1
|
Banerjee P, Silva DV, Lipowsky R, Santer M. The importance of side branches of glycosylphosphatidylinositol anchors: a molecular dynamics perspective. Glycobiology 2022; 32:933-948. [PMID: 36197124 PMCID: PMC9620968 DOI: 10.1093/glycob/cwac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Many proteins are anchored to the cell surface of eukaryotes using a unique family of glycolipids called glycosylphosphatidylinositol (GPI) anchors. These glycolipids also exist without a covalently bound protein, in particular on the cell surfaces of protozoan parasites where they are densely populated. GPIs and GPI-anchored proteins participate in multiple cellular processes such as signal transduction, cell adhesion, protein trafficking and pathogenesis of Malaria, Toxoplasmosis, Trypanosomiasis and prion diseases, among others. All GPIs share a common conserved glycan core modified in a cell-dependent manner with additional side glycans or phosphoethanolamine residues. Here, we use atomistic molecular dynamic simulations and perform a systematic study to evaluate the structural properties of GPIs with different side chains inserted in lipid bilayers. Our results show a flop-down orientation of GPIs with respect to the membrane surface and the presentation of the side chain residues to the solvent. This finding agrees well with experiments showing the role of the side residues as active epitopes for recognition of GPIs by macrophages and induction of GPI-glycan-specific immune responses. Protein-GPI interactions were investigated by attaching parasitic GPIs to Green Fluorescent Protein. GPIs are observed to recline on the membrane surface and pull down the attached protein close to the membrane facilitating mutual contacts between protein, GPI and the lipid bilayer. This model is efficient in evaluating the interaction of GPIs and GPI-anchored proteins with membranes and can be extended to study other parasitic GPIs and proteins and develop GPI-based immunoprophylaxis to treat infectious diseases.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany
| | - Daniel Varon Silva
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| | - Reinhard Lipowsky
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany.,Mathematisch-Naturwissenschaftlichen Fakultät, University of Potsdam, Potsdam 14476, Germany
| | - Mark Santer
- Department of Theory and Biosystems, Max Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
2
|
Banerjee P, Lipowsky R, Santer M. Coarse-Grained Molecular Model for the Glycosylphosphatidylinositol Anchor with and without Protein. J Chem Theory Comput 2020; 16:3889-3903. [PMID: 32392421 PMCID: PMC7303967 DOI: 10.1021/acs.jctc.0c00056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 01/17/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchors are a unique class of complex glycolipids that anchor a great variety of proteins to the extracellular leaflet of plasma membranes of eukaryotic cells. These anchors can exist either with or without an attached protein called GPI-anchored protein (GPI-AP) both in vitro and in vivo. Although GPIs are known to participate in a broad range of cellular functions, it is to a large extent unknown how these are related to GPI structure and composition. Their conformational flexibility and microheterogeneity make it difficult to study them experimentally. Simplified atomistic models are amenable to all-atom computer simulations in small lipid bilayer patches but not suitable for studying their partitioning and trafficking in complex and heterogeneous membranes. Here, we present a coarse-grained model of the GPI anchor constructed with a modified version of the MARTINI force field that is suited for modeling carbohydrates, proteins, and lipids in an aqueous environment using MARTINI's polarizable water. The nonbonded interactions for sugars were reparametrized by calculating their partitioning free energies between polar and apolar phases. In addition, sugar-sugar interactions were optimized by adjusting the second virial coefficients of osmotic pressures for solutions of glucose, sucrose, and trehalose to match with experimental data. With respect to the conformational dynamics of GPI-anchored green fluorescent protein, the accessible time scales are now at least an order of magnitude larger than for the all-atom system. This is particularly important for fine-tuning the mutual interactions of lipids, carbohydrates, and amino acids when comparing to experimental results. We discuss the prospective use of the coarse-grained GPI model for studying protein-sorting and trafficking in membrane models.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Potsdam 14469, Germany
| | - Reinhard Lipowsky
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
- Institute
of Biochemistry and Biology, University
of Potsdam, Potsdam 14469, Germany
| | - Mark Santer
- Max
Planck Institute of Colloids and Interfaces, Potsdam 14476, Germany
| |
Collapse
|
3
|
Simão AMS, Bolean M, Favarin BZ, Veschi EA, Tovani CB, Ramos AP, Bottini M, Buchet R, Millán JL, Ciancaglini P. Lipid microenvironment affects the ability of proteoliposomes harboring TNAP to induce mineralization without nucleators. J Bone Miner Metab 2019; 37:607-613. [PMID: 30324534 PMCID: PMC6465158 DOI: 10.1007/s00774-018-0962-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP), a glycosylphosphatidylinositol-anchored ectoenzyme present on the membrane of matrix vesicles (MVs), hydrolyzes the mineralization inhibitor inorganic pyrophosphate as well as ATP to generate the inorganic phosphate needed for apatite formation. Herein, we used proteoliposomes harboring TNAP as MV biomimetics with or without nucleators of mineral formation (amorphous calcium phosphate and complexes with phosphatidylserine) to assess the role of the MVs' membrane lipid composition on TNAP activity by means of turbidity assay and FTIR analysis. We found that TNAP-proteoliposomes have the ability to induce mineralization even in the absence of mineral nucleators. We also found that the addition of cholesterol or sphingomyelin to TNAP-proteoliposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine reduced the ability of TNAP to induce biomineralization. Our results suggest that the lipid microenvironment is essential for the induction and propagation of minerals mediated by TNAP.
