1
|
Delavari N, Zhang Z, Stull F. Rapid reaction studies on the chemistry of flavin oxidation in urocanate reductase. J Biol Chem 2024; 300:105689. [PMID: 38280427 PMCID: PMC10882135 DOI: 10.1016/j.jbc.2024.105689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024] Open
Abstract
Urocanate reductase (UrdA) is a bacterial flavin-dependent enzyme that reduces urocanate to imidazole propionate, enabling bacteria to use urocanate as an alternative respiratory electron acceptor. Elevated serum levels of imidazole propionate are associated with the development of type 2 diabetes, and, since UrdA is only present in humans in gut bacteria, this enzyme has emerged as a significant factor linking the health of the gut microbiome and insulin resistance. Here, we investigated the chemistry of flavin oxidation by urocanate in the isolated FAD domain of UrdA (UrdA') using anaerobic stopped-flow experiments. This analysis unveiled the presence of a charge-transfer complex between reduced FAD and urocanate that forms within the dead time of the stopped-flow instrument (∼1 ms), with flavin oxidation subsequently occurring with a rate constant of ∼60 s-1. The pH dependence of the reaction and analysis of an Arg411Ala mutant of UrdA' are consistent with Arg411 playing a crucial role in catalysis by serving as the active site acid that protonates urocanate during hydride transfer from reduced FAD. Mutational analysis of urocanate-binding residues suggests that the twisted conformation of urocanate imposed by the active site of UrdA' facilitates urocanate reduction. Overall, this study provides valuable insight into the mechanism of urocanate reduction by UrdA.
Collapse
Affiliation(s)
- Niusha Delavari
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - Zhiyao Zhang
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA
| | - Frederick Stull
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan, USA.
| |
Collapse
|
2
|
Iverson TM, Singh PK, Cecchini G. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. J Biol Chem 2023; 299:104761. [PMID: 37119852 PMCID: PMC10238741 DOI: 10.1016/j.jbc.2023.104761] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023] Open
Abstract
Mitochondrial complex II is traditionally studied for its participation in two key respiratory processes: the electron transport chain and the Krebs cycle. There is now a rich body of literature explaining how complex II contributes to respiration. However, more recent research shows that not all of the pathologies associated with altered complex II activity clearly correlate with this respiratory role. Complex II activity has now been shown to be necessary for a range of biological processes peripherally related to respiration, including metabolic control, inflammation, and cell fate. Integration of findings from multiple types of studies suggests that complex II both participates in respiration and controls multiple succinate-dependent signal transduction pathways. Thus, the emerging view is that the true biological function of complex II is well beyond respiration. This review uses a semichronological approach to highlight major paradigm shifts that occurred over time. Special emphasis is given to the more recently identified functions of complex II and its subunits because these findings have infused new directions into an established field.
Collapse
Affiliation(s)
- T M Iverson
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Departments of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, USA.
| | - Prashant K Singh
- Departments of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Gary Cecchini
- Molecular Biology Division, San Francisco VA Health Care System, San Francisco, California, USA; Department of Biochemistry & Biophysics, University of California, San Francisco, California, USA.
| |
Collapse
|
3
|
Li W, Girt GC, Radadiya A, Stewart JJP, Richards NGJ, Naismith JH. Experimental and computational snapshots of C-C bond formation in a C-nucleoside synthase. Open Biol 2023; 13:220287. [PMID: 36629016 PMCID: PMC9832568 DOI: 10.1098/rsob.220287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
The biosynthetic enzyme, ForT, catalyses the formation of a C-C bond between 4-amino-1H-pyrazoledicarboxylic acid and MgPRPP to produce a C-nucleoside precursor of formycin A. The transformation catalysed by ForT is of chemical interest because it is one of only a few examples in which C-C bond formation takes place via an electrophilic substitution of a small, aromatic heterocycle. In addition, ForT is capable of discriminating between the aminopyrazoledicarboxylic acid and an analogue in which the amine is replaced by a hydroxyl group; a remarkable feat given the steric and electronic similarities of the two molecules. Here we report biophysical measurements, structural biology and quantum chemical calculations that provide a detailed molecular picture of ForT-catalysed C-C bond formation and the conformational changes that are coupled to catalysis. Our findings set the scene for employing engineered ForT variants in the biocatalytic production of novel, anti-viral C-nucleoside and C-nucleotide analogues.
Collapse
Affiliation(s)
- Wenbo Li
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Georgina C. Girt
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
| | - Ashish Radadiya
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | | | - Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Applied Molecular Evolution, Alachua, FL 32615, USA
| | - James H. Naismith
- Structural Biology, The Rosalind Franklin Institute, Didcot OX11 0QS, UK
- Division of Structural Biology, Nuffield Department of Medicine, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
4
|
How an assembly factor enhances covalent FAD attachment to the flavoprotein subunit of complex II. J Biol Chem 2022; 298:102472. [PMID: 36089066 PMCID: PMC9557727 DOI: 10.1016/j.jbc.2022.102472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/25/2023] Open
Abstract
The membrane-bound complex II family of proteins is composed of enzymes that catalyze succinate and fumarate interconversion coupled with reduction or oxidation of quinones within the membrane domain. The majority of complex II enzymes are protein heterotetramers with the different subunits harboring a variety of redox centers. These redox centers are used to transfer electrons between the site of succinate-fumarate oxidation/reduction and the membrane domain harboring the quinone. A covalently bound FAD cofactor is present in the flavoprotein subunit, and the covalent flavin linkage is absolutely required to enable the enzyme to oxidize succinate. Assembly of the covalent flavin linkage in eukaryotic cells and many bacteria requires additional protein assembly factors. Here, we provide mechanistic details for how the assembly factors work to enhance covalent flavinylation. Both prokaryotic SdhE and mammalian SDHAF2 enhance FAD binding to their respective apoprotein of complex II. These assembly factors also increase the affinity for dicarboxylates to the apoprotein-noncovalent FAD complex and stabilize the preassembly complex. These findings are corroborated by previous investigations of the roles of SdhE in enhancing covalent flavinylation in both bacterial succinate dehydrogenase and fumarate reductase flavoprotein subunits and of SDHAF2 in performing the same function for the human mitochondrial succinate dehydrogenase flavoprotein. In conclusion, we provide further insight into assembly factor involvement in building complex II flavoprotein subunit active site required for succinate oxidation.
Collapse
|
5
|
Evans RM, Ash PA, Beaton SE, Brooke EJ, Vincent KA, Carr SB, Armstrong FA. Mechanistic Exploitation of a Self-Repairing, Blocked Proton Transfer Pathway in an O2-Tolerant [NiFe]-Hydrogenase. J Am Chem Soc 2018; 140:10208-10220. [DOI: 10.1021/jacs.8b04798] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rhiannon M. Evans
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Philip A. Ash
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Stephen E. Beaton
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Emily J. Brooke
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Kylie A. Vincent
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Stephen B. Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot OX11 0QX, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Fraser A. Armstrong
- Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
6
|
Maklashina E, Rajagukguk S, Iverson TM, Cecchini G. The unassembled flavoprotein subunits of human and bacterial complex II have impaired catalytic activity and generate only minor amounts of ROS. J Biol Chem 2018; 293:7754-7765. [PMID: 29610278 PMCID: PMC5961047 DOI: 10.1074/jbc.ra118.001977] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
Complex II (SdhABCD) is a membrane-bound component of mitochondrial and bacterial electron transport chains, as well as of the TCA cycle. In this capacity, it catalyzes the reversible oxidation of succinate. SdhABCD contains the SDHA protein harboring a covalently bound FAD redox center and the iron-sulfur protein SDHB, containing three distinct iron-sulfur centers. When assembly of this complex is compromised, the flavoprotein SDHA may accumulate in the mitochondrial matrix or bacterial cytoplasm. Whether the unassembled SDHA has any catalytic activity, for example in succinate oxidation, fumarate reduction, reactive oxygen species (ROS) generation, or other off-pathway reactions, is not known. Therefore, here we investigated whether unassembled Escherichia coli SdhA flavoprotein, its homolog fumarate reductase (FrdA), and the human SDHA protein have succinate oxidase or fumarate reductase activity and can produce ROS. Using recombinant expression in E. coli, we found that the free flavoproteins from these divergent biological sources have inherently low catalytic activity and generate little ROS. These results suggest that the iron-sulfur protein SDHB in complex II is necessary for robust catalytic activity. Our findings are consistent with those reported for single-subunit flavoprotein homologs that are not associated with iron-sulfur or heme partner proteins.
Collapse
Affiliation(s)
- Elena Maklashina
- From the Molecular Biology Division, San Francisco Veterans Affairs Health Care System, San Francisco, California 94121, ,the Department of Biochemistry & Biophysics, University of California, San Francisco, California 94158, and
| | - Sany Rajagukguk
- From the Molecular Biology Division, San Francisco Veterans Affairs Health Care System, San Francisco, California 94121
| | - T. M. Iverson
- the Departments of Pharmacology and ,Biochemistry, ,the Center for Structural Biology, and ,the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Gary Cecchini
- From the Molecular Biology Division, San Francisco Veterans Affairs Health Care System, San Francisco, California 94121, ,the Department of Biochemistry & Biophysics, University of California, San Francisco, California 94158, and , Recipient of Senior Research Career Scientist Award IK6BX004215 from the Department of Veterans Affairs. To whom correspondence should be addressed:
Molecular Biology Division (151-S), San Francisco Veterans Affairs Healthcare System, 4150 Clement St., San Francisco, CA 94121. Tel.:
415-221-4810, Ext. 24416; E-mail:
| |
Collapse
|
7
|
Iverson TM. Catalytic mechanisms of complex II enzymes: a structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:648-57. [PMID: 22995215 DOI: 10.1016/j.bbabio.2012.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/07/2012] [Accepted: 09/10/2012] [Indexed: 11/25/2022]
Abstract
Over a decade has passed since the elucidation of the first X-ray crystal structure of any complex II homolog. In the intervening time, the structures of five additional integral-membrane complex II enzymes and three homologs of the soluble domain have been determined. These structures have provided a framework for the analysis of enzymological studies of complex II superfamily enzymes, and have contributed to detailed proposals for reaction mechanisms at each of the two enzyme active sites, which catalyze dicarboxylate and quinone oxidoreduction, respectively. This review focuses on how structural data have augmented our understanding of catalysis by the superfamily. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- T M Iverson
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA.
| |
Collapse
|
8
|
Shekhter T, Metanis N, Dawson PE, Keinan E. A residue outside the active site CXXC motif regulates the catalytic efficiency of Glutaredoxin 3. MOLECULAR BIOSYSTEMS 2010; 6:241-8. [PMID: 20024086 PMCID: PMC3820274 DOI: 10.1039/b912753d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The glutaredoxin (Grx) family of oxidoreductases has a conserved residue at position 8 that varies between Arginine in Grx1 and Lysine in Grx3. It has been proposed that this Arg/Lys change is the main cause for the 35 mV difference in redox potential between the two enzymes. To gain insights into the catalytic machinery of Grx3 and directly evaluate the role of residue 8 in the catalysis of thiol-disulfide exchange by this enzyme, we synthesized the "wild type" enzyme (sGrx3), and four analogues substituting the lysine at position 8 with arginine, ornithine (Orn), citrulline (Cit) and norvaline (Nva). The redox potential and equilibration kinetics with thioredoxin (Trx1) were determined for each enzyme by fluorescence intensity. While minor effects on redox potential were observed, we found that residue 8 had a more marked effect on the catalytic efficiency of this enzyme. Surprisingly, truncation of the functional group resulted in a more efficient enzyme, Lys8Nva, exhibiting rate constants that are an order of magnitude higher than sGrx3 for both forward and reverse reactions. These observations pose the question why would a residue that reduces the rate of enzyme turnover be evolutionarily conserved? The significant changes in the kinetic parameters suggest that this position plays an important role in the thiol-disulfide exchange reaction by affecting the nucleophilic thiolate through electrostatic or hydrogen bonding interactions. Since the reduced Grx has an exposed thiol that could easily be alkylated, either Arg or Lys could act as a gatekeeper that deters unwanted electrophiles from attacking the active site thiolate.
