• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4635977)   Today's Articles (622)   Subscriber (50058)
For: Hendriks JHM, Jasaitis A, Saraste M, Verkhovsky MI. Proton and electron pathways in the bacterial nitric oxide reductase. Biochemistry 2002;41:2331-40. [PMID: 11841226 DOI: 10.1021/bi0121050] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Number Cited by Other Article(s)
1
Flynn AJ, Antonyuk SV, Eady RR, Muench SP, Hasnain SS. A 2.2 Å cryoEM structure of a quinol-dependent NO Reductase shows close similarity to respiratory oxidases. Nat Commun 2023;14:3416. [PMID: 37296134 PMCID: PMC10256718 DOI: 10.1038/s41467-023-39140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023]  Open
2
Kahle M, Appelgren S, Elofsson A, Carroni M, Ädelroth P. Insights into the structure-function relationship of the NorQ/NorD chaperones from Paracoccus denitrificans reveal shared principles of interacting MoxR AAA+/VWA domain proteins. BMC Biol 2023;21:47. [PMID: 36855050 PMCID: PMC9976466 DOI: 10.1186/s12915-023-01546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]  Open
3
Takeda H, Shimba K, Horitani M, Kimura T, Nomura T, Kubo M, Shiro Y, Tosha T. Trapping of a Mononitrosyl Nonheme Intermediate of Nitric Oxide Reductase by Cryo-Photolysis of Caged Nitric Oxide. J Phys Chem B 2023;127:846-854. [PMID: 36602896 DOI: 10.1021/acs.jpcb.2c05852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
4
Bhadra M, Albert T, Franke A, Josef V, Ivanović-Burmazović I, Swart M, Moënne-Loccoz P, Karlin KD. Reductive Coupling of Nitric Oxide by Cu(I): Stepwise Formation of Mono- and Dinitrosyl Species En Route to a Cupric Hyponitrite Intermediate. J Am Chem Soc 2023;145:2230-2242. [PMID: 36652374 PMCID: PMC10122266 DOI: 10.1021/jacs.2c09874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
5
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021;121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
6
Blomberg MRA. The importance of exact exchange-A methodological investigation of NO reduction in heme-copper oxidases. J Chem Phys 2021;154:055103. [PMID: 33557557 DOI: 10.1063/5.0035634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]  Open
7
Blomberg MRA. Activation of O2 and NO in heme-copper oxidases - mechanistic insights from computational modelling. Chem Soc Rev 2021;49:7301-7330. [PMID: 33006348 DOI: 10.1039/d0cs00877j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
8
Architecture of bacterial respiratory chains. Nat Rev Microbiol 2021;19:319-330. [PMID: 33437024 DOI: 10.1038/s41579-020-00486-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
9
Reed CJ, Lam QN, Mirts EN, Lu Y. Molecular understanding of heteronuclear active sites in heme-copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chem Soc Rev 2021;50:2486-2539. [PMID: 33475096 PMCID: PMC7920998 DOI: 10.1039/d0cs01297a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
10
Blomberg MRA. Role of the Two Metals in the Active Sites of Heme Copper Oxidases-A Study of NO Reduction in cbb3 Cytochrome c Oxidase. Inorg Chem 2020;59:11542-11553. [PMID: 32799475 DOI: 10.1021/acs.inorgchem.0c01351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
11
Takeda H, Kimura T, Nomura T, Horitani M, Yokota A, Matsubayashi A, Ishii S, Shiro Y, Kubo M, Tosha T. Timing of NO Binding and Protonation in the Catalytic Reaction of Bacterial Nitric Oxide Reductase as Established by Time-Resolved Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
12
Ferousi C, Majer SH, DiMucci IM, Lancaster KM. Biological and Bioinspired Inorganic N-N Bond-Forming Reactions. Chem Rev 2020;120:5252-5307. [PMID: 32108471 PMCID: PMC7339862 DOI: 10.1021/acs.chemrev.9b00629] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
13
Functional interactions between nitrite reductase and nitric oxide reductase from Paracoccus denitrificans. Sci Rep 2019;9:17234. [PMID: 31754148 PMCID: PMC6872814 DOI: 10.1038/s41598-019-53553-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/29/2019] [Indexed: 12/25/2022]  Open
14
Wijeratne GB, Bhadra M, Siegler MA, Karlin KD. Copper(I) Complex Mediated Nitric Oxide Reductive Coupling: Ligand Hydrogen Bonding Derived Proton Transfer Promotes N2O(g) Release. J Am Chem Soc 2019;141:17962-17967. [PMID: 31621325 DOI: 10.1021/jacs.9b07286] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
15
Gopalasingam CC, Johnson RM, Chiduza GN, Tosha T, Yamamoto M, Shiro Y, Antonyuk SV, Muench SP, Hasnain SS. Dimeric structures of quinol-dependent nitric oxide reductases (qNORs) revealed by cryo-electron microscopy. SCIENCE ADVANCES 2019;5:eaax1803. [PMID: 31489376 PMCID: PMC6713497 DOI: 10.1126/sciadv.aax1803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
16
Kahle M, Blomberg MRA, Jareck S, Ädelroth P. Insights into the mechanism of nitric oxide reductase from a FeB -depleted variant. FEBS Lett 2019;593:1351-1359. [PMID: 31077353 DOI: 10.1002/1873-3468.13436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 11/06/2022]
17