Collapse
Affiliation(s)
- Ana Maria Sper Simão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Maytê Bolean
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Bruno Zoccaratto Favarin
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Ekeveliny Amabile Veschi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Camila Bussola Tovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133, Rome, Italy
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Rene Buchet
- UFR Chimie Biochimie, Universite Lyon 1, 69 622, Villeurbanne Cedex, France
- ICBMS, UMR 5246, CNRS, 69 622, Villeurbanne Cedex, France
- INSA, Lyon, 69 622, Villeurbanne Cedex, France
- CPE, Lyon, 69 622, Villeurbanne Cedex, France
- Universite de Lyon, 69 622, Villeurbanne Cedex, France
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brazil.
| |
Collapse
|
4
|
Dar UQ, Paul VI. Impact of ethanol extract of Anamirta cocculus(Linn.) seeds on tissue damage biomarkers of the predatory catfish Heteropneustes fossilis(Bloch.). JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1080/16583655.2018.1481339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Umer Qadir Dar
- Department of Zoology, Annamalai University, Annamalainagar, India
| | - V. I. Paul
- Department of Zoology, Annamalai University, Annamalainagar, India
| |
Collapse
|
5
|
Banerjee P, Wehle M, Lipowsky R, Santer M. A molecular dynamics model for glycosylphosphatidyl-inositol anchors: “flop down” or “lollipop”? Phys Chem Chem Phys 2018; 20:29314-29324. [DOI: 10.1039/c8cp04059a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational model for GPI anchors tested in DMPC and POPC bilayers. The free anchor rarely occurs as an erected “lollipop-like” conformation, it rather “flops down” onto the bilayer surface. Yet an attached protein (here green fluorescent protein) exhibits extensive orientational flexibility due to the phospho-ethanolamine linker.
Collapse
Affiliation(s)
- Pallavi Banerjee
- Department of Theory and Biosystems
- Max Planck Institute for Colloids and Interfaces
- 14424 Potsdam
- Germany
| | - Marko Wehle
- Department of Theory and Biosystems
- Max Planck Institute for Colloids and Interfaces
- 14424 Potsdam
- Germany
| | - Reinhard Lipowsky
- Department of Theory and Biosystems
- Max Planck Institute for Colloids and Interfaces
- 14424 Potsdam
- Germany
| | - Mark Santer
- Department of Theory and Biosystems
- Max Planck Institute for Colloids and Interfaces
- 14424 Potsdam
- Germany
| |
Collapse
|
6
|
Basso LGM, Mendes LFS, Costa-Filho AJ. The two sides of a lipid-protein story. Biophys Rev 2016; 8:179-191. [PMID: 28510056 DOI: 10.1007/s12551-016-0199-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 03/29/2016] [Indexed: 01/10/2023] Open
Abstract
Protein-membrane interactions play essential roles in a variety of cell functions such as signaling, membrane trafficking, and transport. Membrane-recruited cytosolic proteins that interact transiently and interfacially with lipid bilayers perform several of those functions. Experimental techniques capable of probing changes on the structural dynamics of this weak association are surprisingly limited. Among such techniques, electron spin resonance (ESR) has the enormous advantage of providing valuable local information from both membrane and protein perspectives by using intrinsic paramagnetic probes in metalloproteins or by attaching nitroxide spin labels to proteins and lipids. In this review, we discuss the power of ESR to unravel relevant structural and functional details of lipid-peripheral membrane protein interactions with special emphasis on local changes of specific regions of the protein and/or the lipids. First, we show how ESR can be used to investigate the direct interaction between a protein and a particular lipid, illustrating the case of lipid binding into a hydrophobic pocket of chlorocatechol 1,2-dioxygenase, a non-heme iron enzyme responsible for catabolism of aromatic compounds that are industrially released in the environment. In the second case, we show the effects of GPI-anchored tissue-nonspecific alkaline phosphatase, a protein that plays a crucial role in skeletal mineralization, and on the ordering and dynamics of lipid acyl chains. Then, switching to the protein perspective, we analyze the interaction with model membranes of the brain fatty acid binding protein, the major actor in the reversible binding and transport of hydrophobic ligands such as long-chain, saturated, or unsaturated fatty acids. Finally, we conclude by discussing how both lipid and protein views can be associated to address a common question regarding the molecular mechanism by which dihydroorotate dehydrogenase, an essential enzyme for the de novo synthesis of pyrimidine nucleotides, and how it fishes out membrane-embedded quinones to perform its function.
