1
|
Epigallocatechin-3-gallate preferentially induces aggregation of amyloidogenic immunoglobulin light chains. Sci Rep 2017; 7:41515. [PMID: 28128355 PMCID: PMC5269747 DOI: 10.1038/srep41515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023] Open
Abstract
Antibody light chain amyloidosis is a rare disease caused by fibril formation of secreted immunoglobulin light chains (LCs). The huge variety of antibody sequences puts a serious challenge to drug discovery. The green tea polyphenol epigallocatechin-3-gallate (EGCG) is known to interfere with fibril formation in general. Here we present solution- and solid-state NMR studies as well as MD simulations to characterise the interaction of EGCG with LC variable domains. We identified two distinct EGCG binding sites, both of which include a proline as an important recognition element. The binding sites were confirmed by site-directed mutagenesis and solid-state NMR analysis. The EGCG-induced protein complexes are unstructured. We propose a general mechanistic model for EGCG binding to a conserved site in LCs. We find that EGCG reacts selectively with amyloidogenic mutants. This makes this compound a promising lead structure, that can handle the immense sequence variability of antibody LCs.
Collapse
|
2
|
Aso Y, Shiraki K, Takagi M. Systematic Analysis of Aggregates from 38 Kinds of Non Disease-Related Proteins: Identifying the Intrinsic Propensity of Polypeptides to Form Amyloid Fibrils. Biosci Biotechnol Biochem 2014; 71:1313-21. [PMID: 17485839 DOI: 10.1271/bbb.60718] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to form amyloid fibrils from a wide range of proteins would open up the opportunity to augment studies of the molecular basis of amyloid fibril formation. We investigated 36 different conditions with respect to four model proteins to evaluate their ability to form amyloid fibrils. In a 5% ethanol solution at pH 2 at 57 degrees C, hen egg white lysozyme, bovine beta-lactoglobulin, and bovine trypsinogen formed mature-type fibrils, while only histone H2A formed immature-type fibrils. Under these conditions, 25 of the 38 proteins formed amyloid fibrils. In addition, three additional proteins formed fibrils in a solution containing 5% trifluoroethanol instead of 5% ethanol. In summary, a total 28 proteins formed amyloid fibrils. Under these extreme conditions, chemical fragmentation was observed. Destabilization of the native structure, strengthening of hydrogen bonds, and chemical fragmentation are thought to play important roles in the formation of amyloid fibrils.
Collapse
Affiliation(s)
- Yoshikazu Aso
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | | | | |
Collapse
|
3
|
González-Andrade M, Becerril-Luján B, Sánchez-López R, Ceceña-Álvarez H, Pérez-Carreón JI, Ortiz E, Fernández-Velasco DA, del Pozo-Yauner L. Mutational and genetic determinants of λ6 light chain amyloidogenesis. FEBS J 2013; 280:6173-83. [DOI: 10.1111/febs.12538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Martín González-Andrade
- Consorcio Bioquímica de Enfermedades Crónicas; Instituto Nacional de Medicina Genómica (INMEGEN); México
| | | | - Rosana Sánchez-López
- Instituto de Biotecnología; Universidad Nacional Autónoma de México; Cuernavaca México
| | - Héctor Ceceña-Álvarez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas; Departamento de Bioquímica; Facultad de Medicina; Universidad Nacional Autónoma de México; México
| | - Julio I. Pérez-Carreón
- Consorcio Bioquímica de Enfermedades Crónicas; Instituto Nacional de Medicina Genómica (INMEGEN); México
| | - Ernesto Ortiz
- Instituto de Biotecnología; Universidad Nacional Autónoma de México; Cuernavaca México
| | - D. Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas; Departamento de Bioquímica; Facultad de Medicina; Universidad Nacional Autónoma de México; México
| | - Luis del Pozo-Yauner
- Consorcio Bioquímica de Enfermedades Crónicas; Instituto Nacional de Medicina Genómica (INMEGEN); México
| |
Collapse
|
4
|
Abstract
The amyloidoses are a group of protein misfolding diseases in which the precursor protein undergoes a conformational change that triggers the formation of amyloid fibrils in different tissues and organs, causing cell death and organ failure. Amyloidoses can be either localized or systemic. In localized amyloidosis, amyloid deposits form at the site of precursor protein synthesis, whereas in systemic amyloidosis, amyloid deposition occurs distant from the site of precursor protein secretion. We review the type of proteins and cells involved and what is known about the complex pathophysiology of these diseases. We focus on light chain amyloidosis to illustrate how biochemical and biophysical studies have led to a deeper understanding of the pathogenesis of this devastating disease. We also review current cellular, tissue, and animal models and discuss the challenges and opportunities for future studies of the systemic amyloidoses.
