1
|
Wakasugi K, Yokosawa T. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases. Enzymes 2020; 48:207-242. [PMID: 33837705 DOI: 10.1016/bs.enz.2020.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoacyl-tRNA synthetases catalyze the aminoacylation of their cognate tRNAs. Here we review the accumulated knowledge of non-canonical functions of human cytoplasmic aminoacyl-tRNA synthetases, especially tyrosyl- (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS). Human TyrRS and TrpRS have an extra domain. Two distinct cytokines, i.e., the core catalytic "mini TyrRS" and the extra C-domain, are generated from human TyrRS by proteolytic cleavage. Moreover, the core catalytic domains of human TyrRS and TrpRS function as angiogenic and angiostatic factors, respectively, whereas the full-length forms are inactive for this function. It is also known that many synthetases change their localization in response to a specific signal and subsequently exhibit alternative functions. Furthermore, some synthetases function as sensors for amino acids by changing their protein interactions in an amino acid-dependent manner. Further studies will be necessary to elucidate regulatory mechanisms of non-canonical functions of aminoacyl-tRNA synthetases in particular, by analyzing the effect of their post-translational modifications.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
YARS as an oncogenic protein that promotes gastric cancer progression through activating PI3K-Akt signaling. J Cancer Res Clin Oncol 2020; 146:329-342. [PMID: 31912229 PMCID: PMC6985085 DOI: 10.1007/s00432-019-03115-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Members of the aaRS (aminoacyl-tRNA synthetase) family are proteins controlling the aminoacylation process, in which YARS (tyrosyl-tRNA synthetase) catalyzes the binding of tyrosine to its cognate tRNA and plays an important role in basic biosynthesis. Several studies have demonstrated the association between YARS mutation and certain developmental abnormalities/diseases, yet YARS's linkage with cancer remains uncategorized. In this study, by combining in silico, in vitro, and in vivo studies, we explored the expressions and functions of YARS in gastric cancer (GC). METHODS We evaluated YARS's distribution in tumor and paired normal tissues/specimens of GC by referring to large cohort online datasets and patient-derived tissue specimens. YARS-related changes were assessed by phenotypical/molecular experiments and RNA-sequencing analysis in GC cell lines harboring YARS knockdown or overexpression. RESULTS Both the transcript and protein levels of YARS were evidently higher in gastric cancer tissues than in paired normal tissues. YARS knockdown induced repressed proliferation and invasiveness, as well as enhanced apoptosis in GC cell lines, while abnormally upregulating YARS expression promoted gastric cancer growth in vivo. We inferred based on RNA-sequencing that YARS modulates multiple cancerous signaling pathways and proved through cellular experiments that YARS promoted GC progression, as well as homologous recombination by activating PI3K-Akt signaling. CONCLUSIONS By revealing the existence of a YARS-PI3K-Akt signaling axis in gastric cancer, we discovered that tRNA synthetase YARS is a novel tumorigenic factor, characterized by its upregulation in tumor-derived specimens, as well as its functions in promoting gastric cancer progression.
Collapse
|
3
|
Lee EY, Kim S, Kim MH. Aminoacyl-tRNA synthetases, therapeutic targets for infectious diseases. Biochem Pharmacol 2018; 154:424-434. [PMID: 29890143 PMCID: PMC7092877 DOI: 10.1016/j.bcp.2018.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
Despite remarkable advances in medical science, infection-associated diseases remain among the leading causes of death worldwide. There is a great deal of interest and concern at the rate at which new pathogens are emerging and causing significant human health problems. Expanding our understanding of how cells regulate signaling networks to defend against invaders and retain cell homeostasis will reveal promising strategies against infection. It has taken scientists decades to appreciate that eukaryotic aminoacyl-tRNA synthetases (ARSs) play a role as global cell signaling mediators to regulate cell homeostasis, beyond their intrinsic function as protein synthesis enzymes. Recent discoveries revealed that ubiquitously expressed standby cytoplasmic ARSs sense and respond to danger signals and regulate immunity against infections, indicating their potential as therapeutic targets for infectious diseases. In this review, we discuss ARS-mediated anti-infectious signaling and the emerging role of ARSs in antimicrobial immunity. In contrast to their ability to defend against infection, host ARSs are inevitably co-opted by viruses for survival and propagation. We therefore provide a brief overview of the communication between viruses and the ARS system. Finally, we discuss encouraging new approaches to develop ARSs as therapeutics for infectious diseases.
Collapse
Affiliation(s)
- Eun-Young Lee
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Seoul National University, Suwon 16229, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myung Hee Kim
- Infection and Immunity Research Laboratory, Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
4
|
Wei N, Shi Y, Truong LN, Fisch KM, Xu T, Gardiner E, Fu G, Hsu YSO, Kishi S, Su AI, Wu X, Yang XL. Oxidative stress diverts tRNA synthetase to nucleus for protection against DNA damage. Mol Cell 2014; 56:323-332. [PMID: 25284223 DOI: 10.1016/j.molcel.2014.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/30/2014] [Accepted: 08/28/2014] [Indexed: 11/26/2022]
Abstract
Tyrosyl-tRNA synthetase (TyrRS) is known for its essential aminoacylation function in protein synthesis. Here we report a function for TyrRS in DNA damage protection. We found that oxidative stress, which often downregulates protein synthesis, induces TyrRS to rapidly translocate from the cytosol to the nucleus. We also found that angiogenin mediates or potentiates this stress-induced translocalization. The nuclear-localized TyrRS activates transcription factor E2F1 to upregulate the expression of DNA damage repair genes such as BRCA1 and RAD51. The activation is achieved through direct interaction of TyrRS with TRIM28 to sequester this vertebrate-specific epigenetic repressor and its associated HDAC1 from deacetylating and suppressing E2F1. Remarkably, overexpression of TyrRS strongly protects against UV-induced DNA double-strand breaks in zebrafish, whereas restricting TyrRS nuclear entry completely abolishes the protection. Therefore, oxidative stress triggers an essential cytoplasmic enzyme used for protein synthesis to translocate to the nucleus to protect against DNA damage.