Collapse
Affiliation(s)
- Luis G Mansor Basso
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis F Santos Mendes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
7
|
Simão AMS, Bolean M, Hoylaerts MF, Millán JL, Ciancaglini P. Effects of pH on the production of phosphate and pyrophosphate by matrix vesicles' biomimetics. Calcif Tissue Int 2013; 93:222-32. [PMID: 23942722 PMCID: PMC3752608 DOI: 10.1007/s00223-013-9745-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 05/14/2013] [Indexed: 11/24/2022]
Abstract
During endochondral bone formation, chondrocytes and osteoblasts synthesize and mineralize the extracellular matrix through a process that initiates within matrix vesicles (MVs) and ends with bone mineral propagation onto the collagenous scaffold. pH gradients have been identified in the growth plate of long bones, but how pH changes affect the initiation of skeletal mineralization is not known. Tissue-nonspecific alkaline phosphatase (TNAP) degrades extracellular inorganic pyrophosphate (PPi), a mineralization inhibitor produced by ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1), while contributing Pi from ATP to initiate mineralization. TNAP and NPP1, alone or combined, were reconstituted in dipalmitoylphosphatidylcholine liposomes to mimic the microenvironment of MVs. The hydrolysis of ATP, ADP, AMP, and PPi was studied at pH 8 and 9 and compared to the data determined at pH 7.4. While catalytic efficiencies in general were higher at alkaline pH, PPi hydrolysis was maximal at pH 8 and indicated a preferential utilization of PPi over ATP at pH 8 versus 9. In addition, all proteoliposomes induced mineral formation when incubated in a synthetic cartilage lymph containing 1 mM ATP as substrate and amorphous calcium phosphate or calcium-phosphate-phosphatidylserine complexes as nucleators. Propagation of mineralization was significantly more efficient at pH 7.5 and 8 than at pH 9. Since a slight pH elevation from 7.4 to 8 promotes considerably more hydrolysis of ATP, ADP, and AMP primarily by TNAP, this small pH change facilitates mineralization, especially via upregulated PPi hydrolysis by both NPP1 and TNAP, further elevating the Pi/PPi ratio, thus enhancing bone mineralization.
Collapse
Affiliation(s)
- Ana Maria S. Simão
- Department of Chemistry, FFCLRP-USP, Ribeirão Preto, SP, Brazil
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Maytê Bolean
- Department of Chemistry, FFCLRP-USP, Ribeirão Preto, SP, Brazil
| | - Marc F. Hoylaerts
- Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Pietro Ciancaglini
- Department of Chemistry, FFCLRP-USP, Ribeirão Preto, SP, Brazil
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
- Corresponding author. Department of Chemistry, FFCLRP-USP, Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil. Tel.: +55 16 3602-3753; Fax: +55 16 3602-4838;
| |
Collapse
|
8
|
Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep 2013; 3:1369-77. [PMID: 23665225 PMCID: PMC3675674 DOI: 10.1016/j.celrep.2013.04.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/23/2013] [Accepted: 04/26/2013] [Indexed: 12/03/2022] Open
Abstract
Pore-forming proteins containing the structurally conserved membrane attack complex/perforin fold play an important role in immunity and host-pathogen interactions. Intermedilysin (ILY) is an archetypal member of a cholesterol-dependent cytolysin subclass that hijacks the complement receptor CD59 to make cytotoxic pores in human cells. ILY directly competes for the membrane attack complex binding site on CD59, rendering cells susceptible to complement lysis. To understand how these bacterial pores form in lipid bilayers and the role CD59 plays in complement regulation, we determined the crystal structure of human CD59 bound to ILY. Here, we show the ILY-CD59 complex at 3.5 Å resolution and identify two interfaces mediating this host-pathogen interaction. An ILY-derived peptide based on the binding site inhibits pore formation in a CD59-containing liposome model system. These data provide insight into how CD59 coordinates ILY monomers, nucleating an early prepore state, and suggest a potential mechanism of inhibition for the complement terminal pathway. Crystal structure of the ILY-CD59 complex defines two interfaces Our two binding interfaces are supported by previous mutagenesis studies An ILY-derived peptide competes for binding in a liposome model system Our model provides a structural basis for CD59 nucleation of an ILY early prepore
Collapse
|
9
|
Schmid F, Fliegert R, Westphal T, Bauche A, Guse AH. Nicotinic acid adenine dinucleotide phosphate (NAADP) degradation by alkaline phosphatase. J Biol Chem 2012; 287:32525-34. [PMID: 22851169 DOI: 10.1074/jbc.m112.362715] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a ubiquitous second messenger providing a Ca(2+) trigger in a wide range of cell types. However, its metabolism is not well understood. Here, we demonstrate the presence of endogenous NAADP in HeLa cells. CD38, a promiscuous enzyme described to be involved in NAADP metabolism, was not detectable in HeLa cells. In cell-free extracts of HeLa cells, NAADP was degraded to nicotinic acid adenine dinucleotide (NAAD). The enzyme was enriched in membranes (10,000 × g pellet) and displayed characteristics typical of alkaline phosphatase (AP), e.g. pH optimum at 8-9 and sensitivity to the inhibitors L-homoarginine and L-leucine. Importantly, NAADP at physiological concentrations (50-100 nM) was degraded to NAAD. Expression of AP isoenzymes was analyzed in HeLa cells. Based on the results together with inhibitor studies, the placental AP isoform emerged as the best candidate for NAADP degradation in HeLa cells. In contrast to HeLa cells, Jurkat T cells or HEK293 cells did not express any AP isoenzymes and did not display any NAADP 2'-phosphatase activity. Finally, the placental AP isoform was expressed heterologously in HEK293 cells, resulting in reconstitution of NAADP 2'-phosphatase activity in cell-free extracts. On the basis of the results, we provide evidence for AP as the metabolizing enzyme of NAADP in cells that do not express CD38.
