013] [Indexed: 12/21/2022] Open
Abstract
LAMMER kinase plays pivotal roles in various physiological processes in eukaryotes; however, its function in filamentous fungi is not known. We performed molecular studies on the function of the Aspergillus nidulans LAMMER kinase, LkhA, and report its involvement in multiple developmental processes. The gene for LkhA was highly expressed during reproductive organ development, such as that of conidiophores and cleistothecia. During vegetative growth, the patterns of germ tube emergence and hyphal polarity were changed and septation was increased by lkhA deletion. Northern analyses showed that lkhA regulated the transcription of brlA, csnD, and ppoA, which supported the detrimental effect of lkhA-deletion on asexual and sexual differentiation. LkhA also affected expression of cyclin-dependent kinase NimXcdc2, a multiple cell cycle regulator, and StuA, an APSES family of fungal transcription factors that play pivotal roles in multiple differentiation processes. Here, for the first time, we present molecular evidence showing that LAMMER kinase is involved in A. nidulans development by modulating the expression of key regulators of developmental processes.
Collapse
|
11
|
Fission yeast LAMMER kinase Lkh1 regulates the cell cycle by phosphorylating the CDK-inhibitor Rum1. Biochem Biophys Res Commun 2013; 432:80-5. [PMID: 23376070 DOI: 10.1016/j.bbrc.2013.01.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 11/23/2022]
Abstract
In eukaryotes, LAMMER kinases are involved in various cellular events, including the cell cycle. However, no attempt has been made to investigate the mechanisms that underlie the involvement of LAMMER kinase. In this study, we performed a functional analysis of LAMMER kinase using the fission yeast, Schizosaccharomyces pombe. FACS analyses revealed that deletion of the gene that encodes the LAMMER kinase Lkh1 made mutant cells pass through the G1/S phase faster than their wild-type counterparts. Co-immunoprecipitation and an in vitro kinase assay also revealed that Lkh1 can interact with and phosphorylate Rum1 to activate this molecule as a cyclin-dependent kinase inhibitor, which blocks cell cycle progression from the G1 phase to the S phase. Peptide mass fingerprinting and kinase assay with Rum1(T110A) confirmed T110 as the Lkh1-dependent phosphorylation residue. In this report we present for the first time a positive acting mechanism that is responsible for the CKI activity of Rum1, in which the LAMMER kinase-mediated phosphorylation of Rum1 is involved.
Collapse
|
12
|
Moir RD, Willis IM. Regulation of pol III transcription by nutrient and stress signaling pathways. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:361-75. [PMID: 23165150 DOI: 10.1016/j.bbagrm.2012.11.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 12/29/2022]
Abstract
Transcription by RNA polymerase III (pol III) is responsible for ~15% of total cellular transcription through the generation of small structured RNAs such as tRNA and 5S RNA. The coordinate synthesis of these molecules with ribosomal protein mRNAs and rRNA couples the production of ribosomes and their tRNA substrates and balances protein synthetic capacity with the growth requirements of the cell. Ribosome biogenesis in general and pol III transcription in particular is known to be regulated by nutrient availability, cell stress and cell cycle stage and is perturbed in pathological states. High throughput proteomic studies have catalogued modifications to pol III subunits, assembly, initiation and accessory factors but most of these modifications have yet to be linked to functional consequences. Here we review our current understanding of the major points of regulation in the pol III transcription apparatus, the targets of regulation and the signaling pathways known to regulate their function. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Robyn D Moir
- Departments of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
13
|
The kinomes of apicomplexan parasites. Microbes Infect 2012; 14:796-810. [DOI: 10.1016/j.micinf.2012.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 11/21/2022]
|
14
|
Lee J, Moir RD, McIntosh KB, Willis IM. TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases. Mol Cell 2012; 45:836-43. [PMID: 22364741 DOI: 10.1016/j.molcel.2012.01.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/23/2011] [Accepted: 01/09/2012] [Indexed: 01/13/2023]
Abstract
Target of rapamycin (TOR)-dependent signaling and the control of cell growth is deregulated in many cancers. However, the signaling molecules downstream of TOR that coordinately regulate the synthesis of ribosomes and tRNAs are not well defined. Here, we show in yeast that conserved kinases of the LAMMER/Cdc-like and GSK-3 families function downstream of TOR complex 1 to repress ribosome and tRNA synthesis in response to nutrient limitation and other types of cellular stress. As a part of this response, we found that the LAMMER kinase Kns1 is differentially expressed and hyperphosphorylated and accumulates in the nucleus after rapamycin treatment, whereupon it primes the phosphorylation of the RNA polymerase III subunit Rpc53 by a specific GSK-3 family member, Mck1. In cooperation with another polymerase subunit, Rpc11, this phosphorylation of Rpc53 modifies the function of the enzyme and together with dephosphorylation of the Maf1 repressor inhibits the growth-promoting activity of RNA polymerase III transcription.
