1
|
Höing L, Sowa ST, Toplak M, Reinhardt JK, Jakob R, Maier T, Lill MA, Teufel R. Biosynthesis of the bacterial antibiotic 3,7-dihydroxytropolone through enzymatic salvaging of catabolic shunt products. Chem Sci 2024; 15:7749-7756. [PMID: 38784727 PMCID: PMC11110157 DOI: 10.1039/d4sc01715c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
The non-benzenoid aromatic tropone ring is a structural motif of numerous microbial and plant natural products with potent bioactivities. In bacteria, tropone biosynthesis involves early steps of the widespread CoA-dependent phenylacetic acid (paa) catabolon, from which a shunt product is sequestered and surprisingly further utilized as a universal precursor for structurally and functionally diverse tropone derivatives such as tropodithietic acid or (hydroxy)tropolones. Here, we elucidate the biosynthesis of the antibiotic 3,7-dihydroxytropolone in Actinobacteria by in vitro pathway reconstitution using paa catabolic enzymes as well as dedicated downstream tailoring enzymes, including a thioesterase (TrlF) and two flavoprotein monooxygenases (TrlCD and TrlE). We furthermore mechanistically and structurally characterize the multifunctional key enzyme TrlE, which mediates an unanticipated ipso-substitution involving a hydroxylation and subsequent decarboxylation of the CoA-freed side chain, followed by ring oxidation to afford tropolone. This study showcases a remarkably efficient strategy for 3,7-dihydroxytropolone biosynthesis and illuminates the functions of the involved biosynthetic enzymes.
Collapse
Affiliation(s)
- Lars Höing
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Sven T Sowa
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Marina Toplak
- Hilde-Mangold-Haus (CIBSS), University of Freiburg Habsburgerstrasse 49 79104 Freiburg im Breisgau Germany
| | - Jakob K Reinhardt
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Roman Jakob
- Biozentrum, University of Basel Spitalstrasse 41 4056 Basel Switzerland
| | - Timm Maier
- Biozentrum, University of Basel Spitalstrasse 41 4056 Basel Switzerland
| | - Markus A Lill
- Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| | - Robin Teufel
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
2
|
Katsuki N, Fukushima R, Doi Y, Masuo S, Arakawa T, Yamada C, Fushinobu S, Takaya N. Protocatechuate hydroxylase is a novel group A flavoprotein monooxygenase with a unique substrate recognition mechanism. J Biol Chem 2024; 300:105508. [PMID: 38029967 PMCID: PMC10770758 DOI: 10.1016/j.jbc.2023.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
Para-hydroxybenzoate hydroxylase (PHBH) is a group A flavoprotein monooxygenase that hydroxylates p-hydroxybenzoate to protocatechuate (PCA). Despite intensive studies of Pseudomonas aeruginosa p-hydroxybenzoate hydroxylase (PaPobA), the catalytic reactions of extremely diverse putative PHBH isozymes remain unresolved. We analyzed the phylogenetic relationships of known and predicted PHBHs and identified eight divergent clades. Clade F contains a protein that lacks the critical amino acid residues required for PaPobA to generate PHBH activity. Among proteins in this clade, Xylophilus ampelinus PobA (XaPobA) preferred PCA as a substrate and is the first known natural PCA 5-hydroxylase (PCAH). Crystal structures and kinetic properties revealed similar mechanisms of substrate carboxy group recognition between XaPobA and PaPobA. The unique Ile75, Met72, Val199, Trp201, and Phe385 residues of XaPobA form the bottom of a hydrophobic cavity with a shape that complements the 3-and 4-hydroxy groups of PCA and its binding site configuration. An interaction between the δ-sulfur atom of Met210 and the aromatic ring of PCA is likely to stabilize XaPobA-PCA complexes. The 4-hydroxy group of PCA forms a hydrogen bond with the main chain carbonyl of Thr294. These modes of binding constitute a novel substrate recognition mechanism that PaPobA lacks. This mechanism characterizes XaPobA and sheds light on the diversity of catalytic mechanisms of PobA-type PHBHs and group A flavoprotein monooxygenases.
Collapse
Affiliation(s)
- Nozomi Katsuki
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Riku Fukushima
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan
| | - Yuki Doi
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shunsuke Masuo
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takatoshi Arakawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Chihaya Yamada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
3
|
Phintha A, Chaiyen P. Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin. J Biol Chem 2023; 299:105413. [PMID: 37918809 PMCID: PMC10696468 DOI: 10.1016/j.jbc.2023.105413] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023] Open
Abstract
Flavin-dependent monooxygenases (FDMOs) are known for their remarkable versatility and for their crucial roles in various biological processes and applications. Extensive research has been conducted to explore the structural and functional relationships of FDMOs. The majority of reported FDMOs utilize C4a-(hydro)peroxyflavin as a reactive intermediate to incorporate an oxygen atom into a wide range of compounds. This review discusses and analyzes recent advancements in our understanding of the structural and mechanistic features governing the enzyme functions. State-of-the-art discoveries related to common and distinct structural properties governing the catalytic versatility of the C4a-(hydro)peroxyflavin intermediate in selected FDMOs are discussed. Specifically, mechanisms of hydroxylation, dehalogenation, halogenation, and light-emitting reactions by FDMOs are highlighted. We also provide new analysis based on the structural and mechanistic features of these enzymes to gain insights into how the same intermediate can be harnessed to perform a wide variety of reactions. Challenging questions to obtain further breakthroughs in the understanding of FDMOs are also proposed.
Collapse
Affiliation(s)
- Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand.
| |
Collapse
|
4
|
Nonaka K, Osamura T, Takahashi F. A 4-hydroxybenzoate 3-hydroxylase mutant enables 4-amino-3-hydroxybenzoic acid production from glucose in Corynebacterium glutamicum. Microb Cell Fact 2023; 22:168. [PMID: 37644492 PMCID: PMC10466732 DOI: 10.1186/s12934-023-02179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Microbial production of aromatic chemicals is an attractive method for obtaining high-performance materials from biomass resources. A non-proteinogenic amino acid, 4-amino-3-hydroxybenzoic acid (4,3-AHBA), is expected to be a precursor of highly functional polybenzoxazole polymers; however, methods for its microbial production have not been reported. In this study, we attempted to produce 4,3-AHBA from glucose by introducing 3-hydroxylation of 4-aminobenzoic acid (4-ABA) into the metabolic pathway of an industrially relevant bacterium, Corynebacterium glutamicum. RESULTS Six different 4-hydroxybenzoate 3-hydroxylases (PHBHs) were heterologously expressed in C. glutamicum strains, which were then screened for the production of 4,3-AHBA by culturing with glucose as a carbon source. The highest concentration of 4,3-AHBA was detected in the strain expressing PHBH from Caulobacter vibrioides (CvPHBH). A combination of site-directed mutagenesis in the active site and random mutagenesis via laccase-mediated colorimetric assay allowed us to obtain CvPHBH mutants that enhanced 4,3-AHBA productivity under deep-well plate culture conditions. The recombinant C. glutamicum strain expressing CvPHBHM106A/T294S and having an enhanced 4-ABA biosynthetic pathway produced 13.5 g/L (88 mM) 4,3-AHBA and 0.059 g/L (0.43 mM) precursor 4-ABA in fed-batch culture using a nutrient-rich medium. The culture of this strain in the chemically defined CGXII medium yielded 9.8 C-mol% of 4,3-AHBA from glucose, corresponding to 12.8% of the theoretical maximum yield (76.8 C-mol%) calculated using a genome-scale metabolic model of C. glutamicum. CONCLUSIONS Identification of PHBH mutants that could efficiently catalyze the 3-hydroxylation of 4-ABA in C. glutamicum allowed us to construct an artificial biosynthetic pathway capable of producing 4,3-AHBA on a gram-scale using glucose as the carbon source. These findings will contribute to a better understanding of enzyme-catalyzed regioselective hydroxylation of aromatic chemicals and to the diversification of biomass-derived precursors for high-performance materials.
Collapse
Affiliation(s)
- Kyoshiro Nonaka
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan.
| | - Tatsuya Osamura
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| | - Fumikazu Takahashi
- Biological Science Research, Kao Corporation, 1334 Minato, Wakayama, Wakayama, 640-8580, Japan
| |
Collapse
|
5
|
Reis RAG, Li H, Johnson M, Sobrado P. New frontiers in flavin-dependent monooxygenases. Arch Biochem Biophys 2021; 699:108765. [PMID: 33460580 DOI: 10.1016/j.abb.2021.108765] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Flavin-dependent monooxygenases catalyze a wide variety of redox reactions in important biological processes and are responsible for the synthesis of highly complex natural products. Although much has been learned about FMO chemistry in the last ~80 years of research, several aspects of the reactions catalyzed by these enzymes remain unknown. In this review, we summarize recent advancements in the flavin-dependent monooxygenase field including aspects of flavin dynamics, formation and stabilization of reactive species, and the hydroxylation mechanism. Novel catalysis of flavin-dependent N-oxidases involving consecutive oxidations of amines to generate oximes or nitrones is presented and the biological relevance of the products is discussed. In addition, the activity of some FMOs have been shown to be essential for the virulence of several human pathogens. We also discuss the biomedical relevance of FMOs in antibiotic resistance and the efforts to identify inhibitors against some members of this important and growing family enzymes.
Collapse
Affiliation(s)
| | - Hao Li
- Department of Biochemistry, Blacksburg, VA, 24061, USA
| | - Maxim Johnson
- Department of Biochemistry, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry, Blacksburg, VA, 24061, USA; Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
6
|
Abstract
Many flavin-dependent phenolic hydroxylases (monooxygenases) have been extensively investigated. Their crystal structures and reaction mechanisms are well understood. These enzymes belong to groups A and D of the flavin-dependent monooxygenases and can be classified as single-component and two-component flavin-dependent monooxygenases. The insertion of molecular oxygen into the substrates catalyzed by these enzymes is beneficial for modifying the biological properties of phenolic compounds and their derivatives. This chapter provides an in-depth discussion of the structural features of single-component and two-component flavin-dependent phenolic hydroxylases. The reaction mechanisms of selected enzymes, including 3-hydroxy-benzoate 4-hydroxylase (PHBH) and 3-hydroxy-benzoate 6-hydroxylase as representatives of single-component enzymes and 3-hydroxyphenylacetate 4-hydroxylase (HPAH) as a representative of two-component enzymes, are discussed in detail. This chapter comprises the following four main parts: general reaction, structures, reaction mechanisms, and enzyme engineering for biocatalytic applications. Enzymes belonging to the same group catalyze similar reactions but have different unique structural features to control their reactivity to substrates and the formation and stabilization of C4a-hydroperoxyflavin. Protein engineering has been employed to improve the ability to use these enzymes to synthesize valuable compounds. A thorough understanding of the structural and mechanistic features controlling enzyme reactivity is useful for enzyme redesign and enzyme engineering for future biocatalytic applications.
Collapse
Affiliation(s)
- Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, Thailand.
| | - Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, Thailand; Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Chanakan Tongsook
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| |
Collapse
|
7
|
Manenda MS, Picard MÈ, Zhang L, Cyr N, Zhu X, Barma J, Pascal JM, Couture M, Zhang C, Shi R. Structural analyses of the Group A flavin-dependent monooxygenase PieE reveal a sliding FAD cofactor conformation bridging OUT and IN conformations. J Biol Chem 2020; 295:4709-4722. [PMID: 32111738 DOI: 10.1074/jbc.ra119.011212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/26/2020] [Indexed: 02/02/2023] Open
Abstract
Group A flavin-dependent monooxygenases catalyze the cleavage of the oxygen-oxygen bond of dioxygen, followed by the incorporation of one oxygen atom into the substrate molecule with the aid of NADPH and FAD. These flavoenzymes play an important role in many biological processes, and their most distinct structural feature is the choreographed motions of flavin, which typically adopts two distinct conformations (OUT and IN) to fulfill its function. Notably, these enzymes seem to have evolved a delicate control system to avoid the futile cycle of NADPH oxidation and FAD reduction in the absence of substrate, but the molecular basis of this system remains elusive. Using protein crystallography, size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), and small-angle X-ray scattering (SEC-SAXS) and activity assay, we report here a structural and biochemical characterization of PieE, a member of the Group A flavin-dependent monooxygenases involved in the biosynthesis of the antibiotic piericidin A1. This analysis revealed that PieE forms a unique hexamer. Moreover, we found, to the best of our knowledge for the first time, that in addition to the classical OUT and IN conformations, FAD possesses a "sliding" conformation that exists in between the OUT and IN conformations. This observation sheds light on the underlying mechanism of how the signal of substrate binding is transmitted to the FAD-binding site to efficiently initiate NADPH binding and FAD reduction. Our findings bridge a gap currently missing in the orchestrated order of chemical events catalyzed by this important class of enzymes.
Collapse
Affiliation(s)
- Mahder S Manenda
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Marie-Ève Picard
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Normand Cyr
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Xiaojun Zhu
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Julie Barma
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - John M Pascal
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Manon Couture
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada.,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Rong Shi
- Département de Biochimie, de Microbiologie, et de Bio-informatique, PROTEO, Université Laval, Québec G1V 0A6, Canada .,Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
8
|
Chenprakhon P, Wongnate T, Chaiyen P. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases. Protein Sci 2020; 28:8-29. [PMID: 30311986 DOI: 10.1002/pro.3525] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Many flavoenzymes catalyze hydroxylation of aromatic compounds especially phenolic compounds have been isolated and characterized. These enzymes can be classified as either single-component or two-component flavin-dependent hydroxylases (monooxygenases). The hydroxylation reactions catalyzed by the enzymes in this group are useful for modifying the biological properties of phenolic compounds. This review aims to provide an in-depth discussion of the current mechanistic understanding of representative flavin-dependent monooxygenases including 3-hydroxy-benzoate 4-hydroxylase (PHBH, a single-component hydroxylase), 3-hydroxyphenylacetate 4-hydroxylase (HPAH, a two-component hydroxylase), and other monooxygenases which catalyze reactions in addition to hydroxylation, including 2-methyl-3-hydroxypyridine-5-carboxylate oxygenase (MHPCO, a single-component enzyme that catalyzes aromatic-ring cleavage), and HadA monooxygenase (a two-component enzyme that catalyzes additional group elimination reaction). These enzymes have different unique structural features which dictate their reactivity toward various substrates and influence their ability to stabilize flavin intermediates such as C4a-hydroperoxyflavin. Understanding the key catalytic residues and the active site environments important for governing enzyme reactivity will undoubtedly facilitate future work in enzyme engineering or enzyme redesign for the development of biocatalytic methods for the synthesis of valuable compounds.