Collapse
Affiliation(s)
- Frederike Schmid
- The Calcium Signalling Group, Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
10
|
Human epidermal growth factor receptor (HER1) aligned on the plasma membrane adopts key features of Drosophila EGFR asymmetry. Biochem Soc Trans 2012; 40:184-8. [DOI: 10.1042/bst20110692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Current models suggest that ligand-binding heterogeneity in HER1 [human EGFR (epidermal growth factor receptor] arises from negative co-operativity in signalling HER1 dimers, for which the asymmetry of the extracellular region of the Drosophila EGFR has recently provided a structural basis. However, no asymmetry is apparent in the current crystal structure of the isolated extracellular region of HER1. This receptor also differs from the Drosophila EGFR in that negative co-operativity is found only in full-length receptors in cells. Structural insights into HER1 in epithelial cells, derived from FLIM (fluorescence lifetime imaging microscopy) and two-dimensional FRET (Förster resonance energy transfer) combined with Monte Carlo and molecular dynamics simulations, have demonstrated a high-affinity ligand-binding HER1 conformation consistent with the extracellular region aligned flat on the plasma membrane. This conformation shares key features with that of the Drosophila EGFR, suggesting that the structural basis for negative co-operativity is conserved from invertebrates to humans, but that, in HER1, the extracellular region asymmetry requires interactions with the plasma membrane.
Collapse
|
11
|
Langmuir films from human placental membranes: preparation, rheology, transfer to alkylated glasses, and sigmoidal kinetics of alkaline phosphatase in the resultant Langmuir-Blodgett film. Cell Biochem Biophys 2010; 56:91-107. [PMID: 20033626 DOI: 10.1007/s12013-009-9073-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present study, we studied the activity of human placental alkaline phosphatase (PLAP) constraint in a planar surface in controlled molecular packing conditions. For the first time, Langmuir films (LFs) were prepared by the spreading of purified placental membranes (PPM) on the air-water interface and their stability and rheological properties were studied. LFs exhibited a collapse pressure pi(C) = 48 mN/m, hysteresis during the compression-decompression cycle (C-D), indicating a plastic deformation, and a compressibility modulus (K) compatible with liquid-expanded phases. A phase transition point appeared at pi(T) = 28 mN/m and, following successive C-D, it moved toward lower surface areas and higher K, suggesting the lost of some non-PLAP proteins as components of vesicles that might protrude from the monolayer (confirmed by combining lipid/protein molar ratio analysis, PAGE-SDS and V(max)). LFs were transferred at 35 mN/m to alkylated glasses to obtain Langmuir-Blodgett films (LB(35)) the stability of which was confirmed by AFM. The kinetics of p-nitrophenyl phosphate (pNPP) hydrolysis at 37 degrees C catalyzed by PPM was Michaelian and exhibited the thermostability at 60 degrees C typical of PLAP. In LB(35), PLAP exhibited a sigmoidal kinetics which resembled the behavior of the partially metalated enzyme but might become from a cross-talk between protein and membrane structures.
Collapse
|
12
|
Stinghen ST, Moura JF, Zancanella P, Rodrigues GA, Pianovski MA, Lalli E, Arnold DL, Minozzo JC, Callefe LG, Ribeiro RC, Figueiredo BC. Specific immunoassays for placental alkaline phosphatase as a tumor marker. J Biomed Biotechnol 2010; 2006:56087. [PMID: 17489017 PMCID: PMC1559920 DOI: 10.1155/jbb/2006/56087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human placental (hPLAP) and germ cell (PLAP-like) alkaline
phosphatases are polymorphic and heat-stable enzymes. This study
was designed to develop specific immunoassays for quantifying
hPLAP and PLAP-like enzyme activity (EA) in sera of cancer
patients, pregnant women, or smokers. Polyclonal sheep anti-hPLAP
antibodies were purified by affinity chromatography with whole
hPLAP protein (ICA-PLAP assay) or a synthetic peptide (aa 57–71)
of hPLAP (ICA-PEP assay); the working range was 0.1–11 U/L
and cutoff value was 0.2 U/L EA for nonsmokers. The intra-
and interassay coefficients of variation were 3.7%–6.5%
(ICA-PLAP assay) and 9.0%–9.9% (ICA-PEP assay). An
insignificant cross-reactivity was noted for high levels of
unheated intestinal alkaline phosphatase in ICA-PEP assay. A
positive correlation between the regression of tumor size and EA
was noted in a child with embryonal carcinoma. It can be concluded
that ICA-PEP assay is more specific than ICA-PLAP, which is still
useful to detect other PLAP/PLAP-like phenotypes.
Collapse
Affiliation(s)
- Sérvio T. Stinghen
- Centro de Genética Molecular e Pesquisa do
Câncer em Crianças (CEGEMPAC), Rua Agostinho Leão
Júnior, 400 Alto da Glória, Curitiba, PR, CEP 80030-110,
Brazil
| | - Juliana F. Moura
- Centro de Genética Molecular e Pesquisa do
Câncer em Crianças (CEGEMPAC), Rua Agostinho Leão
Júnior, 400 Alto da Glória, Curitiba, PR, CEP 80030-110,
Brazil
| | - Patrícia Zancanella
- Centro de Genética Molecular e Pesquisa do
Câncer em Crianças (CEGEMPAC), Rua Agostinho Leão
Júnior, 400 Alto da Glória, Curitiba, PR, CEP 80030-110,
Brazil
| | - Giovanna A. Rodrigues
- Centro de Genética Molecular e Pesquisa do
Câncer em Crianças (CEGEMPAC), Rua Agostinho Leão
Júnior, 400 Alto da Glória, Curitiba, PR, CEP 80030-110,
Brazil
| | - Mara A. Pianovski
- Division of Pediatric Hematology and Oncology,
Department of Pediatrics, Federal University of Paraná,
Curitiba, PR, CEP 80060-000, Brazil
| | - Enzo Lalli
- Institut de Pharmacologie Moléculaire et
Cellulaire, CNRS UMR 6097, 06560 Valbonne Sophia
Antipolis, France
| | | | - João C. Minozzo
- Center for Research and Production of
Immunoglobulins (CPPI), Rua Targino da Silva s/n, Piraquara, PR, CEP 83302-160, Brazil
| | - Luis G. Callefe
- Centro de Genética Molecular e Pesquisa do
Câncer em Crianças (CEGEMPAC), Rua Agostinho Leão
Júnior, 400 Alto da Glória, Curitiba, PR, CEP 80030-110,
Brazil
| | - Raul C. Ribeiro
- St. Jude Children's Research Hospital, Department of Hematology and Oncology and International Outreach Program,
332 North Lauderdale, Memphis, TN 38105, USA
| | - Bonald C. Figueiredo
- Centro de Genética Molecular e Pesquisa do
Câncer em Crianças (CEGEMPAC), Rua Agostinho Leão
Júnior, 400 Alto da Glória, Curitiba, PR, CEP 80030-110,
Brazil
- Research Institute
Pelé Pequeno Príncipe (IPPP), Avenida Silva Jardim, 1632
Água Verda, Curitiba, PR, CEP 80250-200, Brazil
- *Bonald C. Figueiredo:
| |
Collapse
|
13
|
Simão AMS, Yadav MC, Narisawa S, Bolean M, Pizauro JM, Hoylaerts MF, Ciancaglini P, Millán JL. Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics. J Biol Chem 2010; 285:7598-609. [PMID: 20048161 PMCID: PMC2844207 DOI: 10.1074/jbc.m109.079830] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/15/2009] [Indexed: 01/01/2023] Open
Abstract
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5'-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5'-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5'-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PP(i) were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1-containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PP(i) by TNAP-, and TNAP plus NPP1-containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.
Collapse
Affiliation(s)
- Ana Maria S. Simão
- From the Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Manisha C. Yadav
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Sonoko Narisawa
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - Mayte Bolean
- From the Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil
| | - Joao Martins Pizauro
- the Department of Technology, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista, Jaboticabal SP 14884-900, Brazil, and
| | - Marc F. Hoylaerts
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
- the Center for Molecular and Vascular Biology, University of Leuven, B-3000, Leuven, Belgium
| | - Pietro Ciancaglini
- From the Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto SP 14040-901, Brazil
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| | - José Luis Millán
- the Sanford Children's Health Research Center, Burnham Institute for Medical Research, La Jolla, California 92037
| |
Collapse
|
14
|
Paulick MG, Bertozzi CR. The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for proteins. Biochemistry 2008; 47:6991-7000. [PMID: 18557633 PMCID: PMC2663890 DOI: 10.1021/bi8006324] [Citation(s) in RCA: 399] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified protein in the outer leaflet of the cell membrane. The GPI anchor is a complex structure comprising a phosphoethanolamine linker, glycan core, and phospholipid tail. GPI-anchored proteins are structurally and functionally diverse and play vital roles in numerous biological processes. While several GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. This review discusses the structural diversity of the GPI anchor and its putative cellular functions, including involvement in lipid raft partitioning, signal transduction, targeting to the apical membrane, and prion disease pathogenesis. We specifically highlight studies in which chemically synthesized GPI anchors and analogues have been employed to study the roles of this unique posttranslational modification.
Collapse
Affiliation(s)
- Margot G Paulick
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
15
|
Sesana S, Re F, Bulbarelli A, Salerno D, Cazzaniga E, Masserini M. Membrane Features and Activity of GPI-Anchored Enzymes: Alkaline Phosphatase Reconstituted in Model Membranes. Biochemistry 2008; 47:5433-40. [DOI: 10.1021/bi800005s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Silvia Sesana
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Francesca Re
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | | | - Domenico Salerno
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Emanuela Cazzaniga
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Massimo Masserini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
16
|
DWIECKI KRZYSZTOF, GÓRNAŚ PAWEŁ, JACKOWIAK HANNA, NOGALA-KAŁUCKA MAŁGORZATA, POLEWSKI KRZYSZTOF. THE EFFECT OF D-ALPHA-TOCOPHEROL ON THE SOLUBILIZATION OF DIPALMITOYLPHOSPHATIDYLCHOLINE MEMBRANE BY ANIONIC DETERGENT SODIUM DODECYL SULFATE. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1745-4522.2006.00070.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Siafakas AR, Wright LC, Sorrell TC, Djordjevic JT. Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. EUKARYOTIC CELL 2006; 5:488-98. [PMID: 16524904 PMCID: PMC1398056 DOI: 10.1128/ec.5.3.488-498.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipid rafts have been identified in the membranes of mammalian cells, the yeast Saccharomyces cerevisiae, and the pathogenic fungus Candida albicans. Formed by a lateral association of sphingolipids and sterols, rafts concentrate proteins carrying a glycosylphosphatidylinositol (GPI) anchor. We report the isolation of membranes with the characteristics of rafts from the fungal pathogen Cryptococcus neoformans. These characteristics include insolubility in Triton X-100 (TX100) at 4 degrees C, more-buoyant density within a sucrose gradient than the remaining membranes, and threefold enrichment with sterols. The virulence determinant phospholipase B1 (PLB1), a GPI-anchored protein, was highly concentrated in raft membranes and could be displaced from them by treatment with the sterol-sequestering agent methyl-beta-cyclodextrin (MbetaCD). Phospholipase B enzyme activity was inhibited in the raft environment and increased 15-fold following disruption of rafts with TX100 at 37 degrees C. Treatment of viable cryptococcal cells in suspension with MbetaCD also released PLB1 protein and enzyme activity, consistent with localization of PLB1 in plasma membrane rafts prior to secretion. The antioxidant virulence factor Cu/Zn superoxide dismutase (SOD1) was concentrated six- to ninefold in raft membrane fractions compared with nonraft membranes, whereas the cell wall-associated virulence factor laccase was not detected in membranes. We hypothesize that raft membranes function to cluster certain virulence factors at the cell surface to allow efficient access to enzyme substrate and/or to provide rapid release to the external environment.
