1
|
Soldatov AA, Shalagina NE, Rychkova VN, Kukhareva TA. Membrane-Bound Ferric Hemoglobin in Nucleated Erythrocytes of the Black Scorpionfish Scorpaena porcus, Linnaeus 1758. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 516:50-54. [PMID: 38700814 DOI: 10.1134/s0012496624700984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 05/26/2024]
Abstract
The content of membrane-bound methemoglobin (MtHb) in nucleated erythrocytes was studied in the black scorpionfish Scorpaena porcus (Linnaeus, 1758) in vitro. Spectral characteristics were determined for a whole hemolysate, a hemolysate obtained by stroma precipitation (a clarified hemolysate), and a resuspended stroma. The MtHb proportion in the erythrocyte stroma was found to exceed 80% (6.20 ± 0.59 µM). Clarified hemolysates were nearly free of MtHb (0.5 ± 0.2 µM). Membrane-bound ferric hemoglobin did not affect the erythrocyte resistance to osmotic shock. The osmotic fragility range was determined using a LaSca-TM laser microparticle analyzer (BioMedSystems, Russia) to be 102-136 mOsm/kg, much the same as in other bony fish species. A nitrite load (10 mg/L) significantly increased the MtHb content in the blood. However, the membrane-bound ferric hemoglobin content did not change significantly, amounting to 6.34 ± 1.09 µM (approximately 95%). The finding suggested a functional importance for MtHb present in the plasma membrane of nucleated erythrocytes. Membrane-bound MtHb was assumed to neutralize the external oxidative load and the toxic effect of hydrogen sulfide in bottom water layers, where the species lives.
Collapse
Affiliation(s)
- A A Soldatov
- Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences, Sevastopol, Russia.
- Sevastopol State University, Sevastopol, Russia.
| | - N E Shalagina
- Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences, Sevastopol, Russia
| | - V N Rychkova
- Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences, Sevastopol, Russia
| | - T A Kukhareva
- Kovalevsky Institute of Biology of the South Seas, Russian Academy of Sciences, Sevastopol, Russia
| |
Collapse
|
2
|
Gaina V, Nechifor M, Gaina C, Ursache O. Maleimides – a versatile platform for polymeric materials designed/tailored for high performance applications. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1811315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- V. Gaina
- Laboratory of Poliaddition and Photochemistry, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - M. Nechifor
- Laboratory of Poliaddition and Photochemistry, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - C. Gaina
- Laboratory of Poliaddition and Photochemistry, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - O. Ursache
- Laboratory of Poliaddition and Photochemistry, “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
3
|
Kosmachevskaya OV, Nasybullina EI, Blindar VN, Topunov AF. Binding of Erythrocyte Hemoglobin to the Membrane to Realize Signal-Regulatory Function (Review). APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819020091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Kosmachevskaya OV, Topunov AF. Alternate and Additional Functions of Erythrocyte Hemoglobin. BIOCHEMISTRY (MOSCOW) 2019; 83:1575-1593. [PMID: 30878032 DOI: 10.1134/s0006297918120155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The review discusses pleiotropic effects of erythrocytic hemoglobin (Hb) and their significance for human health. Hemoglobin is mostly known as an oxygen carrier, but its biochemical functions are not limited to this. The following aspects of Hb functioning are examined: (i) catalytic functions of the heme component (nitrite reductase, NO dioxygenase, monooxygenase, alkylhydroperoxidase) and of the apoprotein (esterase, lipoxygenase); (ii) participation in nitric oxide metabolism; (iii) formation of membrane-bound Hb and its role in the regulation of erythrocyte metabolism; (iv) physiological functions of Hb catabolic products (iron, CO, bilirubin, peptides). Special attention is given to Hb participation in signal transduction in erythrocytes. The relationships between various erythrocyte metabolic parameters, such as oxygen status, ATP formation, pH regulation, redox balance, and state of the cytoskeleton are discussed with regard to Hb. Hb polyfunctionality can be considered as a manifestation of the principle of biochemical economy.