Blomberg MRA, Ädelroth P. Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018;1859:1223-1234. [PMID: 30248312 DOI: 10.1016/j.bbabio.2018.09.368] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 12/22/2022]
18
Mahinthichaichan P, Gennis RB, Tajkhorshid E. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018;1859:712-724. [PMID: 29883591 DOI: 10.1016/j.bbabio.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/05/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
19
Kahle M, Ter Beek J, Hosler JP, Ädelroth P. The insertion of the non-heme FeB cofactor into nitric oxide reductase from P. denitrificans depends on NorQ and NorD accessory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018;1859:1051-1058. [PMID: 29874552 DOI: 10.1016/j.bbabio.2018.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/27/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
20
Characterization of the quinol-dependent nitric oxide reductase from the pathogen Neisseria meningitidis, an electrogenic enzyme. Sci Rep 2018;8:3637. [PMID: 29483528 PMCID: PMC5826923 DOI: 10.1038/s41598-018-21804-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/09/2018] [Indexed: 12/01/2022]  Open
21
Wikström M, Krab K, Sharma V. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Chem Rev 2018;118:2469-2490. [PMID: 29350917 PMCID: PMC6203177 DOI: 10.1021/acs.chemrev.7b00664] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
22
Ter Beek J, Kahle M, Ädelroth P. Modulation of protein function in membrane mimetics: Characterization of P. denitrificans cNOR in nanodiscs or liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017;1859:1951-1961. [PMID: 28668220 DOI: 10.1016/j.bbamem.2017.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/03/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
23
Blomberg MRA. Can Reduction of NO to N2O in Cytochrome c Dependent Nitric Oxide Reductase Proceed through a Trans-Mechanism? Biochemistry 2016;56:120-131. [DOI: 10.1021/acs.biochem.6b00788] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
24
Blomberg MRA, Siegbahn PEM. Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR). J Comput Chem 2016;37:1810-8. [DOI: 10.1002/jcc.24396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 12/14/2022]
25
Investigating the Proton Donor in the NO Reductase from Paracoccus denitrificans. PLoS One 2016;11:e0152745. [PMID: 27030968 PMCID: PMC4816578 DOI: 10.1371/journal.pone.0152745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/18/2016] [Indexed: 01/22/2023]  Open
26
Al-Attar S, de Vries S. An electrogenic nitric oxide reductase. FEBS Lett 2015;589:2050-7. [PMID: 26149211 DOI: 10.1016/j.febslet.2015.06.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
27
Sharma V, Wikström M. A structural and functional perspective on the evolution of the heme-copper oxidases. FEBS Lett 2014;588:3787-92. [PMID: 25261254 DOI: 10.1016/j.febslet.2014.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/15/2022]
28
Duarte AG, Cordas CM, Moura JJ, Moura I. Steady-state kinetics with nitric oxide reductase (NOR): New considerations on substrate inhibition profile and catalytic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014;1837:375-84. [DOI: 10.1016/j.bbabio.2014.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 12/28/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
29
Terasaka E, Okada N, Sato N, Sako Y, Shiro Y, Tosha T. Characterization of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus: enzymatic activity and active site structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014;1837:1019-26. [PMID: 24569054 DOI: 10.1016/j.bbabio.2014.02.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
30
Matsumura H, Hayashi T, Chakraborty S, Lu Y, Moënne-Loccoz P. The production of nitrous oxide by the heme/nonheme diiron center of engineered myoglobins (Fe(B)Mbs) proceeds through a trans-iron-nitrosyl dimer. J Am Chem Soc 2014;136:2420-31. [PMID: 24432820 PMCID: PMC4004238 DOI: 10.1021/ja410542z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
31
Sato N, Ishii S, Sugimoto H, Hino T, Fukumori Y, Sako Y, Shiro Y, Tosha T. Structures of reduced and ligand-bound nitric oxide reductase provide insights into functional differences in respiratory enzymes. Proteins 2014;82:1258-71. [PMID: 24338896 DOI: 10.1002/prot.24492] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 11/07/2022]
32
Ter Beek J, Krause N, Reimann J, Lachmann P, Ädelroth P. The nitric-oxide reductase from Paracoccus denitrificans uses a single specific proton pathway. J Biol Chem 2013;288:30626-30635. [PMID: 24014024 DOI: 10.1074/jbc.m113.497347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
33
Blomberg MR, Siegbahn PE. Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013;1827:826-33. [DOI: 10.1016/j.bbabio.2013.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/27/2013] [Accepted: 04/13/2013] [Indexed: 11/29/2022]
34