Collapse
Affiliation(s)
- A Rosemary Siafakas
- Centre for Infectious Diseases & Microbiology, Level 3, ICPMR Building, Westmead Hospital, Westmead, NSW 2145, Australia
| | | | | | | |
Collapse
|
18
|
Kusumi A, Suzuki K. Toward understanding the dynamics of membrane-raft-based molecular interactions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:234-51. [PMID: 16368465 DOI: 10.1016/j.bbamcr.2005.10.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/10/2005] [Accepted: 10/11/2005] [Indexed: 11/30/2022]
Abstract
The cell membrane is a 2-dimensional non-ideal liquid containing dynamic structures on various time-space scales, and the raft domain is one of them. Existing literature supports the concept that raft dynamics may be important for its formation and function: the raft function may be supported by stimulation-induced raft association/coalescence and recruitment of various raftophilic molecules to coalesced rafts, and, importantly, they both may happen transiently. Thus, one must always consider the limited association time of a raft or a raftophilic molecule with another raft, even when one interprets the results of static experiments, such as immunofluorescence and pull-down assays. Critical considerations on the chemical fixation mechanism and immunocolocalization data suggest that the temporary nature of raft-based molecular interactions may explain why colocalization results are sensitive to subtle variations in experimental conditions employed in different laboratories.
Collapse
Affiliation(s)
- Akihiro Kusumi
- The Institute for Frontier Medical Sciences, Kyoto University, 606-8507, Japan.
| | | |
Collapse
|
19
|
Nowrouzi A, Yazdanparast R. Alkaline phosphatase retained in HepG2 hepatocarcinoma cells vs. alkaline phosphatase released to culture medium: difference of aberrant glycosylation. Biochem Biophys Res Commun 2005; 330:400-9. [PMID: 15796897 DOI: 10.1016/j.bbrc.2005.02.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Indexed: 10/25/2022]
Abstract
Liver tissue is the source of 90% of serum alkaline phosphatase (AP). The serum levels and structures of tumor marker proteins change under many disease conditions as well as cancer. The study was aimed at determining the type of alkaline phosphatase (AP) present in HepG2 hepatocellular carcinoma cell line. Alkaline phosphatase rich extracts of healthy human liver, HepG2 hepatocarcinoma cells, as well as the condition medium of HepG2 cells were prepared by extraction with 40% n-butanol and 30-50% acetone precipitation, and subjected to various chromatographic procedures. Lectin affinity chromatography of the samples with concanavalin A-Sepharose 4B showed considerable differences in the elution patterns. Non-denaturing polyacrylamide gel electrophoresis of the culture medium yielded a relatively slow migrating band of activity that coincided with none of the three bands of activity produced by the normal liver extract, nor with the bands of the cell pellet extract. Inhibition patterns were established by measuring the enzyme activities in the presence of varying concentrations of L-phenylalanine, L-leucine, L-homoarginine, and levamisole. The APs from the cell line were neuraminidase sensitive. According to the results the main AP produced and released to the medium by HepG2 cell line is an aberrantly glycosylated tissue non-specific AP. In addition, the differences between the cell-pellet AP and the culture medium AP seemed to stem from different sugar moieties in their structures.
Collapse
Affiliation(s)
- Azin Nowrouzi
- Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | | |
Collapse
|
20
|
Cross B, Ronzon F, Roux B, Rieu JP. Measurement of the anchorage force between GPI-anchored alkaline phosphatase and supported membranes by AFM force spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5149-53. [PMID: 15896063 DOI: 10.1021/la0470986] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mammalian alkaline phosphatases (AP) are glycosylphosphatidylinositol (GPI) anchored proteins that are localized on the outer layer of the plasma membrane. The GPI anchors are covalently attached to the C-termini of proteins and consist of a glycan chain bonded to phosphatidylinositol with two acyl chains anchored into the membrane bilayer. Force spectroscopy, based on atomic force microscope (AFM) technology, was used to determine the adhesion of alkaline phosphatase in the absence and presence of anchors. The GPI anchors increase markedly the adhesion frequency (i.e., the protein affinity for the membrane). An adhesion force of 350 +/- 200 pN is measured between GPI-anchored AP (AP(GPI)) and supported phospholipid bilayers of dipalmitoylphosphatidylcholine (DPPC) presenting structural defects (holes). In the absence of defects, the adhesion force (103 +/- 17 pN) and the adhesion frequency are reduced. These results indicate that AP(GPI) poorly spontaneously insert into membranes in vivo and open new perspectives for the characterization of the interactions between GPI proteins and membranes.
Collapse
Affiliation(s)
- Benjamin Cross
- Laboratoire de Physique de la Matière Condensée et Nanostructures, Université Claude Bernard Lyon-1 et CNRS, 69622 Villeurbanne, France
| | | | | | | |
Collapse
|
21
|
Goubaeva F, Giardina S, Yiu K, Parfyonova Y, Tkachuk VA, Yang J. T-cadherin GPI-anchor is insufficient for apical targeting in MDCK cells. Biochem Biophys Res Commun 2005; 329:624-31. [PMID: 15737631 DOI: 10.1016/j.bbrc.2005.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Indexed: 12/14/2022]
Abstract
T-cadherin is a 95kDa glycoprotein member of the cadherin family of adhesion molecules attached to the extracellular surface of the cell membrane through a glycosyl-phosphatidylinositol (GPI)-anchor. Whether a T-cadherin ectodomain apical targeting signal or the GPI-anchor itself targets this protein to the apical membrane is not known. Chimeras of the reporter EGFP and T-cadherin have demonstrated that a minimal construct consisting of the C-terminal 25 amino acids including the N690 (omega-site) of T-cadherin was sufficient to GPI-anchor the EGFP protein. However, efficient GPI-anchor with minimal secretion of the protein required an additional 5 residues (omega-1 to omega-5). The GPI-anchored chimeras fractionated to the Triton X-100 detergent insoluble fraction and were released to the cell culture supernatant by phosphoinositide-specific phospho-lipase C digestion. When expressed in MDCK cells, all GPI-anchored chimeras targeted to the basolateral membrane, while the T/N-chimera and the wild-type T-cadherin targeted to the apical membrane. Therefore, T-cadherin is an example of another rare GPI-anchored protein where the anchor itself is not sufficient for apical targeting in MDCK cells.
Collapse
Affiliation(s)
- Farida Goubaeva
- Department of Anesthesiology, Columbia University P & S, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
22
|
Arsov Z, Schara M, Zorko M, Strancar J. The membrane lateral domain approach in the studies of lipid-protein interaction of GPI-anchored bovine erythrocyte acetylcholinesterase. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 33:715-25. [PMID: 15241570 DOI: 10.1007/s00249-004-0417-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 04/20/2004] [Accepted: 05/03/2004] [Indexed: 10/26/2022]
Abstract
A novel membrane lateral domain approach was used to test whether the activity of the membrane-bound enzyme acetylcholinesterase (AChE) depends on the local properties (e.g. local lipid ordering) of bovine erythrocyte-ghost membrane. This issue has an additional aspect of interest due to an alternative mode of insertion of AChE molecules into the membrane by the glycosylphosphatidylinositol (GPI) anchor. In our experiments the lateral domain membrane structure was influenced by temperature and by the addition of n-butanol, and was quantitatively characterized using the method of EPR spectrum decomposition. The activity of AChE was determined by a colorimetric assay in the same samples. The results show that the membrane stabilizes the conformation of the membrane-bound AChE compared to the isolated AChE. In addition, a correlation was observed between the temperature dependence of order parameter of the most-ordered domain type and the activity of AChE. Therefore, our findings support the idea that the function of GPI proteins can be modulated by the lipid bilayer. Based on the assumption that the overall activity of AChE depends on the order parameters of particular domain types as well as their proportions, two models for AChE activity were introduced. In the first, a random distribution of enzyme molecules was proposed, and in the second, localization of enzyme molecules in a single (cholesterol-rich) domain type was assumed. Better agreement between measured and calculated activity values speaks in favor of the second model.
Collapse
Affiliation(s)
- Zoran Arsov
- Laboratory of Biophysics, JoZef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia,
| | | | | | | |
Collapse
|
23
|
Caseli L, Furriel RPM, de Andrade JF, Leone FA, Zaniquelli MED. Surface density as a significant parameter for the enzymatic activity of two forms of alkaline phosphatase immobilized on phospholipid Langmuir–Blodgett films. J Colloid Interface Sci 2004; 275:123-30. [PMID: 15158389 DOI: 10.1016/j.jcis.2004.01.081] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Accepted: 01/29/2004] [Indexed: 11/15/2022]
Abstract
Rat osseous plate alkaline phosphatase, a glycosylphosphatidylinositol (GPI)-anchored phosphomonohydrolase, was immobilized on Langmuir-Blodgett (LB) films. Enzyme solubilization either with polyoxyethylene-9-lauryl ether or with a glycosylphosphatidylinositol-specific phospholipase C resulted in a GPI-anchor-containing and a GPI-anchor-depleted form, respectively. Both forms were adsorbed on dimyristoylphosphatidic acid LB films and restricted to the outermost layer. The surface density and enzyme activity were determined using a quartz crystal microbalance and p-nitrophenylphosphatase activity, respectively. The detergent-solubilized form was co-spread with dimyristoylphosphatidic acid on the air/water interface and transferred to solid supports, providing an enzyme maximum surface density of 530 ng/cm2. Maximal phosphohydrolytic activity, corresponding to 43% of that observed in homogeneous medium, was obtained at a surface density of 179 ng/cm2. The phospholipase C-solubilized form was adsorbed directly from solution, reaching a maximum surface density of 1541 ng/cm2, although the phosphomonohydrolase activity was 10 times lower than that obtained for the anchor-containing form. The combined analysis of surface density and enzymatic activity suggests that the alignment of the protein molecules on the LB lipid films induced by the glycosylphosphatidylinositol anchor facilitates the access of the substrate to the active site. This access is hampered by increasing enzyme surface densities and depends on a specific orientation of the adsorbed enzyme.
Collapse
Affiliation(s)
- Luciano Caseli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
24
|
Abstract
The structure of covalently-linked glycosylphosphatidylinositol (GPI) anchors of membrane proteins displayed on the cell surface is described. Evidence of how the GPI-anchors are sorted into membrane rafts in the plasma membrane is reviewed. Proteins are released by hydrolysis of the linkage to the GPI anchor and phospholipases from different sources involved in this process are characterised. The regulation of protein conformation and function resulting from phospholipase cleavage of the GPI anchor is discussed in the context of its role in signal transduction by insulin. In this signalling system, re-distribution of critical membrane components, including GPI-anchored proteins and non-receptor tyrosine kinases, between different raft domains appears to play a central role in the signal transduction pathway.
Collapse
Affiliation(s)
- Frances J Sharom
- Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | | |
Collapse
|
25
|
Edidin M. The state of lipid rafts: from model membranes to cells. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:257-83. [PMID: 12543707 DOI: 10.1146/annurev.biophys.32.110601.142439] [Citation(s) in RCA: 1000] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid raft microdomains were conceived as part of a mechanism for the intracellular trafficking of lipids and lipid-anchored proteins. The raft hypothesis is based on the behavior of defined lipid mixtures in liposomes and other model membranes. Experiments in these well-characterized systems led to operational definitions for lipid rafts in cell membranes. These definitions, detergent solubility to define components of rafts, and sensitivity to cholesterol deprivation to define raft functions implicated sphingolipid- and cholesterol-rich lipid rafts in many cell functions. Despite extensive work, the basis for raft formation in cell membranes and the size of rafts and their stability are all uncertain. Recent work converges on very small rafts <10 nm in diameter that may enlarge and stabilize when their constituents are cross-linked.
Collapse
Affiliation(s)
- Michael Edidin
- Biology Department, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
| |
Collapse
|
26
|
Yang DH, Wildeman AG, Sharom FJ. Overexpression, purification, and structural analysis of the hydrophobic E5 protein from human papillomavirus type 16. Protein Expr Purif 2003; 30:1-10. [PMID: 12821315 DOI: 10.1016/s1046-5928(03)00049-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The E5 proteins of human papillomavirus (HPV) are highly hydrophobic transmembrane proteins that display weak transforming activity. The HPV E5 proteins are localized largely to intracellular membranes, such as the Golgi apparatus and endoplasmic reticulum, but also appear in the plasma membrane. Infection with HPV16 is the cause of over 90% of human cervical cancers. HPV E5 is known to interact with growth factor receptors and gap junction proteins and is believed to play a role during the initiation of neoplasia. The structure of HPV E5 and the mechanism of its interactions with growth factor receptors remain largely unknown. In the present studies, the E5 protein of HPV16 was cloned into the pBAD/TOPO vector fused to an N-terminal thioredoxin leader and a C-terminal His-tag, and expressed in Escherichia coli. The identity of the protein was confirmed by immunoblotting using antibodies against a V5-epitope tag engineered into the protein. Due to formation of high molecular mass superaggregates of the protein, two chromatography steps were employed for its purification: (1) gel filtration chromatography to separate the superaggregated protein from other soluble proteins and (2) Ni-chelate affinity chromatography in the presence of detergent. The superaggregates of the E5-fusion protein were broken down to monomers and various oligomers by sonication in the presence of 0.2% SDS. The purified E5-fusion protein was then reconstituted into lipid vesicles and initial structural analysis of the protein was performed using circular dichroism spectroscopy.
Collapse
Affiliation(s)
- Dan-Hui Yang
- Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | |
Collapse
|
27
|
Sharom FJ, Lehto MT. Glycosylphosphatidylinositol-anchored proteins: structure, function, and cleavage by phosphatidylinositol-specific phospholipase C. Biochem Cell Biol 2003; 80:535-49. [PMID: 12440695 DOI: 10.1139/o02-146] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A wide variety of proteins are tethered by a glycosylphosphatidylinositol (GPI) anchor to the extracellular face of eukaryotic plasma membranes, where they are involved in a number of functions ranging from enzymatic catalysis to adhesion. The exact function of the GPI anchor has been the subject of much speculation. It appears to act as an intracellular signal targeting proteins to the apical surface in polarized cells. GPI-anchored proteins are sorted into sphingolipid- and cholesterol-rich microdomains, known as lipid rafts, before transport to the membrane surface. Their localization in raft microdomains may explain the involvement of this class of proteins in signal transduction processes. Substantial evidence suggests that GPI-anchored proteins may interact closely with the bilayer surface, so that their functions may be modulated by the biophysical properties of the membrane. The presence of the anchor appears to impose conformational restraints, and its removal may alter the catalytic properties and structure of a GPI-anchored protein. Release of GPI-anchored proteins from the cell surface by specific phospholipases may play a key role in regulation of their surface expression and functional properties. Reconstitution of GPI-anchored proteins into bilayers of defined phospholipids provides a powerful tool with which to explore the interactions of these proteins with the membrane and investigate how bilayer properties modulate their structure, function, and cleavage by phospholipases.
Collapse
Affiliation(s)
- Frances J Sharom
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Chemistry and Biochemistry, University of Guelph, Canada.
| | | |
Collapse
|
28
|
Szöllösi J, Alexander DR. The Application of Fluorescence Resonance Energy Transfer to the Investigation of Phosphatases. Methods Enzymol 2003; 366:203-24. [PMID: 14674251 DOI: 10.1016/s0076-6879(03)66017-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- János Szöllösi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen H-4012, Hungary
| | | |
Collapse
|