Collapse
Affiliation(s)
- Luis M Blancas-Mejía
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
5
|
Conserved Hydrophobic Clusters on the Surface of the Caf1A Usher C-Terminal Domain Are Important for F1 Antigen Assembly. J Mol Biol 2010; 403:243-59. [DOI: 10.1016/j.jmb.2010.08.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/13/2010] [Accepted: 08/17/2010] [Indexed: 11/24/2022]
|
6
|
Dissecting the alternatively folded state of the antibody Fab fragment. J Mol Biol 2010; 399:719-30. [PMID: 20434459 DOI: 10.1016/j.jmb.2010.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/26/2010] [Accepted: 04/19/2010] [Indexed: 11/22/2022]
Abstract
Intact antibodies and antigen binding fragments (Fab) have been previously shown to form an alternatively folded state (AFS) at low pH. This state consists primarily of secondary structure interactions, with reduced tertiary structure content. The AFS can be distinguished from the molten globule state by the formation of nonnative structure and, in particular, its high stability. In this study, the isolated domains of the MAK33 (murine monoclonal antibody of the subtype kappa/IgG1) Fab fragment were investigated under conditions that have been reported to induce the AFS. Surprising differences in the ability of individual domains to form the AFS were observed, despite the similarities in their native structures. All Fab domains were able to adopt the AFS, but only for V(H) (variable domain of the heavy chain) could a significant amount of tertiary structure be detected and different conditions were needed to induce the AFS. V(H), the least stable of the domains under physiological conditions, was the most stable in the AFS, yet all domains showed significant stability against thermal and chemical unfolding in their AFS. Formation of the AFS was found to generally proceed via the unfolded state, with similar rates for most of the domains. Taken together, our data reveal striking differences in the biophysical properties of the AFS of individual antibody domains that reflect the variation possible for domains of highly homologous native structures. Furthermore, they allow individual domain contributions to be dissected from specific oligomer effects in the AFS of the antibody Fab fragment.
Collapse
|
7
|
The folding pathway of the antibody V(L) domain. J Mol Biol 2009; 392:1326-38. [PMID: 19647749 DOI: 10.1016/j.jmb.2009.07.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/22/2009] [Accepted: 07/27/2009] [Indexed: 11/23/2022]
Abstract
Antibodies are modular proteins consisting of domains that exhibit a beta-sandwich structure, the so-called immunoglobulin fold. Despite structural similarity, differences in folding and stability exist between different domains. In particular, the variable domain of the light chain V(L) is unusual as it is associated with misfolding diseases, including the pathologic assembly of the protein into fibrillar structures. Here, we have analysed the folding pathway of a V(L) domain with a view to determine features that may influence the relationship between productive folding and fibril formation. The V(L) domain from MAK33 (murine monoclonal antibody of the subtype kappa/IgG1) has not previously been associated with fibrillisation but is shown here to be capable of forming fibrils. The folding pathway of this V(L) domain is complex, involving two intermediates in different pathways. An obligatory early molten globule-like intermediate with secondary structure but only loose tertiary interactions is inferred. The native state can then be formed directly from this intermediate in a phase that can be accelerated by the addition of prolyl isomerases. However, an alternative pathway involving a second, more native-like intermediate is also significantly populated. Thus, the protein can reach the native state via two distinct folding pathways. Comparisons to the folding pathways of other antibody domains reveal similarities in the folding pathways; however, in detail, the folding of the V(L) domain is striking, with two intermediates populated on different branches of the folding pathway, one of which could provide an entry point for molecules diverted into the amyloid pathway.
Collapse
|
8
|
Blancas-Mejia LM, Tellez LA, del Pozo-Yauner L, Becerril B, Sanchez-Ruiz JM, Fernandez-Velasco DA. Thermodynamic and kinetic characterization of a germ line human lambda6 light-chain protein: the relation between unfolding and fibrillogenesis. J Mol Biol 2009; 386:1153-66. [PMID: 19154739 DOI: 10.1016/j.jmb.2008.12.069] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 11/21/2008] [Accepted: 12/21/2008] [Indexed: 11/16/2022]
Abstract
Proteins encoded by the gene segment 6a of the lambda variable light-chain repertoire are strongly associated with amyloid deposition. 6aJL2 is a model protein constructed with the predicted sequences encoded by the 6a and JL2 germ line genes. In this work, we characterized the urea- and temperature-induced unfolding of 6aJL2. In the short time scale, spectroscopic, hydrodynamic and calorimetric experiments were compatible with a two-state transition. Furthermore, DeltaG, m and the midpoint urea concentration obtained from equilibrium experiments were compatible with those obtained from kinetic experiments. Since fibril formation is a slow process, samples were also incubated for longer times. After incubation for several hours at 37 degrees C, spectroscopic, hydrodynamic and calorimetric experiments revealed the presence of a partially unfolded off-pathway intermediate around the midpoint urea concentration (1.5-3.0 M urea). In vitro fibrillogenesis assays show that the maximum growth rate for fibril formation and the minimum lag time were obtained at urea concentrations where the partially unfolded state was populated (2.5 M urea at 37 degrees C). This indicates that this partially unfolded state is critical for in vitro fibril formation. Concentration-dependent kinetics and hydrodynamic properties of the intermediate were consistent with a soluble oligomeric state. The intermediate is formed around the midpoint urea concentration, where the native and unfolded states are equally populated and their rate of interconversion is the slowest. This situation may promote the slow accumulation of an intermediate state that is prone to aggregate.