Collapse
Affiliation(s)
- O V Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - A F Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
5
|
Delayed Measurement of Eosin-5'-Maleimide Binding May Affect the Test Results of Highly Hemolyzed Samples In Vivo and In Vitro-A Case Study. J Pediatr Hematol Oncol 2016; 38:e303-e306. [PMID: 27467372 DOI: 10.1097/mph.0000000000000652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Diagnosis of hereditary spherocytosis (HS) is based on clinical evaluation and eosin-5'-maleimide (EMA) test. A decrease in EMA fluorescence compared with healthy individuals is typical for HS and serves as a basis for HS diagnosis. Sensitivity and specificity of the test is high and false-positive results rarely occur. Studies have shown that anticoagulated blood sample when stored at 4°C for 7 days do not affect the test results. This case study is about an autoimmune hemolytic anemia patient who showed a primary positive result for EMA test (decrease in EMA fluorescence-47% compared with 100% for samples of healthy individual), when the test was performed in the sample stored for 48 hours after venipuncture and before staining. An irrelevant decrease (92.5% compared with 100% for samples of healthy individual) was found when freshly collected sample was analyzed. On the basis of the results obtained, it is recommended that EMA staining should be performed on the same day of blood collection for patients with significant hemolysis.
Collapse
|
6
|
Huang YX, Tuo WW, Wang D, Kang LL, Chen XY, Luo M. Restoring the youth of aged red blood cells and extending their lifespan in circulation by remodelling membrane sialic acid. J Cell Mol Med 2016; 20:294-301. [PMID: 26576513 PMCID: PMC4727560 DOI: 10.1111/jcmm.12721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/19/2015] [Indexed: 11/29/2022] Open
Abstract
Membrane sialic acid (SA) plays an important role in the survival of red blood cells (RBCs), the age-related reduction in SA content negatively impacts both the structure and function of these cells. We have therefore suggested that remodelling the SA in the membrane of aged cells would help recover cellular functions characteristic of young RBCs. We developed an effective method for the re-sialylation of aged RBCs by which the cells were incubated with SA in the presence of cytidine triphosphate (CTP) and α-2,3-sialytransferase. We found that RBCs could be re-sialylated if they had available SA-binding groups and after the re-sialylation, aged RBCs could restore their membrane SA to the level in young RBCs. Once the membrane SA was restored, the aged RBCs showed recovery of their biophysical and biochemical properties to similar levels as in young RBCs. Their life span in circulation was also extended to twofold. Our findings indicate that remodelling membrane SA not only helps restore the youth of aged RBCs, but also helps recover injured RBCs.
Collapse
Affiliation(s)
- Yao-Xiong Huang
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| | - Wei-Wei Tuo
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| | - Di Wang
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| | - Li-Li Kang
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| | - Xing-Yao Chen
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| | - Man Luo
- Department of Biomedical Engineering, Ji Nan University, Guang Zhou, China
| |
Collapse
|
7
|
Salgado MT, Cao Z, Nagababu E, Mohanty JG, Rifkind JM. Red Blood Cell Membrane-Facilitated Release of Nitrite-Derived Nitric Oxide Bioactivity. Biochemistry 2015; 54:6712-23. [DOI: 10.1021/acs.biochem.5b00643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria T. Salgado
- Molecular Dynamics Section,
National Institute on Aging, National Institutes of Health, 251 Bayview
Boulevard, Baltimore, Maryland 21224, United States
| | - Zeling Cao
- Molecular Dynamics Section,
National Institute on Aging, National Institutes of Health, 251 Bayview
Boulevard, Baltimore, Maryland 21224, United States
| | - Enika Nagababu
- Molecular Dynamics Section,
National Institute on Aging, National Institutes of Health, 251 Bayview
Boulevard, Baltimore, Maryland 21224, United States
| | - Joy G. Mohanty
- Molecular Dynamics Section,
National Institute on Aging, National Institutes of Health, 251 Bayview
Boulevard, Baltimore, Maryland 21224, United States
| | - Joseph M. Rifkind
- Molecular Dynamics Section,
National Institute on Aging, National Institutes of Health, 251 Bayview
Boulevard, Baltimore, Maryland 21224, United States
| |
Collapse
|
8
|
Fluorescence Study of the Membrane Effects of Aggregated Lysozyme. J Fluoresc 2013; 23:1229-37. [DOI: 10.1007/s10895-013-1254-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/17/2013] [Indexed: 11/27/2022]
|
9
|
Abstract
SIGNIFICANCE The physiological mechanism(s) for recognition and removal of red blood cells (RBCs) from circulation after 120 days of its lifespan is not fully understood. Many of the processes thought to be associated with the removal of RBCs involve oxidative stress. We have focused on hemoglobin (Hb) redox reactions, which is the major source of RBC oxidative stress. RECENT ADVANCES The importance of Hb redox reactions have been shown to originate in large parts from the continuous slow autoxidation of Hb producing superoxide and its dramatic increase under hypoxic conditions. In addition, oxidative stress has been shown to be associated with redox reactions that originate from Hb reactions with nitrite and nitric oxide (NO) and the resultant formation of highly toxic peroxynitrite when NO reacts with superoxide released during Hb autoxidation. CRITICAL ISSUES The interaction of Hb, particularly under hypoxic conditions with band 3 of the RBC membrane is critical for the generating the RBC membrane changes that trigger the removal of cells from circulation. These changes include exposure of antigenic sites, increased calcium leakage into the RBC, and the resultant leakage of potassium out of the RBC causing cell shrinkage and impaired deformability. FUTURE DIRECTIONS The need to understand the oxidative damage to specific membrane proteins that result from redox reactions occurring when Hb is bound to the membrane. Proteomic studies that can pinpoint the specific proteins damaged under different conditions will help elucidate the cellular aging processes that result in cells being removed from circulation.