Collapse
Affiliation(s)
- Jaehoon Lee
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
15
|
Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa. BMC Evol Biol 2011; 11:321. [PMID: 22047078 PMCID: PMC3239843 DOI: 10.1186/1471-2148-11-321] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/02/2011] [Indexed: 12/04/2022] Open
Abstract
Background The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. Results We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK), calcium-dependent protein kinase (CDPK) and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the αC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. Conclusions We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and evolutionary implications of these lineage-specific variations and propose specific hypotheses for experimental investigation. The apicomplexan-specific kinase features reported in this study can be used in the design of selective kinase inhibitors.
Collapse
|
16
|
Giannakouros T, Nikolakaki E, Mylonis I, Georgatsou E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J 2011; 278:570-86. [DOI: 10.1111/j.1742-4658.2010.07987.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Rabinow L, Samson ML. The role of the Drosophila LAMMER protein kinase DOA in somatic sex determination. J Genet 2010; 89:271-7. [DOI: 10.1007/s12041-010-0038-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Kang WH, Park YH, Park HM. The LAMMER kinase homolog, Lkh1, regulates Tup transcriptional repressors through phosphorylation in Schizosaccharomyces pombe. J Biol Chem 2010; 285:13797-806. [PMID: 20200159 PMCID: PMC2859543 DOI: 10.1074/jbc.m110.113555] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Disruption of the fission yeast LAMMER kinase, Lkh1, gene resulted in diverse phenotypes, including adhesive filamentous growth and oxidative stress sensitivity, but an exact cellular function had not been assigned to Lkh1. Through an in vitro pull-down approach, a transcriptional repressor, Tup12, was identified as an Lkh1 binding partner. Interactions between Lkh1 and Tup11 or Tup12 were confirmed by in vitro and in vivo binding assays. Tup proteins were phosphorylated by Lkh1 in a LAMMER motif-dependent manner. The LAMMER motif was also necessary for substrate recognition in vitro and cellular function in vivo. Transcriptional activity assays using promoters negatively regulated by Tup11 and Tup12 showed 6 or 2 times higher activity in the Δlkh1 mutant than the wild type, respectively. Northern analysis revealed derepressed expression of the fbp1+ mRNA in Δlkh1 and in Δtup11Δtup12 mutant cells under repressed conditions. Δlkh1 and Δtup11Δtup12 mutant cells showed flocculation, which was reversed by co-expression of Tup11 and -12 with Ssn6. Here, we presented a new aspect of the LAMMER kinase by demonstrating that the activities of global transcriptional repressors, Tup11 and Tup12, were positively regulated by Lkh1-mediated phosphorylation.
Collapse
Affiliation(s)
- Won-Hwa Kang
- Department of Microbiology, School of Bioscience and Biotechnology, Chungnam National University, Gung-dong 220, Yuseong-gu, Daejeon 305-764, Korea
| | | | | |
Collapse
|
19
|
Rodgers JT, Haas W, Gygi SP, Puigserver P. Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell Metab 2010; 11:23-34. [PMID: 20074525 PMCID: PMC2807620 DOI: 10.1016/j.cmet.2009.11.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/28/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
Dynamic regulation of insulin signaling and metabolic gene expression is critical to nutrient homeostasis; dysregulation of these pathways is widely implicated in insulin resistance and other disease states. Though the metabolic effects of insulin are well established, the components linking insulin signal transduction to a metabolic response are not as well understood. Here, we show that Cdc2-like kinase 2 (Clk2) is an insulin-regulated suppressor of hepatic gluconeogenesis and glucose output. Clk2 protein levels and kinase activity are induced as part of the hepatic refeeding response by the insulin/Akt pathway. Clk2 directly phosphorylates the SR domain on PGC-1alpha, resulting in repression of gluconeogenic gene expression and hepatic glucose output. In addition, Clk2 is downregulated in db/db mice, and reintroduction of Clk2 largely corrects glycemia. Thus, we have identified a role for and regulation of the Clk2 kinase as a component of hepatic insulin signaling and glucose metabolism.
Collapse
Affiliation(s)
- Joseph T Rodgers
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
20
|
Drosophila translational elongation factor-1gamma is modified in response to DOA kinase activity and is essential for cellular viability. Genetics 2009; 184:141-54. [PMID: 19841092 DOI: 10.1534/genetics.109.109553] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drosophila translational elongation factor-1gamma (EF1gamma) interacts in the yeast two-hybrid system with DOA, the LAMMER protein kinase of Drosophila. Analysis of mutant EF1gamma alleles reveals that the locus encodes a structurally conserved protein essential for both organismal and cellular survival. Although no genetic interactions were detected in combinations with mutations in EF1alpha, an EF1gamma allele enhanced mutant phenotypes of Doa alleles. A predicted LAMMER kinase phosphorylation site conserved near the C terminus of all EF1gamma orthologs is a phosphorylation site in vitro for both Drosophila DOA and tobacco PK12 LAMMER kinases. EF1gamma protein derived from Doa mutant flies migrates with altered mobility on SDS gels, consistent with it being an in vivo substrate of DOA kinase. However, the aberrant mobility appears to be due to a secondary protein modification, since the mobility of EF1gamma protein obtained from wild-type Drosophila is unaltered following treatment with several nonspecific phosphatases. Expression of a construct expressing a serine-to-alanine substitution in the LAMMER kinase phosphorylation site into the fly germline rescued null EF1gamma alleles but at reduced efficiency compared to a wild-type construct. Our data suggest that EF1gamma functions in vital cellular processes in addition to translational elongation and is a LAMMER kinase substrate in vivo.
Collapse
|
21
|
Abstract
The growth suppressive function of the retinoblastoma (pRB) tumor suppressor family is largely attributed to its ability to negatively regulate the family of E2F transcriptional factors and, as a result, to repress E2F-dependent transcription. Deregulation of the pRB pathway is thought to be an obligatory event in most types of cancers. The large number of mammalian E2F proteins is one of the major obstacles that complicate their genetic analysis. In Drosophila, the E2F family consists of only two members. They are classified as an activator (dE2F1) and a repressor (dE2F2). It has been previously shown that proliferation of de2f1 mutant cells is severely reduced due to unchecked activity of the repressor dE2F2 in these cells. We report here a mosaic screen utilizing the de2f1 mutant phenotype to identify suppressors that overcome the dE2F2/RBF-dependent proliferation block. We have isolated l(3)mbt and B52, which are known to be required for dE2F2 function, as well as genes that were not previously linked to the E2F/pRB pathway such as Doa, gfzf, and CG31133. Inactivation of gfzf, Doa, or CG31133 does not relieve repression by dE2F2. We have shown that gfzf and CG31133 potentiate E2F-dependent activation and synergize with inactivation of RBF, suggesting that they may act in parallel to dE2F. Thus, our results demonstrate the efficacy of the described screening strategy for studying regulation of the dE2F/RBF pathway in vivo.
Collapse
|
22
|
Kinase domain insertions define distinct roles of CLK kinases in SR protein phosphorylation. Structure 2009; 17:352-62. [PMID: 19278650 PMCID: PMC2667211 DOI: 10.1016/j.str.2008.12.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/11/2008] [Accepted: 12/22/2008] [Indexed: 11/29/2022]
Abstract
Splicing requires reversible phosphorylation of serine/arginine-rich (SR) proteins, which direct splice site selection in eukaryotic mRNA. These phosphorylation events are dependent on SR protein (SRPK) and cdc2-like kinase (CLK) families. SRPK1 phosphorylation of splicing factors is restricted by a specific docking interaction whereas CLK activity is less constrained. To understand functional differences between splicing factor targeting kinases, we determined crystal structures of CLK1 and CLK3. Intriguingly, in CLKs the SRPK1 docking site is blocked by insertion of a previously unseen helix αH. In addition, substrate docking grooves present in related mitogen activating protein kinases (MAPKs) are inaccessible due to a CLK specific β7/8-hairpin insert. Thus, the unconstrained substrate interaction together with the determined active-site mediated substrate specificity allows CLKs to complete the functionally important hyperphosphorylation of splicing factors like ASF/SF2. In addition, despite high sequence conservation, we identified inhibitors with surprising isoform specificity for CLK1 over CLK3.
Collapse
|
23
|
James BP, Staatz WD, Wilkinson ST, Meuillet E, Powis G. Superoxide dismutase is regulated by LAMMER kinase in Drosophila and human cells. Free Radic Biol Med 2009; 46:821-7. [PMID: 19135146 PMCID: PMC2699669 DOI: 10.1016/j.freeradbiomed.2008.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/08/2008] [Accepted: 12/12/2008] [Indexed: 11/30/2022]
Abstract
LAMMER kinases (also known as CDC-2-like or CLKs) are a family of dual specificity serine/threonine protein kinases that are found in all sequenced eukaryotic genomes. In the fission yeast, Schizosaccharomyces pombe, the LAMMER kinase gene, Lkh1, positively regulates the expression of the antioxidant defense genes, superoxide dismutase 1 (sod1+, CuZn-SOD) and catalase (ctt1+, CAT). We have shown that mutations in the Drosophila LAMMER kinase gene, Darkener of apricot (Doa), protect against the decrease in life span caused by the reactive oxygen species (ROS) generator paraquat, and at the same time show an increase in cytoplasmic (CuZn-Sod or SOD1) and mitochondrial superoxide dismutase (Mn-Sod or SOD2) protein levels and activity. The siRNA-mediated knock down of the human LAMMER kinase gene, CLK-1, in HeLa and MCF-7 human cell lines leads to an increase in both SOD1 activity and mRNA transcript levels. These data suggest that SOD1 is negatively regulated by LAMMER kinases in Drosophila and human cell lines and that this regulation may be conserved during evolution.
Collapse
Affiliation(s)
- Brian P James
- Department of Experimental Therapeutics, M.D. Anderson Cancer Center, 1400 Holcombe Blvd., Y6.6032, Unit 36, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
24
|
Molecular Cloning, Expression, and Chromosomal Mapping of the Porcine CDC-2-Like Kinase 1 (CLK1) Gene. Biochem Genet 2009; 47:266-75. [DOI: 10.1007/s10528-009-9226-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
|
25
|
Abstract
The Darkener of apricot (Doa) locus of Drosophila encodes a LAMMER protein kinase affecting alterative splicing, and hence sex determination, via the phosphorylation of SR and SR-like proteins. Doa encodes 6 different kinases via alternative promoter usage. To provide further insight into the roles of the multiple isoforms, we mapped polymorphisms, deletions, and P-element insertions in the locus, identifying several that are largely, if not completely, isoform specific in their effects. These tests, along with the use of lines permitting overexpression and interfering RNA expression, demonstrate that the major isoforms of 55 and 105 kDa perform separate functions. The 105-kDa and a minor 138-kDa isoform are both vital but do not apparently perform functions essential for sex determination. Curiously, male-specific lethality induced by overexpression of the 55-kDa kinase in the larval fat body is rescued by coexpression of TRA, suggesting a sex-specific physiological role for this isoform. Maternal effects in which the survival of heteroallelic adults depends upon the direction of the cross are consistent with a role for a 105-kDa cytoplasmic kinase in oogenesis or early larval development.
Collapse
|
26
|
Yomoda JI, Muraki M, Kataoka N, Hosoya T, Suzuki M, Hagiwara M, Kimura H. Combination of Clk family kinase and SRp75 modulates alternative splicing of Adenovirus E1A. Genes Cells 2008; 13:233-44. [DOI: 10.1111/j.1365-2443.2008.01163.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Nikolakaki E, Drosou V, Sanidas I, Peidis P, Papamarcaki T, Iakoucheva LM, Giannakouros T. RNA association or phosphorylation of the RS domain prevents aggregation of RS domain-containing proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:214-25. [PMID: 18022399 DOI: 10.1016/j.bbagen.2007.10.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 10/11/2007] [Accepted: 10/18/2007] [Indexed: 01/23/2023]
Abstract
Domains rich in alternating arginine and serine residues (RS domains) are found in a large number of eukaryotic proteins involved in several cellular processes. According to the prevailing view RS domains function as protein interaction domains, thereby promoting the assembly of higher-order cellular structures. Furthermore, recent data demonstrated that the RS regions of several SR splicing factors directly contact the pre-mRNA in a nonsequence specific but functionally important fashion. Using a variety of biochemical approaches, we now demonstrate that the RS domains of three proteins, not directly associated with the splicing reaction, such as lamin b receptor, acinus and peroxisome proliferator-activated receptor gamma coactivator-1 alpha, associate mainly with nuclear RNA and that this association is conducive in retaining the proteins in a soluble form. Phosphorylation by SRPK1 prevents RNA association, yet it greatly increases the fraction of the proteins recovered in soluble form, thereby mimicking the RNA effect. Based on these results we propose that the tendency to self-associate and form aggregates is a general property of RS domain-containing proteins and could be attributed to their disordered structure. RNA binding or SRPK1-mediated phosphorylation prevents aggregation and may serve to modulate the RS domain interaction modes.
Collapse
Affiliation(s)
- Eleni Nikolakaki
- Laboratory of Biochemistry, Department of Chemistry, The Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
28
|
Kpebe A, Rabinow L. Alternative promoter usage generates multiple evolutionarily conserved isoforms ofDrosophila DOA kinase. Genesis 2008; 46:132-43. [DOI: 10.1002/dvg.20374] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Park DJ, Freitas TA, Wallick CJ, Guyette CV, Warn-Cramer BJ. Molecular dynamics and in vitro analysis of Connexin43: A new 14-3-3 mode-1 interacting protein. Protein Sci 2007; 15:2344-55. [PMID: 17008717 PMCID: PMC2242386 DOI: 10.1110/ps.062172506] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The interaction of cellular proteins with the gap junction protein Connexin43 (Cx43) is thought to form a dynamic scaffolding complex that functions as a platform for the assembly of signaling, structural, and cytoskeletal proteins. A high stringency Scansite search of rat Cx43 identified the motif containing Ser373 (S373) as a 14-3-3 binding site. The S373 motif and the second best mode-1 motif, containing Ser244 (S244), are conserved in rat, mouse, human, chicken, and bovine, but not in Xenopus or zebrafish Cx43. Docking studies of a mouse/rat 14-3-3 homology model with the modeled phosphorylated S373 or S244 peptide ligands or their serine-to-alanine mutants, S373A or S244A, revealed that the pS373 motif facilitated a greater number of intermolecular contacts than the pS244 motif, thus supporting a stronger 14-3-3 binding interaction with the pS373 motif. The alanine substitution also reduced more than half the number of intermolecular contacts between 14-3-3 and the S373 motif, emphasizing the phosphorylation dependence of this interaction. Furthermore, the ability of the wild-type or the S244A GST-Cx43 C-terminal fusion protein, but not the S373A fusion protein, to interact with either 14-3-3 or 14-3-3zeta in GST pull-down experiments clearly demonstrated that the S373 motif mediates the direct interaction between Cx43 and 14-3-3 proteins. Blocking growth factor-induced Akt activation and presumably any Akt-mediated phosphorylation of the S373 motif in ROSE 199 cells did not prevent the down-regulation of Cx43-mediated cell-cell communication, suggesting that an Akt-mediated interaction with 14-3-3 was not involved in the disruption of Cx43 function.