Tosha T, Shiro Y. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes. IUBMB Life 2013;65:217-26. [DOI: 10.1002/iub.1135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 12/25/2012] [Indexed: 11/08/2022]
35
Shiro Y, Sugimoto H, Tosha T, Nagano S, Hino T. Structural basis for nitrous oxide generation by bacterial nitric oxide reductases. Philos Trans R Soc Lond B Biol Sci 2012;367:1195-203. [PMID: 22451105 DOI: 10.1098/rstb.2011.0310] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]  Open
36
Ouyang H, Han H, Roh JH, Hemp J, Hosler JP, Gennis RB. Functional importance of a pair of conserved glutamic acid residues and of Ca(2+) binding in the cbb(3)-type oxygen reductases from Rhodobacter sphaeroides and Vibrio cholerae. Biochemistry 2012;51:7290-6. [PMID: 22913716 DOI: 10.1021/bi3006847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
37
Molecular dynamics simulations reveal proton transfer pathways in cytochrome C-dependent nitric oxide reductase. PLoS Comput Biol 2012;8:e1002674. [PMID: 22956904 PMCID: PMC3431322 DOI: 10.1371/journal.pcbi.1002674] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/22/2012] [Indexed: 01/25/2023]  Open
38
Blomberg MRA, Siegbahn PEM. Mechanism for N2O Generation in Bacterial Nitric Oxide Reductase: A Quantum Chemical Study. Biochemistry 2012;51:5173-86. [DOI: 10.1021/bi300496e] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
39
Salomonsson L, Reimann J, Tosha T, Krause N, Gonska N, Shiro Y, Adelroth P. Proton transfer in the quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus during reduction of oxygen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012;1817:1914-20. [PMID: 22538294 DOI: 10.1016/j.bbabio.2012.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 12/17/2022]
40
Lee HJ, Reimann J, Huang Y, Ädelroth P. Functional proton transfer pathways in the heme–copper oxidase superfamily. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012;1817:537-44. [DOI: 10.1016/j.bbabio.2011.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 10/19/2011] [Accepted: 10/21/2011] [Indexed: 12/21/2022]
41
Shiro Y. Structure and function of bacterial nitric oxide reductases: nitric oxide reductase, anaerobic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012;1817:1907-13. [PMID: 22425814 DOI: 10.1016/j.bbabio.2012.03.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/01/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
42
Matsumoto Y, Tosha T, Pisliakov AV, Hino T, Sugimoto H, Nagano S, Sugita Y, Shiro Y. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nat Struct Mol Biol 2012;19:238-45. [PMID: 22266822 DOI: 10.1038/nsmb.2213] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 11/22/2011] [Indexed: 11/09/2022]
43
Entrance of the proton pathway in cbb3-type heme-copper oxidases. Proc Natl Acad Sci U S A 2011;108:17661-6. [PMID: 21997215 DOI: 10.1073/pnas.1107543108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
44
Hino T, Nagano S, Sugimoto H, Tosha T, Shiro Y. Molecular structure and function of bacterial nitric oxide reductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011;1817:680-7. [PMID: 22001779 DOI: 10.1016/j.bbabio.2011.09.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 10/17/2022]
45
Sousa FL, Alves RJ, Ribeiro MA, Pereira-Leal JB, Teixeira M, Pereira MM. The superfamily of heme-copper oxygen reductases: types and evolutionary considerations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011;1817:629-37. [PMID: 22001780 DOI: 10.1016/j.bbabio.2011.09.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/13/2011] [Accepted: 09/29/2011] [Indexed: 11/24/2022]
46
Hayashi T, Miner KD, Yeung N, Lin YW, Lu Y, Moënne-Loccoz P. Spectroscopic characterization of mononitrosyl complexes in heme--nonheme diiron centers within the myoglobin scaffold (Fe(B)Mbs): relevance to denitrifying NO reductase. Biochemistry 2011;50:5939-47. [PMID: 21634416 DOI: 10.1021/bi200409a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
47
Sousa FL, Alves RJ, Pereira-Leal JB, Teixeira M, Pereira MM. A bioinformatics classifier and database for heme-copper oxygen reductases. PLoS One 2011;6:e19117. [PMID: 21559461 PMCID: PMC3084760 DOI: 10.1371/journal.pone.0019117] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/22/2011] [Indexed: 12/02/2022]  Open
48
Lachmann P, Huang Y, Reimann J, Flock U, Adelroth P. Substrate control of internal electron transfer in bacterial nitric-oxide reductase. J Biol Chem 2010;285:25531-7. [PMID: 20547487 DOI: 10.1074/jbc.m110.123984] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
49
Huang Y, Reimann J, Singh LM, Ädelroth P. Substrate binding and the catalytic reactions in cbb3-type oxidases: The lipid membrane modulates ligand binding. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010;1797:724-31. [DOI: 10.1016/j.bbabio.2010.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/25/2022]
50
Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin. Proc Natl Acad Sci U S A 2010;107:8581-6. [PMID: 20421510 DOI: 10.1073/pnas.1000526107] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA