1
|
Wang Z, Ye J, Zhang K, Ding L, Granzier-Nakajima T, Ranasinghe JC, Xue Y, Sharma S, Biase I, Terrones M, Choi SH, Ran C, Tanzi RE, Huang SX, Zhang C, Huang S. Rapid Biomarker Screening of Alzheimer's Disease by Interpretable Machine Learning and Graphene-Assisted Raman Spectroscopy. ACS NANO 2022; 16:6426-6436. [PMID: 35333038 DOI: 10.1021/acsnano.2c00538] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The study of Alzheimer's disease (AD), the most common cause of dementia, faces challenges in terms of understanding the cause, monitoring the pathogenesis, and developing early diagnoses and effective treatments. Rapid and accurate identification of AD biomarkers in the brain is critical to providing key insights into AD and facilitating the development of early diagnosis methods. In this work, we developed a platform that enables a rapid screening of AD biomarkers by employing graphene-assisted Raman spectroscopy and machine learning interpretation in AD transgenic animal brains. Specifically, we collected Raman spectra on slices of mouse brains with and without AD and used machine learning to classify AD and non-AD spectra. By contacting monolayer graphene with the brain slices, the accuracy was increased from 77% to 98% in machine learning classification. Further, using a linear support vector machine (SVM), we identified a spectral feature importance map that reveals the importance of each Raman wavenumber in classifying AD and non-AD spectra. Based on this spectral feature importance map, we identified AD biomarkers including Aβ and tau proteins and other potential biomarkers, such as triolein, phosphatidylcholine, and actin, which have been confirmed by other biochemical studies. Our Raman-machine learning integrated method with interpretability will facilitate the study of AD and can be extended to other tissues and biofluids and for various other diseases.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiarong Ye
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kunyan Zhang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Li Ding
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tomotaroh Granzier-Nakajima
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jeewan C Ranasinghe
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuan Xue
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shubhang Sharma
- Department of Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Isabelle Biase
- Department of Computer Science, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Chongzhao Ran
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 13th Street, Building149, Charlestown, Massachusetts 02129, United States
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Sharon X Huang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, United States
| | - Shengxi Huang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Nagatomo S, Nagai M, Kitagawa T. Structural origin of cooperativity in human hemoglobin: a view from different roles of α and β subunits in the α2β2 tetramer. Biophys Rev 2022; 14:483-498. [PMID: 35528033 PMCID: PMC9043147 DOI: 10.1007/s12551-022-00945-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
This mini-review, mainly based on our resonance Raman studies on the structural origin of cooperative O2 binding in human adult hemoglobin (HbA), aims to answering why HbA is a tetramer consisting of two α and two β subunits. Here, we focus on the Fe-His bond, the sole coordination bond connecting heme to a globin. The Fe-His stretching frequencies reflect the O2 affinity and also the magnitude of strain imposed through globin by inter-subunit interactions, which is the origin of cooperativity. Cooperativity was first explained by Monod, Wyman, and Changeux, referred to as the MWC theory, but later explained by the two tertiary states (TTS) theory. Here, we related the higher-order structures of globin observed mainly by vibrational spectroscopy to the MWC theory. It became clear from the recent spectroscopic studies, X-ray crystallographic analysis, and mutagenesis experiments that the Fe-His bonds exhibit different roles between the α and β subunits. The absence of the Fe-His bond in the α subunit in some mutant and artificial Hbs inhibits T to R quaternary structural change upon O2 binding. However, its absence from the β subunit in mutant and artificial Hbs simply enhances the O2 affinity of the α subunit. Accordingly, the inter-subunit interactions between α and β subunits are nonsymmetric but substantial for HbA to perform cooperative O2 binding.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 Japan
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003 Japan
- School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0942 Japan
| | - Teizo Kitagawa
- Graduate School of Life Science, Picobiology Institute, University of Hyogo, Kouto, Kamigori, Ako-gun Hyogo, 678-1297 Japan
| |
Collapse
|
3
|
Ciaccio C, Coletta A, Coletta M. Role of hemoglobin structural-functional relationships in oxygen transport. Mol Aspects Med 2021; 84:101022. [PMID: 34509280 DOI: 10.1016/j.mam.2021.101022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
The molecular mechanism of O2 binding to hemoglobin (Hb) has been critically reviewed on the basis of the information built up in the last decades. It allows to describe in detail from the kinetic and thermodynamic viewpoint the process of O2 uptake in the lungs and release to the tissues, casting some light on the physiological and pathological aspects of this process. The relevance of structural-functional relationships for O2 binding is particularly outlined in the case of poorly vascularized tissues, such as retina, briefly discussing of strategies employed for optimization of oxygen supply to this type of tissues.