Collapse
Affiliation(s)
- Joseph M Rifkind
- Molecular Dynamics Section, National Institute on Aging, Baltimore, MD 21224, USA.
| | | |
Collapse
|
10
|
Huertas A, Das SR, Emin M, Sun L, Rifkind JM, Bhattacharya J, Bhattacharya S. Erythrocytes induce proinflammatory endothelial activation in hypoxia. Am J Respir Cell Mol Biol 2012; 48:78-86. [PMID: 23043086 DOI: 10.1165/rcmb.2011-0402oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although exposure to ambient hypoxia is known to cause proinflammatory vascular responses, the mechanisms initiating these responses are not understood. We tested the hypothesis that in systemic hypoxia, erythrocyte-derived H(2)O(2) induces proinflammatory gene transcription in vascular endothelium. We exposed mice or isolated, perfused murine lungs to 4 hours of hypoxia (8% O(2)). Leukocyte counts increased in the bronchoalveolar lavage. The expression of leukocyte adhesion receptors, reactive oxygen species, and protein tyrosine phosphorylation increased in freshly recovered lung endothelial cells (FLECs). These effects were inhibited by extracellular catalase and by the removal of erythrocytes, indicating that the responses were attributable to erythrocyte-derived H(2)O(2). Concomitant nuclear translocation of the p65 subunit of NF-κB and hypoxia-inducible factor-1α stabilization in FLECs occurred only in the presence of erythrocytes. Hemoglobin binding to the erythrocyte membrane protein, band 3, induced the release of H(2)O(2) from erythrocytes and the p65 translocation in FLECs. These data indicate for the first time, to our knowledge, that erythrocytes are responsible for endothelial transcriptional responses in hypoxia.
Collapse
Affiliation(s)
- Alice Huertas
- Lung Biology Laboratory, Pulmonary Division, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Tang J, Yang C, Zhou L, Ma F, Liu S, Wei S, Zhou J, Zhou Y. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 96:461-467. [PMID: 22728237 DOI: 10.1016/j.saa.2012.05.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/17/2012] [Accepted: 05/26/2012] [Indexed: 06/01/2023]
Abstract
In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.
Collapse
Affiliation(s)
- Jing Tang
- College of Chemistry and Materials Science, Analysis and Testing Center, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210046, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Regulation of oxygen delivery by the reaction of nitrite with RBCs under hypoxic conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 737:183-9. [PMID: 22259100 DOI: 10.1007/978-1-4614-1566-4_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Troudi A, Soudani N, Amara IB, Bouaziz H, Ayadi FM, Zeghal N. Oxidative damage in erythrocytes of adult rats and their suckling pups exposed to gibberellic acid. Toxicol Ind Health 2011; 28:820-30. [DOI: 10.1177/0748233711425068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gibberellic acid (GA3) is a plant growth regulator used in agriculture worldwide. The present study investigated the propensity of GA3 to induce hematological disorders. Pregnant Wistar rats were randomly divided into two groups: group I served as controls; group II received orally GA3 (200 ppm) from the 14th day of pregnancy until day 14 after delivery. GA3 reduced the number of red blood cells, hemoglobin concentration, and hematocrit in suckling rats, while these parameters remained unchanged in their mothers. White blood cells increased in mothers and were unchanged in their pups. Several studies have associated these hematological disorders with oxidative stress. In fact, GA3 treatment revealed in erythrocytes a significant increase in malondialdehyde levels and a decrease in antioxidant enzyme activities such as superoxide dismutase, catalase, and glutathione peroxidase. Moreover, a significant decline was observed in acetylcholinesterase activity, glutathione, nonprotein thiols, and vitamin C levels.