Collapse
Affiliation(s)
- Darren J Park
- Natural Products and Cancer Biology Program, Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813, USA
| | | | | | | | | |
Collapse
|
30
|
Even Y, Durieux S, Escande ML, Lozano JC, Peaucellier G, Weil D, Genevière AM. CDC2L5, a Cdk-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo. J Cell Biochem 2006; 99:890-904. [PMID: 16721827 DOI: 10.1002/jcb.20986] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human CDC2L5 gene encodes a protein of unknown physiological function. This protein is closely related to the cyclin-dependent kinase (Cdks) family and contains an arginine/serine-rich (RS) domain. The Cdks were first identified as crucial regulators of cell-cycle progression, more recently they were found to be involved in transcription and mRNA processing. RS domains are mainly present in proteins regulating pre-mRNA splicing, suggesting CDC2L5 having a possible role in this process. In this study, we demonstrate that CDC2L5 is located in the nucleoplasm, at a higher concentration in speckles, the storage sites for splicing factors. Furthermore, this localization is dependent on the presence of the N-terminal sequence including the RS domain. Then, we report that CDC2L5 directly interacts with the ASF/SF2-associated protein p32, a protein involved in splicing regulation. Overexpression of CDC2L5 constructs disturbs constitutive splicing and switches alternative splice site selection in vivo. These results argue in favor of a functional role of the CDC2L5 kinase in splicing regulation.
Collapse
Affiliation(s)
- Yasmine Even
- Laboratoire Arago, CNRS-UMR 7628/Université Pierre et Marie Curie, BP 44, F-66651 Banyuls-sur-Mer cedex, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Kannan N, Neuwald AF. Evolutionary constraints associated with functional specificity of the CMGC protein kinases MAPK, CDK, GSK, SRPK, DYRK, and CK2alpha. Protein Sci 2005; 13:2059-77. [PMID: 15273306 PMCID: PMC2279817 DOI: 10.1110/ps.04637904] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Amino acid residues associated with functional specificity of cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase kinases (GSKs), and CDK-like kinases (CLKs), which are collectively termed the CMGC group, were identified by categorizing and quantifying the selective constraints acting upon these proteins during evolution. Many constraints specific to CMGC kinases correspond to residues between the N-terminal end of the activation segment and a CMGC-conserved insert segment associated with coprotein binding. The strongest such constraint is imposed on a "CMGC-arginine" near the substrate phosphorylation site with a side chain that plays a role both in substrate recognition and in kinase activation. Two nearby buried waters, which are also present in non-CMGC kinases, typically position the main chain of this arginine relative to the catalytic loop. These and other CMGC-specific features suggest a structural linkage between coprotein binding, substrate recognition, and kinase activation. Constraints specific to individual subfamilies point to mechanisms for CMGC kinase specialization. Within casein kinase 2alpha (CK2alpha), for example, the binding of one of the buried waters appears prohibited by the side chain of a leucine that is highly conserved within CK2alpha and that, along with substitution of lysine for the CMGC-arginine, may contribute to the broad substrate specificity of CK2alpha by relaxing characteristically conserved, precise interactions near the active site. This leucine is replaced by a conserved isoleucine or valine in other CMGC kinases, thereby illustrating the potential functional significance of subtle amino acid substitutions. Analysis of other CMGC kinases similarly suggests candidate family-specific residues for experimental follow-up.
Collapse
Affiliation(s)
- Natarajan Kannan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
32
|
Abstract
SR proteins constitute a family of splicing factors that play key roles in both constitutive and regulated splicing in metazoan organisms. The proteins are extensively phosphorylated, and kinases capable of phosphorylating them have been identified. However, little is known about how these kinases function, for example, whether they target specific SR proteins or whether the kinases themselves are regulated. Here we describe properties of one such kinase, Clk/Sty, the founding member of the Clk/Sty family of dual-specificity kinases. Clk/Sty is autophosphorylated on both Ser/Thr and Thr residues, and using both direct kinase assays and SR protein-dependent splicing assays, we have analyzed the effects of each type of modification. We find not only that the pattern of phosphorylation on a specific SR protein substrate, ASF/SF2, is modulated by autophosphorylation but also that the ability of Clk/Sty to recognize different SR proteins is influenced by the extent and nature of autophosphorylation. Strikingly, phosphorylation of ASF/SF2 is sensitive to changes in Tyr, but not Ser/Thr, autophosphorylation while that of SC35 displays the opposite pattern. In contrast, phosphorylation of a third SR protein, SRp40, is unaffected by autophosphorylation. We also present biochemical data indicating that as expected for a factor directly involved in splicing control (but in contrast to recent reports), Clk/Sty is found in the nucleus of several different cell types.
Collapse
Affiliation(s)
- Jayendra Prasad
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | |
Collapse
|