Collapse
Affiliation(s)
- Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy
| | | | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy; IRCCS Fondazione Bietti, Rome, Italy.
| |
Collapse
|
4
|
Nagatomo S, Saito K, Yamamoto K, Ogura T, Kitagawa T, Nagai M. Heterogeneity between Two α Subunits of α2β2 Human Hemoglobin and O2 Binding Properties: Raman, 1H Nuclear Magnetic Resonance, and Terahertz Spectra. Biochemistry 2017; 56:6125-6136. [DOI: 10.1021/acs.biochem.7b00733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shigenori Nagatomo
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department
of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kohji Yamamoto
- Research
Center for Development of Far-Infrared Region, University of Fukui, Fukui, Fukui 910-8507, Japan
| | - Takashi Ogura
- Picobiology
Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading
Program Center, Sayo, Sayo-gun, Hyogo 679-5148, Japan
| | - Teizo Kitagawa
- Picobiology
Institute, Graduate School of Life Science, University of Hyogo, Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Masako Nagai
- Research
Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan
- School
of
Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0942, Japan
| |
Collapse
|
5
|
Nagatomo S, Okumura M, Saito K, Ogura T, Kitagawa T, Nagai M. Interrelationship among Fe-His Bond Strengths, Oxygen Affinities, and Intersubunit Hydrogen Bonding Changes upon Ligand Binding in the β Subunit of Human Hemoglobin: The Alkaline Bohr Effect. Biochemistry 2017; 56:1261-1273. [PMID: 28199095 DOI: 10.1021/acs.biochem.6b01118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regulation of the oxygen affinity of human adult hemoglobin (Hb A) at high pH, known as the alkaline Bohr effect, is essential for its physiological function. In this study, structural mechanisms of the alkaline Bohr effect and pH-dependent O2 affinity changes were investigated via 1H nuclear magnetic resonance and visible and UV resonance Raman spectra of mutant Hbs, Hb M Iwate (αH87Y) and Hb M Boston (αH58Y). It was found that even though the binding of O2 to the α subunits is forbidden in the mutant Hbs, the O2 affinity was higher at alkaline pH than at neutral pH, and concomitantly, the Fe-His stretching frequency of the β subunits was shifted to higher values. Thus, it was confirmed for the β subunits that the stronger the Fe-His bond, the higher the O2 affinity. It was found in this study that the quaternary structure of α(Fe3+)β(Fe2+-CO) of the mutant Hb is closer to T than to the ordinary R at neutral pH. The retained Aspβ94-Hisβ146 hydrogen bond makes the extent of proton release smaller upon ligand binding from Hisβ146, known as one of residues contributing to the alkaline Bohr effect. For these T structures, the Aspα94-Trpβ37 hydrogen bond in the hinge region and the Tyrα42-Aspβ99 hydrogen bond in the switch region of the α1-β2 interface are maintained but elongated at alkaline pH. Thus, a decrease in tension in the Fe-His bond of the β subunits at alkaline pH causes a substantial increase in the change in global structure upon binding of CO to the β subunit.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8571, Japan
| | - Miki Okumura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba , Tsukuba, Ibaraki 305-8571, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo , 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo , 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University , Koganei, Tokyo 184-0003, Japan.,School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University , Kanazawa, Ishikawa 920-0942, Japan
| |
Collapse
|
6
|
Nagatomo S, Nagai Y, Aki Y, Sakurai H, Imai K, Mizusawa N, Ogura T, Kitagawa T, Nagai M. An Origin of Cooperative Oxygen Binding of Human Adult Hemoglobin: Different Roles of the α and β Subunits in the α2β2 Tetramer. PLoS One 2015; 10:e0135080. [PMID: 26244770 PMCID: PMC4526547 DOI: 10.1371/journal.pone.0135080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/17/2015] [Indexed: 02/02/2023] Open