Collapse
Affiliation(s)
- Afef Troudi
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| | - Nejla Soudani
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| | | | - Hanen Bouaziz
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| | | | - Najiba Zeghal
- Animal Physiology Laboratory, University of Sfax, Sfax, Tunisia
| |
Collapse
|
14
|
Rotter MA, Chu H, Low PS, Ferrone FA. Band 3 catalyzes sickle hemoglobin polymerization. Biophys Chem 2009; 146:55-9. [PMID: 19880238 DOI: 10.1016/j.bpc.2009.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 10/13/2009] [Accepted: 10/13/2009] [Indexed: 12/27/2022]
Abstract
We have measured homogeneous and heterogeneous nucleation rates of sickle hemoglobin (HbS) in the presence of a strongly binding deletion mutant of the cytoplasmic domain of band 3 (cdb3), a membrane protein known to form dimers and to bind 2 HbS molecules to such a dimer, and we find that it accelerated both rates by a factor of 2. A weakly binding mutant, in contrast showed no impact on nucleation rates, contrary to naïve expectations of a slight enhancement based on the molecular crowding of the solution by the mutant. We find we can explain these phenomena by a model of HbS-cdb3 interaction in which the strong binding mutant, by stabilizing an HbS dimer, catalyzes the nucleation process, while the weak mutant binds only 1 HbS molecule, effectively inactivating it and thereby compensating for the crowding of the solution by the cdb3. The catalytic behavior we observe could play a role in intracellular processes.
Collapse
Affiliation(s)
- Maria A Rotter
- Department of Physics, Drexel University, Philadelphia, PA 19104, United States
| | | | | | | |
Collapse
|
15
|
Rocha S, Costa E, Coimbra S, Nascimento H, Catarino C, Rocha-Pereira P, Quintanilha A, Belo L, Santos-Silva A. Linkage of cytosolic peroxiredoxin 2 to erythrocyte membrane imposed by hydrogen peroxide-induced oxidative stress. Blood Cells Mol Dis 2009; 43:68-73. [DOI: 10.1016/j.bcmd.2009.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 03/08/2009] [Indexed: 10/20/2022]
|
16
|
Low concentration of extracellular hemoglobin affects shape of RBC in low ion strength sucrose solution. Bioelectrochemistry 2009; 75:19-25. [DOI: 10.1016/j.bioelechem.2008.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 12/19/2008] [Accepted: 12/29/2008] [Indexed: 11/21/2022]
|
17
|
Nagababu E, Gulyani S, Earley CJ, Cutler RG, Mattson MP, Rifkind JM. Iron-deficiency anaemia enhances red blood cell oxidative stress. Free Radic Res 2009; 42:824-9. [PMID: 19051108 DOI: 10.1080/10715760802459879] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress associated with iron deficiency anaemia in a murine model was studied feeding an iron-deficient diet. Anaemia was monitored by a decrease in hematocrit and haemoglobin. For the 9 week study an increase in total iron binding capacity was also demonstrated. Anaemia resulted in an increase in red blood cells (RBC) oxidative stress as indicated by increased levels of fluorescent heme degradation products (1.24-fold after 5 weeks; 2.1-fold after 9 weeks). The increase in oxidative stress was further confirmed by elevated levels of methemoglobin for mice fed an iron-deficient diet. Increased haemoglobin autoxidation and subsequent generation of ROS can account for the shorter RBC lifespan and other pathological changes associated with iron-deficiency anaemia.