Collapse
Affiliation(s)
- Luis M Blancas-Mejia
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159 D.F. 04510 México
| | | | | | | | | | | |
Collapse
|
9
|
Pedersen JS, Otzen DE. Amyloid-a state in many guises: survival of the fittest fibril fold. Protein Sci 2007; 17:2-10. [PMID: 18042680 DOI: 10.1110/ps.073127808] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Under appropriate conditions, essentially all proteins are able to aggregate to form long, well-ordered and beta-sheet-rich arrays known as amyloid-like fibrils. These fibrils consist of varying numbers of intertwined protofibrils and can for any given protein exhibit a wealth of different forms at the ultrastructural level. Traditionally, this structural variability or polymorphism has been attributed to differences in the assembly of a common protofibril structure. However, recent work on glucagon, insulin, and the Abeta peptide suggests that this polymorphism can occur at the level of secondary structure. Simple variations in either solvent conditions such as temperature, protein concentration, and ionic strength or external mechanical influences such as agitation can lead to formation of fibrils with markedly different characteristics. In some cases, these characteristics can be passed on to new fibrils in a strain-specific manner, similar to what is known for prions. The preferred structure of fibrils formed can be explained in terms of selective pressure and survival of the fittest; the most populated types of fibrils we observe at the end of an experiment are those that had the fastest overall growth rate under the given conditions. Fibrillar polymorphism is probably a consequence of the lack of structural restraints on a nonfunctional conformational state.
Collapse
|
10
|
Folding of an antibody variable domain in two functional conformations in vitro: calorimetric and spectroscopic study of the anti-ferritin antibody VL domain. Protein Eng Des Sel 2007; 20:481-90. [DOI: 10.1093/protein/gzm034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Kardos J, Yamamoto K, Hasegawa K, Naiki H, Goto Y. Direct Measurement of the Thermodynamic Parameters of Amyloid Formation by Isothermal Titration Calorimetry. J Biol Chem 2004; 279:55308-14. [PMID: 15494406 DOI: 10.1074/jbc.m409677200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid fibril deposition is associated with over 20 degenerative diseases, including Alzheimer's, Parkinson's, and prion diseases. Although research over the last few years has revealed the morphology and structural features of the amyloid form, knowledge about the thermodynamics of amyloid formation is limited. Here, we report for the first time a direct thermodynamic study of amyloid formation using isothermal titration calorimetry. Beta(2)-microglobulin, a protein responsible for dialysis-related amyloidosis, was used for extending amyloid fibrils in a seed-controlled reaction in the cell of the calorimeter. We investigated the enthalpy and heat capacity changes of the reaction, where the monomeric, acid-denatured molecules adopt an ordered, cross-beta-sheet structure in the rigid amyloid fibrils. Despite the dramatic difference in morphology, beta(2)-microglobulin exhibited a similar heat capacity change upon amyloid formation to that of the folding to the native globular state, whereas the enthalpy change of the reaction proved to be markedly lower. In comparison with the native state, the results outline the important structural features of the amyloid fibrils: a similar extent of surface burial even with the supramolecular architecture of amyloid fibrils, a lower level of internal packing, and the possible presence of unfavorable side chain contributions.