Collapse
Affiliation(s)
- Talia Shekhter
- Schulich Faculty of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Scripps Research Institute, Department of Molecular Biology, the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Norman Metanis
- Schulich Faculty of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Scripps Research Institute, Department of Molecular Biology, the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Philip E. Dawson
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Scripps Research Institute, Department of Molecular Biology, Cell Biology and Chemistry and 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ehud Keinan
- Schulich Faculty of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
- The Scripps Research Institute, Department of Molecular Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- The Scripps Research Institute, Department of Molecular Biology, the Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
9
|
Pessanha M, Rothery EL, Miles CS, Reid GA, Chapman SK, Louro RO, Turner DL, Salgueiro CA, Xavier AV. Tuning of functional heme reduction potentials in Shewanella fumarate reductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:113-20. [DOI: 10.1016/j.bbabio.2008.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 11/15/2022]
|
10
|
Tomasiak TM, Cecchini G, Iverson TM. Succinate as Donor; Fumarate as Acceptor. EcoSal Plus 2007; 2. [PMID: 26443593 DOI: 10.1128/ecosal.3.2.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Indexed: 06/05/2023]
Abstract
Succinate and fumarate are four-carbon dicarboxylates that differ in the identity of their central bond (single or double). The oxidoreduction of these small molecules plays a central role in both aerobic and anaerobic respiration. During aerobic respiration, succinate is oxidized, donating two reducing equivalents, while in anaerobic respiration, fumarate is reduced, accepting two reducing equivalents. Two related integral membrane Complex II superfamily members catalyze these reactions, succinate:ubiquinone oxidoreductase (SQR) and fumarate:menaquinol oxidoreductase (QFR). The structure, function, and regulation of these integral-membrane enzymes are summarized here. The overall architecture of these Complex II enzymes has been found to consist of four subunits: two integral membrane subunits, and a soluble domain consisting of an iron-sulfur protein subunit, and a flavoprotein subunit. This architecture provides a scaffold that houses one active site in the membrane and another in the soluble milieu, making a linear electron transfer chain that facilities shuttling of reducing equivalents between the two active sites. A combination of kinetic measurements, mutagenesis, electron paramagnetic resonance spectroscopy, UV/Vis spectroscopy, and x-ray crystallography have suggested mechanisms for succinate:fumarate interconversion, electron transfer, and quinone:quinol interconversion. Of particular interest are the structural details that control directionality and make SQR and QFR primed for preferential catalysis each in different favored directions.
Collapse
|
11
|
Affiliation(s)
- James P McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
12
|
Pankhurst KL, Mowat CG, Rothery EL, Hudson JM, Jones AK, Miles CS, Walkinshaw MD, Armstrong FA, Reid GA, Chapman SK. A proton delivery pathway in the soluble fumarate reductase from Shewanella frigidimarina. J Biol Chem 2006; 281:20589-97. [PMID: 16699170 DOI: 10.1074/jbc.m603077200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism for fumarate reduction by the soluble fumarate reductase from Shewanella frigidimarina involves hydride transfer from FAD and proton transfer from the active-site acid, Arg-402. It has been proposed that Arg-402 forms part of a proton transfer pathway that also involves Glu-378 and Arg-381 but, unusually, does not involve any bound water molecules. To gain further insight into the importance of this proton pathway we have perturbed it by substituting Arg-381 by lysine and methionine and Glu-378 by aspartate. Although all the mutant enzymes retain measurable activities, there are orders-of-magnitude decreases in their k(cat) values compared with the wild-type enzyme. Solvent kinetic isotope effects show that proton transfer is rate-limiting in the wild-type and mutant enzymes. Proton inventories indicate that the proton pathway involves multiple exchangeable groups. Fast scan protein-film voltammetric studies on wild-type and R381K enzymes show that the proton transfer pathway delivers one proton per catalytic cycle and is not required for transporting the other proton, which transfers as a hydride from the reduced, protonated FAD. The crystal structures of E378D and R381M mutant enzymes have been determined to 1.7 and 2.1 A resolution, respectively. They allow an examination of the structural changes that disturb proton transport. Taken together, the results indicate that Arg-381, Glu-378, and Arg-402 form a proton pathway that is completely conserved throughout the fumarate reductase/succinate dehydrogenase family of enzymes.
Collapse
Affiliation(s)
- Katherine L Pankhurst
- Edinburgh and St. Andrews Research School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lucas MF, Ramos MJ. Mechanism of a Soluble Fumarate Reductase from Shewanella frigidimarina: A Theoretical Study. J Phys Chem B 2006; 110:10550-6. [PMID: 16722766 DOI: 10.1021/jp057456t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanism of a unique fumarate reductase is explored using the hybrid density functional B3LYP method. The calculations show a two-step mechanism, initiated with a hydride transfer from FAD (flavin adenine dinucleotide) to fumarate, followed by a proton shift from Arg402. The rate-limiting process is assigned to the hydride transfer, and the energetics are consistent with experimental data. It is shown that the enzyme is essential to correctly position the substrate in the active site, stabilizing its extremely anionic character.
Collapse
Affiliation(s)
- M Fatima Lucas
- REQUIMTE, Departamento de Química, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | | |
Collapse
|
14
|
Guillén Schlippe YV, Hedstrom L. A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Arch Biochem Biophys 2005; 433:266-78. [PMID: 15581582 DOI: 10.1016/j.abb.2004.09.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/13/2004] [Indexed: 10/26/2022]
Abstract
Arginine residues are generally considered poor candidates for the role of general bases because they are predominantly protonated at physiological pH. Nonetheless, Arg residues have recently emerged as general bases in several enzymes: IMP dehydrogenase, pectate/pectin lyases, fumarate reductase, and l-aspartate oxidase. The experimental evidence suggesting this mechanistic function is reviewed. Although these enzymes have several different folds and distinct evolutionary origins, a common structural motif is found where the critical Arg residue is solvent accessible and adjacent to carboxylate groups. The chemistry of the guanidine group suggests unique strategies to lower the pK(a) of Arg. Lastly, the presumption that general bases must be predominantly deprotonated is revisited.
Collapse
|
15
|
Pessanha M, Rothery EL, Louro RO, Turner DL, Miles CS, Reid GA, Chapman SK, Xavier AV, Salgueiro CA. Redox behaviour of the haem domain of flavocytochromec3fromShewanella frigidimarinaprobed by NMR. FEBS Lett 2004; 578:185-90. [PMID: 15581639 DOI: 10.1016/j.febslet.2004.10.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Accepted: 10/31/2004] [Indexed: 11/19/2022]
Abstract
Flavocytochrome c3 from Shewanella frigidimarina (fcc3) is a tetrahaem periplasmic protein of 64 kDa with fumarate reductase activity. This work reports the first example of NMR techniques applied to the assignment of the thermodynamic order of oxidation of the four individual haems for such large protein, expanding its applicability to a wide range of proteins. NMR data from partially and fully oxidised samples of fcc3 and a mutated protein with an axial ligand of haem IV replaced by alanine were compared with calculated chemical shifts, allowing the structural assignment of the signals and the unequivocal determination of the order of oxidation of the haems. As oxidation progresses the fcc3 haem domain is polarised, with haems I and II much more oxidised than haems III and IV, haem IV being the most reduced. Thus, during catalysis as an electron is taken by the flavin adenosine dinucleotide from haem IV, haem III is eager to re-reduce haem IV, allowing the transfer of two electrons to the active site.
Collapse
Affiliation(s)
- Miguel Pessanha
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Complex II is the only membrane-bound component of the Krebs cycle and in addition functions as a member of the electron transport chain in mitochondria and in many bacteria. A recent X-ray structural solution of members of the complex II family of proteins has provided important insights into their function. One feature of the complex II structures is a linear electron transport chain that extends from the flavin and iron-sulfur redox cofactors in the membrane extrinsic domain to the quinone and b heme cofactors in the membrane domain. Exciting recent developments in relation to disease in humans and the formation of reactive oxygen species by complex II point to its overall importance in cellular physiology.
Collapse
Affiliation(s)
- Gary Cecchini
- Molecular Biology Division, Veterans Administration Medical Center, San Francisco, California 94121, USA.
| |
Collapse
|
17
|
Metzler DE, Metzler CM, Sauke DJ. Electron Transport, Oxidative Phosphorylation, and Hydroxylation. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|