Collapse
Affiliation(s)
- Enika Nagababu
- Molecular Dynamics Section, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kang LL, Huang YX, Liu WJ, Zheng XJ, Wu ZJ, Luo M. Confocal Raman microscopy on single living young and old erythrocytes. Biopolymers 2008; 89:951-9. [DOI: 10.1002/bip.21042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Kiefmann R, Rifkind JM, Nagababu E, Bhattacharya J. Red blood cells induce hypoxic lung inflammation. Blood 2008; 111:5205-14. [PMID: 18270324 PMCID: PMC2384143 DOI: 10.1182/blood-2007-09-113902] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 01/30/2008] [Indexed: 01/03/2023] Open
Abstract
Hypoxia, which commonly associates with respiratory and cardiovascular diseases, provokes an acute inflammatory response. However, underlying mechanisms are not well understood. Here we report that red blood cells (RBCs) induce hypoxic inflammation by producing reactive oxygen species (ROS) that diffuse to endothelial cells of adjoining blood vessels. Real-time fluorescence imaging of rat and mouse lungs revealed that in the presence of RBC-containing vascular perfusion, hypoxia increased microvascular ROS, and cytosolic Ca(2+), leading to P-selectin-dependent leukocyte recruitment. However, in the presence of RBC-free perfusion, all hypoxia-induced responses were completely inhibited. Because hemoglobin (Hb) autoxidation causes RBC superoxide formation that readily dismutates to H(2)O(2), hypoxia-induced responses were lost when we inhibited Hb autoxidation with CO or nitrite, or when the H(2)O(2) inhibitor, catalase was added to the infusion to neutralize the RBC-derived ROS. By contrast, perfusion with RBCs from BERK-trait mice that are more susceptible to Hb autoxidation and to hypoxia-induced superoxide production enhanced the hypoxia-induced responses. We conclude that in hypoxia, increased Hb autoxidation augments superoxide production in RBCs. Consequently, RBCs release H(2)O(2) that diffuses to the lung microvascular endothelium, thereby initiating Ca(2+)-dependent leukocyte recruitment. These findings are the first evidence that RBCs contribute to hypoxia-induced inflammation.
Collapse
Affiliation(s)
- Rainer Kiefmann
- Lung Biology Laboratory, College of Physicians & Surgeons, Columbia University, St Luke's Roosevelt Hospital Center, New York, NY, USA
| | | | | | | |
Collapse
|
20
|
Salhany JM. Kinetics of Reaction of Nitrite with Deoxy Hemoglobin after Rapid Deoxygenation or Predeoxygenation by Dithionite Measured in Solution and Bound to the Cytoplasmic Domain of Band 3 (SLC4A1). Biochemistry 2008; 47:6059-72. [DOI: 10.1021/bi8000819] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James M. Salhany
- Departments of Internal Medicine and Biochemistry and Molecular Biology, University of Nebraska Medical Center, 984510 Nebraska Medical Center, Omaha, Nebraska 68198-4510
| |
Collapse
|
21
|
Haratake M, Fujimoto K, Hirakawa R, Ono M, Nakayama M. Hemoglobin-mediated selenium export from red blood cells. J Biol Inorg Chem 2008; 13:471-9. [DOI: 10.1007/s00775-007-0335-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 12/09/2007] [Indexed: 11/29/2022]
|
22
|
Ciccoli L, Rossi V, Leoncini S, Signorini C, Blanco-Garcia J, Aldinucci C, Buonocore G, Comporti M. Iron release, superoxide production and binding of autologous IgG to band 3 dimers in newborn and adult erythrocytes exposed to hypoxia and hypoxia-reoxygenation. Biochim Biophys Acta Gen Subj 2004; 1672:203-13. [PMID: 15182940 DOI: 10.1016/j.bbagen.2004.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 04/07/2004] [Accepted: 04/08/2004] [Indexed: 11/27/2022]
Abstract
Iron is released in a desferrioxamine (DFO)-chelatable form when erythrocytes are challenged by an oxidative stress. The release is increased when an accelerated removal of erythrocytes occurs such as in perinatal period, in which iron release is greater in hypoxic than in non-hypoxic newborns. This suggests that an hypoxic environment at birth promotes iron release. To test this possibility, iron release in a model of hypoxia, hypoxia-reoxygenation and normoxia was studied in newborn and adult erythrocytes. In newborn erythrocytes, hypoxia induced a much greater iron release compared to an equal period of normoxia. In adult erythrocytes, hypoxia also induced a greater iron release as compared to normoxia, but it was much lower than that seen with newborn erythrocytes. Methemoglobin (MetHb) formation roughly paralleled iron release. The phenylhydrazine-promoted superoxide anion (O(2)?(-)) production was greater with normoxic but lower with hypoxic erythrocytes from newborns as compared to that from adults. This discrepancy between iron release and O(2)?(-) production may be explained by the shift towards MetHb in hemoglobin autoxidation. Iron diffusion out of the erythrocytes was much higher with hypoxic erythrocytes from newborns as compared to that from adults. Also the binding of autologous IgG to band 3 dimers (AIgGB) is much greater with hypoxic erythrocytes from newborns as compared to that from adults, suggesting that the level of iron release is related to the extent of band 3 clustering and that hypoxia accelerates removal of erythrocytes from bloodstream in in vivo condition.