Abstract
Human hemoglobin (Hb), which is an α2β2 tetramer and binds four O2 molecules, changes its O2-affinity from low to high as an increase of bound O2, that is characterized by 'cooperativity'. This property is indispensable for its function of O2 transfer from a lung to tissues and is accounted for in terms of T/R quaternary structure change, assuming the presence of a strain on the Fe-histidine (His) bond in the T state caused by the formation of hydrogen bonds at the subunit interfaces. However, the difference between the α and β subunits has been neglected. To investigate the different roles of the Fe-His(F8) bonds in the α and β subunits, we investigated cavity mutant Hbs in which the Fe-His(F8) in either α or β subunits was replaced by Fe-imidazole and F8-glycine. Thus, in cavity mutant Hbs, the movement of Fe upon O2-binding is detached from the movement of the F-helix, which is supposed to play a role of communication. Recombinant Hb (rHb)(αH87G), in which only the Fe-His in the α subunits is replaced by Fe-imidazole, showed a biphasic O2-binding with no cooperativity, indicating the coexistence of two independent hemes with different O2-affinities. In contrast, rHb(βH92G), in which only the Fe-His in the β subunits is replaced by Fe-imidazole, gave a simple high-affinity O2-binding curve with no cooperativity. Resonance Raman, 1H NMR, and near-UV circular dichroism measurements revealed that the quaternary structure change did not occur upon O2-binding to rHb(αH87G), but it did partially occur with O2-binding to rHb(βH92G). The quaternary structure of rHb(αH87G) appears to be frozen in T while its tertiary structure is changeable. Thus, the absence of the Fe-His bond in the α subunit inhibits the T to R quaternary structure change upon O2-binding, but its absence in the β subunit simply enhances the O2-affinity of α subunit.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (SN); (TK); (MN)
| | - Yukifumi Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Yayoi Aki
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Hiroshi Sakurai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Kiyohiro Imai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Naoki Mizusawa
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Takashi Ogura
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
| | - Teizo Kitagawa
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
- * E-mail: (SN); (TK); (MN)
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan
- * E-mail: (SN); (TK); (MN)
| |
Collapse
|
7
|
Wilfong EM, Kogiso Y, Muthukrishnan S, Kowatz T, Du Y, Bowie A, Naismith JH, Hadad CM, Toone EJ, Gustafson TL. A multidisciplinary approach to probing enthalpy-entropy compensation and the interfacial mobility model. J Am Chem Soc 2011; 133:11515-23. [PMID: 21692482 DOI: 10.1021/ja1098287] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, interfacial mobility has gained popularity as a model with which to rationalize both affinity in ligand binding and the often observed phenomenon of enthalpy-entropy compensation. While protein contraction and reduced mobility, as demonstrated by computational and NMR techniques respectively, have been correlated to entropies of binding for a variety of systems, to our knowledge, Raman difference spectroscopy has never been included in these analyses. Here, nonresonance Raman difference spectroscopy, isothermal titration calorimetry, and X-ray crystallography were utilized to correlate protein contraction, as demonstrated by an increase in protein interior packing and decreased residual protein movement, with trends of enthalpy-entropy compensation. These results are in accord with the interfacial mobility model and lend additional credence to this view of protein activity.