Collapse
Affiliation(s)
- Pirom Chenprakhon
- Institute for Innovative Learning, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand
| |
Collapse
|
9
|
Moriwaki Y, Yato M, Terada T, Saito S, Nukui N, Iwasaki T, Nishi T, Kawaguchi Y, Okamoto K, Arakawa T, Yamada C, Fushinobu S, Shimizu K. Understanding the Molecular Mechanism Underlying the High Catalytic Activity of p-Hydroxybenzoate Hydroxylase Mutants for Producing Gallic Acid. Biochemistry 2019; 58:4543-4558. [DOI: 10.1021/acs.biochem.9b00443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yoshitaka Moriwaki
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Tohru Terada
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiji Saito
- Department of Medical Management and Informatics, Hokkaido Information University, 59-2, Nishi Nopporo, Ebetsu, Hokkaido 069-8585, Japan
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Noriyuki Nukui
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Takumi Iwasaki
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Tatsunari Nishi
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Yuko Kawaguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| | - Ken Okamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| | - Takatoshi Arakawa
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chihaya Yamada
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinya Fushinobu
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Shimizu
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
10
|
|
11
|
Suemori A. Conserved and non-conserved residues and their role in the structure and function of p-hydroxybenzoate hydroxylase. Protein Eng Des Sel 2013; 26:479-88. [PMID: 23766373 DOI: 10.1093/protein/gzt026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In order to elucidate the molecular mechanism of the catalytic reaction and enzyme conformation, we substituted 53 conserved residues identified by aligning 92 p-hydroxybenzoate hydroxylase sequences and 19 non-conserved residues selected from crystallographic studies of Pseudomonas fluorescens NBRC14160 p-hydroxybenzoate hydroxylase with 19 other naturally occurring amino acids, yielding a database of 619 active single mutants. The database contained 365 and 254 active single mutants for 44/53 conserved residues and 19 non-conserved residues, respectively; the data included main activity, sub-activity for NADPH and NADPH reaction specificity. Active mutations were not observed for the G14, Q102, G160, E198, R220, R246, N300, F342 and G387 conserved residues, and only one active mutant was obtained at the G9, G11, G187, D286, Y201, R214 and G295 conserved residues and the S13, E32 and R42 non-conserved residues. Only seven active mutants with higher activity than the wild-type enzyme were observed at conserved residues, and only two were observed at non-conserved residues. The 365 mutants at conserved residues included 64 active mutants with higher NADPH reaction specificity than the wild-type enzyme, and some Y181X single mutants exhibited considerable changes in NADPH reaction specificity. A Y181X/L268G double-mutant database was constructed to computationally analyze the effects of these substitutions on structural conformation and function. These results indicated that some conserved or non-conserved residues are important for structural stability or enzyme function.
Collapse
Affiliation(s)
- Akio Suemori
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology-AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
12
|
Marked changes in electron transport through the blue copper protein azurin in the solid state upon deuteration. Proc Natl Acad Sci U S A 2012; 110:507-12. [PMID: 23267087 DOI: 10.1073/pnas.1210457110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Measuring solid-state electron transport (ETp) across proteins allows studying electron transfer (ET) mechanism(s), while minimizing solvation effects on the process. ETp is, however, sensitive to any static (conformational) or dynamic (vibrational) changes in the protein. Our macroscopic measurements allow extending ETp studies to low temperatures, with the concomitant resolution of lower current densities, because of the larger electrode contact areas. Thus, earlier we reported temperature-independent ETp via the copper protein azurin (Az), from 80 K until denaturation, whereas for apo-Az ETp was temperature dependent above 180 K. Deuteration (H/D substitution) may provide mechanistic information on the question of whether the ETp involves H-bonds in the solid state. Here we report results of kinetic deuterium isotope effect (KIE) measurements on ETp through holo-Az as a function of temperature (30-340 K). Strikingly, deuteration changed ETp from temperature independent to temperature dependent above 180 K. This H/D effect is expressed in KIE values between 1.8 (340 K) and 9.1 (≤ 180 K). These values are remarkable in light of the previously reported inverse KIE on ET in Az in solution. We ascribe the difference between our KIE results and those observed in solution to the dominance of solvent effects in the latter (larger thermal expansion in H(2)O than in D(2)O), whereas in our case the KIE is primarily due to intramolecular changes, mainly in the low-frequency structural modes of the protein caused by H/D exchange. The observed high KIE values are consistent with a transport mechanism that involves through-H-bonds of the β-sheet structure of Az, likely also those in the Cu coordination sphere.
Collapse
|
13
|
Li W, Sepunaru L, Amdursky N, Cohen SR, Pecht I, Sheves M, Cahen D. Temperature and force dependence of nanoscale electron transport via the Cu protein azurin. ACS NANO 2012; 6:10816-10824. [PMID: 23136937 DOI: 10.1021/nn3041705] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Solid-state electron transport (ETp) via a monolayer of immobilized azurin (Az) was examined by conducting probe atomic force microscopy (CP-AFM), as a function of both temperature (248-373K) and applied tip force (6-15 nN). At low forces, ETp via holo-Az (with Cu(2+)) is temperature-independent, but thermally activated via the Cu-depleted form of Az, apo-Az. While this observation agrees with those of macroscopic-scale measurements, we find that for holo-Az the mechanism of ETp at high temperatures changes upon an increase in the force applied by the tip to the proteins; namely, above 310 K and forces >6 nN ETp becomes thermally activated. This is in contrast to apo-Az, where increasing applied force causes only small monotonic increases in currents due to decreased electrode separation. The distinct ETp temperature dependence of holo- and apo-Az is assigned to a difference in structural response to pressure between the two protein forms. An important implication of these CP-AFM results (of measurements over a significant temperature range) is that for reliable ETp measurements on flexible macromolecules, such as proteins, the pressure applied during the measurements should be controlled or at least monitored.
Collapse
Affiliation(s)
- Wenjie Li
- Department of Materials & Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Form follows function: structural and catalytic variation in the class a flavoprotein monooxygenases. Int J Mol Sci 2012; 13:15601-39. [PMID: 23443084 PMCID: PMC3546652 DOI: 10.3390/ijms131215601] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 12/02/2022] Open
Abstract
Flavoprotein monooxygenases (FPMOs) exhibit an array of mechanistic solutions to a common chemical objective; the monooxygenation of a target substrate. Each FPMO efficiently couples reduction of a flavin cofactor by NAD(P)H to oxygenation of the target substrate via a (hydro)peroxyflavin intermediate. This purpose of this review is to describe in detail the Class A flavoprotein hydroxylases (FPMO) in the context of the other FPMO classes (B–F). Both one and two component FPMOs are found in nature. Two-component enzymes require, in addition to the monooxygenase, the involvement of a reductase that first catalyzes the reduction of the flavin by NAD(P)H. The Class A and B FPMOs are single-component and manage to orchestrate the same net reaction within a single peptide. The Class A enzymes have, by some considerable margin, the most complete research record. These enzymes use choreographed movements of the flavin ring that facilitate access of the organic substrates to the active site, provide a means for interaction of NADPH with the flavin, offer a mechanism to sequester the dioxygen reduction chemistry from solvent and a means to release the product. The majority of the discrete catalytic events of the catalytic cycle can be observed directly in exquisite detail using spectrophotometric kinetic methods and many of the key mechanistic conclusions are further supported by structural data. This review attempts to compile each of the key observations made for both paradigm and newly discovered examples of Class A FPMOs into a complete catalytic description of one enzymatic turnover.
Collapse
|
15
|
Taguchi T, Okamoto S, Hasegawa K, Ichinose K. Epoxyquinone Formation Catalyzed by a Two-Component Flavin-Dependent Monooxygenase Involved in Biosynthesis of the Antibiotic Actinorhodin. Chembiochem 2011; 12:2767-73. [DOI: 10.1002/cbic.201100571] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Indexed: 11/11/2022]
|
16
|
Walkiewicz K, Davlieva M, Wu G, Shamoo Y. Crystal structure of Bacteroides thetaiotaomicron TetX2: a tetracycline degrading monooxygenase at 2.8 Å resolution. Proteins 2011; 79:2335-40. [PMID: 21590745 DOI: 10.1002/prot.23052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 03/29/2011] [Accepted: 03/31/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Katarzyna Walkiewicz
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main St. MS-140, Houston, Texas, USA
| | | | | | | |
Collapse
|
17
|
1-Naphthol 2-hydroxylase from Pseudomonas sp. strain C6: purification, characterization and chemical modification studies. Biodegradation 2010; 22:517-26. [DOI: 10.1007/s10532-010-9424-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/29/2010] [Indexed: 10/19/2022]
|
18
|
Control of catalysis in flavin-dependent monooxygenases. Arch Biochem Biophys 2010; 493:26-36. [DOI: 10.1016/j.abb.2009.11.028] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 11/17/2022]
|
19
|
Disrupted plasma membrane localization and loss of function reveal regions of human equilibrative nucleoside transporter 1 involved in structural integrity and activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2326-34. [PMID: 19699178 DOI: 10.1016/j.bbamem.2009.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 07/16/2009] [Accepted: 08/12/2009] [Indexed: 01/08/2023]
Abstract
Human Equilibrative Nucleoside Transporter 1 (hENT1) is an integral membrane protein that transports nucleosides and analog drugs across cellular membranes. Very little is known about intracellular processing and localization of hENT1. Here we show that disruption of a highly conserved triplet (PWN) near the N-terminus, or the last eight C-terminal residues (two hydrophobic triplets separated by a positive arginine) result in loss of plasma membrane localization and/or transport function. To understand the role of specific residues within these regions, we studied the localization patterns of N- or C-terminal deletion and/or substitution mutants of GFP-hENT1 using confocal microscopy. Quantification of GFP-hENT1 (mutant and wildtype) protein at the plasma membrane was conducted using nitrobenzylthioinosine (NBTI) binding. Functionality of the GFP-hENT1 mutants was determined by heterologous expression in Xenopus laevis oocytes followed by measurement of uridine uptake. Mutation of the proline within the PWN motif disrupts plasma membrane localization. C-terminal mutations (primarily within the hydrophobic triplets) lead to hENT1 retention within the cell (e.g. in the ER). Some mutants still localize to the plasma membrane but show reduced transport activity. These data suggest that these two regions contribute to the structural integrity and thus correct processing and function of hENT1.
Collapse
|
20
|
Crozier-Reabe KR, Phillips RS, Moran GR. Kynurenine 3-monooxygenase from Pseudomonas fluorescens: substrate-like inhibitors both stimulate flavin reduction and stabilize the flavin-peroxo intermediate yet result in the production of hydrogen peroxide. Biochemistry 2009; 47:12420-33. [PMID: 18954092 DOI: 10.1021/bi8010434] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kynurenine 3-monooxygenase (KMO) is a flavin-dependent hydroxylase that catalyzes the conversion of l-kynurenine (l-Kyn) to 3-hydroxykynurenine (3OHKyn) in the pathway for tryptophan catabolism. KMO inhibition has been widely suggested as an early treatment for stroke and other neurological disorders that involve ischemia. We have investigated the reductive and the oxidative half-reactions of a stable form of KMO from Pseudomonas fluorescens (KMO). The binding of l-Kyn by the enzyme is relatively slow and involves at least two reversible steps. The rate constant for reduction of the flavin cofactor by NADPH increases by a factor of approximately 2.5 x 10(3) when l-Kyn is bound. The rate of reduction of the KMO.l-Kyn complex is 160 s(-1), and the K(d) for the NADPH complex is 200 microM with charge-transfer absorption bands for the KMO(RED).l-Kyn.NADP(+) complex accumulating after reduction. The reduction potential of KMO is -188 mV and is unresponsive to the addition of l-Kyn or other inhibitory ligands. KMO inhibitors whose structures are reminiscent of l-Kyn such as m-nitrobenzoylalanine and benzoylalanine also stimulate reduction of flavin by NADPH and, in the presence of dioxygen, result in the stoichiometric liberation of hydrogen peroxide, diminishing the perceived therapeutic potential of inhibitors of this type. In the presence of the native substrate, the oxidative half-reaction exhibits triphasic absorbance data. A spectrum consistent with that of a peroxyflavin species accumulates and then decays to yield the oxidized enzyme. This species then undergoes minor spectral changes that, based on flavin difference spectra defined in the presence of 3OHKyn, can be correlated with product release. The oxidative half-reaction observed in the presence of saturating benzoylalanine or m-nitrobenzoylalanine also shows the accumulation of a peroxyflavin species that then decays to yield hydrogen peroxide without hydroxylation.
Collapse
Affiliation(s)
- Karen R Crozier-Reabe
- Department of Chemistry and Biochemistry, University of Wisconsin, 3210 North Cramer Street, Milwaukee, Wisconsin 53211-3029, USA
| | | | | |
Collapse
|
21
|
Koskiniemi H, Metsä-Ketelä M, Dobritzsch D, Kallio P, Korhonen H, Mäntsälä P, Schneider G, Niemi J. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis. J Mol Biol 2007; 372:633-48. [PMID: 17669423 DOI: 10.1016/j.jmb.2007.06.087] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/15/2007] [Accepted: 06/28/2007] [Indexed: 11/21/2022]
Abstract
Angucyclines are aromatic polyketides produced in Streptomycetes via complex enzymatic biosynthetic pathways. PgaE and CabE from S. sp PGA64 and S. sp. H021 are two related homo-dimeric FAD and NADPH dependent aromatic hydroxylases involved in the early steps of the angucycline core modification. Here we report the three-dimensional structures of these two enzymes determined by X-ray crystallography using multiple anomalous diffraction and molecular replacement, respectively, to resolutions of 1.8 A and 2.7 A. The enzyme subunits are built up of three domains, a FAD binding domain, a domain involved in substrate binding and a C-terminal thioredoxin-like domain of unknown function. The structure analysis identifies PgaE and CabE as members of the para-hydroxybenzoate hydroxylase (pHBH) fold family of aromatic hydroxylases. In contrast to phenol hydroxylase and 3-hydroxybenzoate hydroxylase that utilize the C-terminal domain for dimer formation, this domain is not part of the subunit-subunit interface in PgaE and CabE. Instead, dimer assembly occurs through interactions of their FAD binding domains. FAD is bound non-covalently in the "in"-conformation. The active sites in the two enzymes differ significantly from those of other aromatic hydroxylases. The volumes of the active site are significantly larger, as expected in view of the voluminous tetracyclic angucycline substrates. The structures further suggest that substrate binding and catalysis may involve dynamic rearrangements of the middle domain relative to the other two domains. Site-directed mutagenesis studies of putative catalytic groups in the active site of PgaE argue against enzyme-catalyzed substrate deprotonation as a step in catalysis. This is in contrast to pHBH, where deprotonation/protonation of the substrate has been suggested as an essential part of the enzymatic mechanism.
Collapse
Affiliation(s)
- Hanna Koskiniemi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Hiromoto T, Fujiwara S, Hosokawa K, Yamaguchi H. Crystal structure of 3-hydroxybenzoate hydroxylase from Comamonas testosteroni has a large tunnel for substrate and oxygen access to the active site. J Mol Biol 2006; 364:878-96. [PMID: 17045293 DOI: 10.1016/j.jmb.2006.09.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Revised: 09/08/2006] [Accepted: 09/12/2006] [Indexed: 11/23/2022]
Abstract
The 3-hydroxybenzoate hydroxylase (MHBH) from Comamonas testosteroni KH122-3s is a single-component flavoprotein monooxygenase, a member of the glutathione reductase (GR) family. It catalyzes the conversion of 3-hydroxybenzoate to 3,4-dihydroxybenzoate with concomitant requirements for equimolar amounts of NADPH and molecular oxygen. The production of dihydroxy-benzenoid derivative by hydroxylation is the first step in the aerobic degradation of various phenolic compounds in soil microorganisms. To establish the structural basis for substrate recognition, the crystal structure of MHBH in complex with its substrate was determined at 1.8 A resolution. The enzyme is shown to form a physiologically active homodimer with crystallographic 2-fold symmetry, in which each subunit consists of the first two domains comprising an active site and the C-terminal domain involved in oligomerization. The protein fold of the catalytic domains and the active-site architecture, including the FAD and substrate-binding sites, are similar to those of 4-hydroxybenzoate hydroxylase (PHBH) and phenol hydroxylase (PHHY), which are members of the GR family, providing evidence that the flavoprotein aromatic hydroxylases share similar catalytic actions for hydroxylation of the respective substrates. Structural comparison of MHBH with the homologous enzymes suggested that a large tunnel connecting the substrate-binding pocket to the protein surface serves for substrate transport in this enzyme. The internal space of the large tunnel is distinctly divided into hydrophilic and hydrophobic regions. The characteristically stratified environment in the tunnel interior and the size of the entrance would allow the enzyme to select its substrate by amphiphilic nature and molecular size. In addition, the structure of the Xe-derivative at 2.5 A resolution led to the identification of a putative oxygen-binding site adjacent to the substrate-binding pocket. The hydrophobic nature of the xenon-binding site extends to the solvent through the tunnel, suggesting that the tunnel could be involved in oxygen transport.
Collapse
Affiliation(s)
- Takeshi Hiromoto
- Department of Chemistry, Nanobiotechnology Research Center, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | | | | | | |
Collapse
|
23
|
Sucharitakul J, Chaiyen P, Entsch B, Ballou DP. Kinetic Mechanisms of the Oxygenase from a Two-component Enzyme, p-Hydroxyphenylacetate 3-Hydroxylase from Acinetobacter baumannii. J Biol Chem 2006; 281:17044-17053. [PMID: 16627482 DOI: 10.1074/jbc.m512385200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p-Hydroxyphenylacetate hydroxylase (HPAH) from Acinetobacter baumannii catalyzes the hydroxylation of p-hydroxyphenylacetate (HPA) to form 3,4-dihydroxyphenylacetate (DHPA). The enzyme system is composed of two proteins: an FMN reductase (C1) and an oxygenase that uses FMNH- (C2). We report detailed transient kinetics studies at 4 degrees C of the reaction mechanism of C2.C2 binds rapidly and tightly to reduced FMN (Kd, 1.2 +/- 0.2 microm), but less tightly to oxidized FMN (Kd, 250 +/- 50 microm). The complex of C -FMNH-2 reacted with oxygen to form C(4a)-hydroperoxy-FMN at 1.1 +/- 0.1 x 10(6) m(-1) s(-1), whereas the C -FMNH-2 -HPA complex reacted with oxygen to form C(4a)-hydroperoxy-FMN-HPA more slowly (k = 4.8 +/- 0.2 x 10(4) m(-1) s(-1)). The kinetic mechanism of C2 was shown to be a preferential random order type, in which HPA or oxygen can initially bind to the C -FMNH-2 complex, but the preferred path was oxygen reacting with C -FMNH-2 to form the C(4a)-hydroperoxy-FMN intermediate prior to HPA binding. Hydroxylation occurs from the ternary complex with a rate constant of 20 s(-1) to form the C2-C(4a)-hydroxy-FMN-DHPA complex. At high HPA concentrations (>0.5 mm), HPA formed a dead end complex with the C2-C(4a)-hydroxy-FMN intermediate (similar to single component flavoprotein hydroxylases), thus inhibiting the bound flavin from returning to the oxidized form. When FADH- was used, C(4a)-hydroperoxy-FAD, C(4a)-hydroxy-FAD, and product were formed at rates similar to those with FMNH-. Thus, C2 has the unusual ability to use both common flavin cofactors in catalysis.
Collapse
Affiliation(s)
- Jeerus Sucharitakul
- Department of Biochemistry and Center for Excellence in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Barrie Entsch
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-06060
| | - David P Ballou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-06060
| |
Collapse
|
24
|
Brender JR, Dertouzos J, Ballou DP, Massey V, Palfey BA, Entsch B, Steel DG, Gafni A. Conformational dynamics of the isoalloxazine in substrate-free p-hydroxybenzoate hydroxylase: single-molecule studies. J Am Chem Soc 2006; 127:18171-8. [PMID: 16366570 DOI: 10.1021/ja055171o] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
p-Hydroxybenzoate hydroxylase (PHBH) is a homodimeric enzyme in which each subunit noncovalently binds one molecule of FAD in the active site. PHBH is a model system for how flavoenzymes regulate reactions with oxygen. We report single-molecule fluorescence studies of PHBH in the absence of substrate that provide data consistent with the hypothesis that a critical step in substrate binding is the movement of the isoalloxazine between an "in" conformation and a more exposed or "open" conformation. The isoalloxazine is observed to move between these conformations in the absence of substrate. Studies with the Y222A mutant form of PHBH suggest that the exposed conformation is fluorescent while the in-conformation is quenched. Finally, we note that many of the single-molecule-fluorescence trajectories reveal a conformational heterogeneity, with populations of the enzyme characterized by either fast or slow switching between the in- and open-conformations. Our data also allow us to hypothesize a model in which one flavin in the dimer inhibits the motion of the other.
Collapse
Affiliation(s)
- Jeffrey R Brender
- Biophysics Research Division, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48104, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ballou DP, Entsch B, Cole LJ. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases. Biochem Biophys Res Commun 2005; 338:590-8. [PMID: 16236251 DOI: 10.1016/j.bbrc.2005.09.081] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
Flavoprotein monooxygenases are involved in a wide variety of biological processes including drug detoxification, biodegradation of aromatic compounds in the environment, biosynthesis of antibiotics and siderophores, and many others. The reactions use NAD(P)H and O2 as co-substrates and insert one atom of oxygen into the substrate. The flavin-dependent monooxygenases utilize a general cycle in which NAD(P)H reduces the flavin, and the reduced flavin reacts with O2 to form a C4a-(hydro)peroxyflavin intermediate, which is the oxygenating agent. This complicated catalytic process has diverse requirements that are difficult to be satisfied by a single site. Two general strategies have evolved to satisfy these requirements. para-Hydroxybenzoate hydroxylase, the paradigm for the single-component flavoprotein monooxygenases, is one of the most thoroughly studied of all enzymes. This enzyme undergoes significant protein and flavin dynamics during catalysis. There is an open conformation that gives access of substrate and product to solvent, and a closed or in conformation for the reaction with oxygen and the hydroxylation to occur. This closed form prevents solvent from destabilizing the hydroperoxyflavin intermediate. Finally, there is an out conformation achieved by movement of the isoalloxazine toward the solvent, which exposes its N5 for hydride delivery from NAD(P)H. The protein coordinates these dynamic events during catalysis. The second strategy uses a reductase to catalyze the reduction of the flavin and an oxygenase that uses the reduced flavin as a substrate to react with oxygen and hydroxylate the organic substrate. These two-component systems must be able to transfer reduced flavin from the reductase to the oxygenase and stabilize a C4a-peroxyflavin until a substrate binds to be hydroxylated, all before flavin oxidation and release of H2O2. Again, protein dynamics are important for catalytic success.
Collapse
Affiliation(s)
- David P Ballou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-0606, USA.
| | | | | |
Collapse
|
26
|
Young DM, Parke D, Ornston LN. OPPORTUNITIES FOR GENETIC INVESTIGATION AFFORDED BYACINETOBACTER BAYLYI, A NUTRITIONALLY VERSATILE BACTERIAL SPECIES THAT IS HIGHLY COMPETENT FOR NATURAL TRANSFORMATION. Annu Rev Microbiol 2005; 59:519-51. [PMID: 16153178 DOI: 10.1146/annurev.micro.59.051905.105823] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic and physiological properties of Acinetobacter baylyi strain ADP1 make it an inviting subject for investigation of the properties underlying its nutritional versatility. The organism possesses a relatively small genome in which genes for most catabolic functions are clustered in several genetic islands that, unlike pathogenicity islands, give little evidence of horizontal transfer. Coupling mutagenic polymerase chain reaction to natural transformation provides insight into how structure influences function in transporters, transcriptional regulators, and enzymes. With appropriate selection, mutants in which such molecules have acquired novel function may be obtained. The extraordinary competence of A. baylyi for natural transformation and the ease with which it expresses heterologous genes make it a promising platform for construction of novel metabolic systems. Steps toward this goal should take into account the complexity of existing pathways in which transmembrane trafficking plays a significant role.
Collapse
Affiliation(s)
- David M Young
- 1Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
27
|
Senn HM, Thiel S, Thiel W. Enzymatic Hydroxylation in p-Hydroxybenzoate Hydroxylase: A Case Study for QM/MM Molecular Dynamics. J Chem Theory Comput 2005; 1:494-505. [DOI: 10.1021/ct049844p] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hans Martin Senn
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Stephan Thiel
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Young DM, D'Argenio DA, Jen M, Parke D, Nicholas Ornston L. Gunsalus and Stanier set the stage for selection of cold-sensitive mutants apparently impaired in movement of FAD within 4-hydroxybenzoate hydroxylase. Biochem Biophys Res Commun 2004; 312:153-60. [PMID: 14630034 DOI: 10.1016/j.bbrc.2003.09.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- David M Young
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., D1-219, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Palfey BA, Murthy YVSN, Massey V. Altered balance of half-reactions in p-hydroxybenzoate hydroxylase caused by substituting the 2'-carbon of FAD with fluorine. J Biol Chem 2003; 278:22210-6. [PMID: 12684497 DOI: 10.1074/jbc.m301830200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apo-p-hydroxybenzoate hydroxylase was reconstituted using 2'-fluoro-2'-deoxy-arabino-FAD, a synthetic flavin in which the hydroxyl of the 2'-center of the ribityl chain was replaced with fluorine in an inverted configuration. The absorbance spectral changes caused by the binding of either p-hydroxybenzoate (pOHB) or 2,4-dihydroxybenzoate (2,4-diOHB) indicated that the isoalloxazine of the artificial flavin adopts the more solvent-exposed "out" conformation rather than the partially buried "in" conformation near the aromatic substrate. In contrast, the flavin of the natural enzyme adopts the in conformation when pOHB is bound. Much of the behavior of the artificial enzyme can be rationalized in light of the preference of the flavin for the out conformation, including the weaker binding of pOHB, the tighter binding of 2,4-diOHB, and the slower reactions involved in the hydroxylation of pOHB and 2,4-diOHB. Particularly noteworthy is the enhancement of the reduction of the flavin by NADPH when pOHB is bound to the active site, consistent with the recent finding that the reaction occurs when the flavin adopts the out conformation (Palfey, B. A., Moran, G. R., Entsch, B., Ballou, D. P., and Massey, V. (1999) Biochemistry 38, 1153-1158). Thus, whereas the change that induces the out conformation is detrimental to the oxidative half-reaction, it improves the reductive half-reaction, showing that the control of the flavin position in p-hydroxybenzoate hydroxylase represents a compromise between the conflicting needs of two chemically disparate half-reactions, and demonstrating that the 2'-hydroxyl of FAD can serve as a critical control element in flavoenzyme catalysis.
Collapse
Affiliation(s)
- Bruce A Palfey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA.
| | | | | |
Collapse
|
30
|
Ridder L, Harvey JN, Rietjens IMCM, Vervoort J, Mulholland AJ. Ab Initio QM/MM Modeling of the Hydroxylation Step in p-Hydroxybenzoate Hydroxylase. J Phys Chem B 2003. [DOI: 10.1021/jp026213n] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lars Ridder
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom, Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands, and Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Jeremy N. Harvey
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom, Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands, and Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Ivonne M. C. M. Rietjens
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom, Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands, and Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Jacques Vervoort
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom, Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands, and Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Adrian J. Mulholland
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom, Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands, and Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
31
|
Moonen M, Fraaije M, Rietjens I, Laane C, van Berkel W. Flavoenzyme-Catalyzed Oxygenations and Oxidations of Phenolic Compounds. Adv Synth Catal 2002. [DOI: 10.1002/1615-4169(200212)344:10<1023::aid-adsc1023>3.0.co;2-t] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|