Collapse
Affiliation(s)
- Lucia Ciccoli
- Department of Pathophysiology, Experimental Medicine and Public Health, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Weber RE, Voelter W, Fago A, Echner H, Campanella E, Low PS. Modulation of red cell glycolysis: interactions between vertebrate hemoglobins and cytoplasmic domains of band 3 red cell membrane proteins. Am J Physiol Regul Integr Comp Physiol 2004; 287:R454-64. [PMID: 15087282 DOI: 10.1152/ajpregu.00060.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several vital functions/physical characteristics of erythrocytes (including glycolysis, the pentose phosphate pathway, ion fluxes, and cellular deformability) display dependence on the state of hemoglobin oxygenation. The molecular mechanism proposed involves an interaction between deoxyhemoglobin and the cytoplasmic domain of the anion-exchange protein, band 3 (cdB3). Given that band 3 also binds to membrane proteins 4.1 and 4.2, several kinases, hemichromes, and integral membrane proteins, and at least three glycolytic enzymes, it has been suggested that the cdB3-deoxyhemoglobin interaction might modulate the pathways mediated by these associated proteins in an O(2)-dependent manner. We have investigated this mechanism by synthesizing 10-mer peptides corresponding to the NH(2)-terminal fragments of various vertebrate cdB3s, determining their effects on the oxygenation reactions of hemoglobins from the same and different species and examining binding of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase to the erythrocytic membrane of mouse erythrocytes. The cdB3 interaction is strongly dependent on pH and the number of negative and positive charges of the peptide and at the effector binding site, respectively. It lowers the O(2) association equilibrium constant of the deoxygenated (Tense) state of the hemoglobin and is inhibited by magnesium ions, which neutralize cdB3's charge and by 2,3-diphosphoglycerate, which competes for the cdB3-binding site. The interaction is stronger in humans (whose erythrocytes derive energy predominantly from glycolysis and exhibit higher buffering capacity) than in birds and ectothermic vertebrates (whose erythrocytes metabolize aerobically and are poorly buffered) and is insignificant in fish, suggesting that its role in the regulation of red cell glycolysis increased with phylogenetic development in vertebrates.
Collapse
Affiliation(s)
- Roy E Weber
- Zoophysiology Department, Institute of Biological Sciences, University of Aarhus, DK 8000 Aarhus, Denmark; .
| | | | | | | | | | | |
Collapse
|
24
|
Nagababu E, Chrest FJ, Rifkind JM. Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1620:211-7. [PMID: 12595091 DOI: 10.1016/s0304-4165(02)00537-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catalase and glutathione peroxidase (GSHPX) react with red cell hydrogen peroxide. A number of recent studies indicate that catalase is the primary enzyme responsible for protecting the red cell from hydrogen peroxide. We have used flow cytometry in intact cells as a sensitive measure of the hydrogen-peroxide-induced formation of fluorescent heme degradation products. Using this method, we have been able to delineate a unique role for GSHPX in protecting the red cell from hydrogen peroxide. For extracellular hydrogen peroxide, catalase completely protected the cells, while the ability of GSHPX to protect the cells was limited by the availability of glutathione. The effect of endogenously generated hydrogen peroxide in conjunction with hemoglobin autoxidation was investigated by in vitro incubation studies. These studies indicate that fluorescent products are not formed during incubation unless the glutathione is reduced to at least 40% of its initial value as a result of incubation or by reacting the glutathione with iodoacetamide. Reactive catalase only slows down the depletion of glutathione, but does not directly prevent the formation of these fluorescent products. The unique role of GSHPX is attributed to its ability to react with hydrogen peroxide generated in close proximity to the red cell membrane in conjunction with the autoxidation of membrane-bound hemoglobin.
Collapse
Affiliation(s)
- Enika Nagababu
- Molecular Dynamics Section, Gerontology Research Center, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|