Collapse
Affiliation(s)
- József Kardos
- Institute for Protein Research, Osaka University and CREST, Japan Science and Technology Agency, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
12
|
Uversky VN, Fink AL. Conformational constraints for amyloid fibrillation: the importance of being unfolded. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1698:131-53. [PMID: 15134647 DOI: 10.1016/j.bbapap.2003.12.008] [Citation(s) in RCA: 780] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 12/01/2003] [Accepted: 12/01/2003] [Indexed: 02/07/2023]
Abstract
Recent reports give strong support to the idea that amyloid fibril formation and the subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. In this review, recent findings are surveyed to illustrate that protein fibrillogenesis requires a partially folded conformation. This amyloidogenic conformation is relatively unfolded, and shares many structural properties with the pre-molten globule state, a partially folded intermediate frequently observed in the early stages of protein folding and under some equilibrium conditions. The inherent flexibility of such an intermediate is essential in allowing the conformational rearrangements necessary to form the core cross-beta structure of the amyloid fibril.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| | | |
Collapse
|
13
|
Im JS, Yu KOA, Illarionov PA, LeClair KP, Storey JR, Kennedy MW, Besra GS, Porcelli SA. Direct Measurement of Antigen Binding Properties of CD1 Proteins Using Fluorescent Lipid Probes. J Biol Chem 2004; 279:299-310. [PMID: 14551186 DOI: 10.1074/jbc.m308803200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
CD1 proteins are antigen-presenting molecules that bind foreign and self-lipids and stimulate specific T cell responses. In the current study, we investigated ligand binding by CD1 proteins by developing a fluorescent probe binding approach using soluble recombinant human CD1 proteins. To increase stability and yield, soluble group 1 CD1 (CD1b and CD1c) and group 2 CD1 (CD1d) proteins were produced as single chain secreted CD1 proteins in which beta2-microglobulin was fused to the N termini of the CD1 heavy chains by a flexible peptide linker sequence. Analysis of ligand binding properties of single chain secreted CD1 proteins by using fluorescent lipid probes indicated significant differences in ligand preference and in pH dependence of binding by group 1 versus group 2 CD1 proteins. Whereas group 1 CD1 isoforms (CD1b and CD1c) show stronger binding of nitrobenzoxadiazole (NBD)-labeled dialkyl-based ligands (phosphatidylcholine, sphingomyelin, and ceramide), group 2 CD1 (CD1d) proteins were stronger binders of small hydrophobic probes such as 1-anilinonaphthalene-8-sulfonic acid and 4,4'-dianilino-1,1'-naphthyl-5,5'-disulfonic acid. Competition studies indicated that binding of fluorescent lipid probes involved association of the probe with the hydrophobic ligand binding groove of CD1 proteins. Analysis of selected alanine substitution mutants of human CD1b known to inhibit antigen presentation showed that NBD-labeled lipid probe binding could be used to distinguish mutations that interfere with ligand binding from those that affect T cell receptor docking. Our findings provide further evidence for the functional specialization of different CD1 isoforms and demonstrate the value of the fluorescent lipid probe binding method for assisting structure-based studies of CD1 function.
Collapse
Affiliation(s)
- Jin S Im
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tsybovsky YI, Kedrov AA, Martsev SP. Independent folding and conformational changes of the barnase module in the VL-barnase immunofusion: calorimetric evidence. FEBS Lett 2003; 557:248-52. [PMID: 14741376 DOI: 10.1016/s0014-5793(03)01509-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although stability is critical for in vivo application of immunotoxins, a thermodynamic description of their folding/stability is still lacking. We applied differential scanning calorimetry (DSC) to RNase-based immunofusion comprising barnase, cytotoxic RNase from Bacillus amyloliquefaciens, fused to the light chain variable domain (VL) of anti-human ferritin antibody F11. By analyzing DSC curves recorded with or without preheating and addition of the barnase-stabilizing ligand guanosine 3'-monophosphate, we (i). assigned two well-resolved thermal transitions to the VL and barnase modules of VL-barnase, (ii). demonstrated independent folding of these two modules, and (iii). showed altered stability of the barnase module, which resulted from the dimeric state of VL-barnase.
Collapse
Affiliation(s)
- Yaroslav I Tsybovsky
- Institute of Bio-Organic Chemistry, National Academy of Sciences of Belarus, Minsk 220141, Belarus
| | | | | |
Collapse
|
15
|
Martsev SP, Dubnovitsky AP, Stremovsky OA, Chumanevich AA, Tsybovsky YI, Kravchuk ZI, Deyev SM. Partially structured state of the functional VH domain of the mouse anti-ferritin antibody F11. FEBS Lett 2002; 518:177-82. [PMID: 11997042 DOI: 10.1016/s0014-5793(02)02696-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An antibody combining site generally involves the two variable domains, VH from the heavy and VL from the light chain. We expressed the individual VH domain of the mouse anti-human ferritin monoclonal antibody F11. The loss of affinity was not dramatic (K(a)=4.0x10(7) M(-1) versus 8.6x10(8) M(-1) for the parent antibody) and comparable to that previously observed for other VHs. However, the functional VH domain adopted a partially structured state with a significant amount of distorted secondary and compact yet greatly destabilized tertiary structures, as demonstrated by spectroscopic and calorimetric probes. These data provide the first description for a functional antibody domain that meets all the criteria of a partially structured state.
Collapse
Affiliation(s)
- Sergey P Martsev
- Institute of Bio-Organic Chemistry, National Academy of Sciences of Belarus, 220141, Minsk, Byelorussia.
| | | | | | | | | | | | | |
Collapse
|