Collapse
Affiliation(s)
- Erin M Wilfong
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Nagatomo S, Nagai M, Kitagawa T. A New Way To Understand Quaternary Structure Changes of Hemoglobin upon Ligand Binding On the Basis of UV-Resonance Raman Evaluation of Intersubunit Interactions. J Am Chem Soc 2011; 133:10101-10. [DOI: 10.1021/ja111370f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-0003, Japan
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| |
Collapse
|
9
|
Shashilov VA, Lednev IK. Advanced statistical and numerical methods for spectroscopic characterization of protein structural evolution. Chem Rev 2011; 110:5692-713. [PMID: 20593900 DOI: 10.1021/cr900152h] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victor A Shashilov
- Aegis Analytical Corporation, 1380 Forest Park Circle, Suite 200, Lafayette, Colorado 80026, USA
| | | |
Collapse
|
10
|
Shibata T, Nagao S, Tai H, Nagatomo S, Hamada H, Yoshikawa H, Suzuki A, Yamamoto Y. Characterization of the acid–alkaline transition in the individual subunits of human adult and foetal methaemoglobins. J Biochem 2010; 148:217-29. [DOI: 10.1093/jb/mvq055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Kneipp J, Balakrishnan G, Chen R, Shen TJ, Sahu SC, Ho NT, Giovannelli JL, Simplaceanu V, Ho C, Spiro TG. Dynamics of Allostery in Hemoglobin: Roles of the Penultimate Tyrosine H bonds. J Mol Biol 2006; 356:335-53. [PMID: 16368110 DOI: 10.1016/j.jmb.2005.11.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 11/01/2005] [Accepted: 11/02/2005] [Indexed: 11/28/2022]
Abstract
The tyrosine residues adjacent to the C termini of the hemoglobin (Hb) subunits, alphaY140 and betaY145, are expected to play important structural roles, because the C termini are the loci of T-state quaternary salt-bridges, and because the tyrosine side-chains bridge the H and F helices via H bonds to the alphaV93 and betaV98 carbonyl groups. These roles have been investigated via measurements of oxygen binding, (1)H NMR spectra, resonance Raman (RR) spectra, and time-resolved resonance Raman (TR(3)) spectra on site mutants in which the Hcdots, three dots, centeredF H bonds are eliminated by replacing the tyrosine residues with phenylalanine. The TR(3) spectra confirm the hypothesis, based on TR(3) studies of wild-type Hb, that the Hcdots, three dots, centeredF H bonds break and then re-form during the sub-microsecond phase of the R-T quaternary transition. The TR(3) spectra support the inference from other mutational studies that the alphabeta dimers act as single dynamic units in this early phase, motions of the E and F helices being coupled tightly across the dimer interface. Formation of T quaternary contacts occurs at about the same rate in the mutants as in HbA. However, these contacts are weakened substantially by the Y/F substitutions. Equilibrium perturbations are apparent also, especially for the alpha-subunits, in which relaxation of the Fe-His bond, strengthening of the Acdots, three dots, centeredE interhelical H bond, and weakening of the "switch" quaternary contact in deoxyHb are all apparent. Structural effects are less marked for the beta-chain Y/F replacement, but the Bohr effect is reduced by 25%, indicating that the salt-bridge and H bond interactions of the adjacent C terminus are loosened. The alpha-chain replacement reduces the Bohr effect much more, consistent with the global perturbations detected by the structure probes.
Collapse
Affiliation(s)
- Janina Kneipp
- Department of Chemistry, Princeton University, NJ 08544, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nagatomo S, Nagai M, Mizutani Y, Yonetani T, Kitagawa T. Quaternary structures of intermediately ligated human hemoglobin a and influences from strong allosteric effectors: resonance Raman investigation. Biophys J 2005; 89:1203-13. [PMID: 15894633 PMCID: PMC1366605 DOI: 10.1529/biophysj.104.049775] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 05/03/2005] [Indexed: 11/18/2022] Open
Abstract
The Fe-histidine stretching (nu(Fe-His)) frequency was determined for deoxy subunits of intermediately ligated human hemoglobin A in equilibrium and CO-photodissociated picosecond transient species in the presence and absence of strong allosteric effectors like inositol(hexakis)phosphate, bezafibrate, and 2,3-bisphosphoglycerate. The nu(Fe-His) frequency of deoxyHb A was unaltered by the effectors. The T-to-R transition occurred around m = 2-3 in the absence of effectors but m > 3.5 in their presence, where m is the average number of ligands bound to Hb and was determined from the intensity of the nu(4) band measured in the same experiment. The alpha1-beta2 subunit contacts revealed by ultraviolet resonance Raman spectra, which were distinctly different between the T and R states, remained unchanged by the effectors. This observation would solve the recent discrepancy that the strong effectors remove the cooperativity of oxygen binding in the low-affinity limit, whereas the (1)H NMR spectrum of fully ligated form exhibits the pattern of the R state.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Myodaiji, Aichi, Japan
| | | | | | | | | |
Collapse
|
13
|
Ziegler KJ, Hanrahan JP, Glennon JD, Holmes JD. Producing ‘pH switches’ in biphasic water–CO2 systems. J Supercrit Fluids 2003. [DOI: 10.1016/s0896-8446(02)00231-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|