Collapse
Affiliation(s)
- Na Wei
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yi Shi
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Lan N Truong
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Kathleen M Fisch
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Tao Xu
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elisabeth Gardiner
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Guangsen Fu
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yun-Shiuan Olivia Hsu
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shuji Kishi
- Department of Metabolism and Aging, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xiaohua Wu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Departments of Chemical Physiology and Cell and Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Lang Y, Zhang Y, Zhan L, Feng Z, Zhou X, Yu M, Mo W. Expression, purification, and characterization of rhTyrRS. BMC Biotechnol 2014; 14:64. [PMID: 25027604 PMCID: PMC4118627 DOI: 10.1186/1472-6750-14-64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 07/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aminoacyl-tRNA synthetases (AARSs) catalyze the first step of protein synthesis. Emerging evidence indicates that AARSs may have additional functions, playing a role in signal transduction pathways regulating thrombopoiesis and inflammation. Recombinant human tyrosyl-tRNA synthetase (rhTyrRS) is engineered with a single amino acid substitution that unmasks its cytokine activity. An industrial production method that provides high yield as well as high purity, quality, and potency of this protein is required for preclinical research. RESULTS We expressed codon-optimized rhTyrRS in Escherichia coli under fermentation conditions. Soluble protein was purified by a three-step purification method using cation exchange chromatography, gel filtration chromatography, and anion exchange chromatography. We also established a method to test the biological activity of rhTyrRS by measuring aminoacylation and IL-8 release in rhTyrRS-treated HL-60 cells. CONCLUSIONS The characterization of purified rhTyrRS indicated that this protein can be used in pharmacodynamic and pharmacokinetic studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Min Yu
- The Key Laboratory of Molecular Medicine, Ministry of Education, Fudan University, Shanghai, P,R, China.
| | | |
Collapse
|
6
|
Son SH, Park MC, Kim S. Extracellular activities of aminoacyl-tRNA synthetases: new mediators for cell-cell communication. Top Curr Chem (Cham) 2013; 344:145-66. [PMID: 24352603 DOI: 10.1007/128_2013_476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last decade, many reports have discussed aminoacyl-tRNA synthetases (ARSs) in extracellular space. Now that so many of them are known to be secreted with distinct activities in the broad range of target cells including endothelial, various immune cells, and fibroblasts, they need to be classified as a new family of extracellular signal mediators. In this chapter the identity of the secreted ARSs, receptors, and their physiological and pathological implications will be described.
Collapse
Affiliation(s)
- Sung Hwa Son
- Medicinal Bioconvergence Research Center, Graduate School of Convergence Science and Technology, College of Pharmacy, Seoul National University, Seoul, 151-742, South Korea
| | | | | |
Collapse
|
7
|
Lee PS, Zhang HM, Marshall AG, Yang XL, Schimmel P. Uncovering of a short internal peptide activates a tRNA synthetase procytokine. J Biol Chem 2012; 287:20504-8. [PMID: 22549774 PMCID: PMC3370235 DOI: 10.1074/jbc.c112.369439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/28/2012] [Indexed: 11/06/2022] Open
Abstract
In higher organisms, aminoacyl-tRNA synthetases developed receptor-mediated ex-translational functions that are activated by various natural mechanisms. Hydrogen-deuterium exchange combined with mass spectrometry and small-angle x-ray scattering showed that activation of the cytokine function of the 528-amino acid human tyrosyl-tRNA synthetase was associated with pinpointed uncovering of a miniature internal ELR tripeptide that triggers receptor signaling. The results reveal the structural simplicity of how the ex-translational function is implemented.
Collapse
Affiliation(s)
| | - Hui-Min Zhang
- the National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Alan G. Marshall
- the National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310
| | - Xiang-Lei Yang
- From the Departments of Molecular Biology and
- Chemical Physiology and
| | - Paul Schimmel
- From the Departments of Molecular Biology and
- The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La, Jolla, California 92037 and
| |
Collapse
|
8
|
Vo MN, Yang XL, Schimmel P. Dissociating quaternary structure regulates cell-signaling functions of a secreted human tRNA synthetase. J Biol Chem 2011; 286:11563-8. [PMID: 21310955 DOI: 10.1074/jbc.c110.213876] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many tRNA synthetases are homodimers that are catalytically inactive as monomers. An example is the 528-amino acid human tyrosyl-tRNA synthetase, which is made up of an N-terminal catalytic unit (TyrRS(Mini)) and a 164-amino acid C-domain. Although native TyrRS has no known cytokine functions, natural proteolysis of secreted TyrRS releases TyrRS(Mini), which not only has the same aminoacylation activity as native TyrRS but also has strong activity for stimulating migration of polymorphonuclear leukocytes. The migration-stimulating activity is dependent on an ELR tripeptide motif, similar to that in CXC cytokines like IL-8, and also has the familiar bell-shaped concentration dependence seen for CXC cytokines. Here we show that in contrast to IL-8, where the bell-shaped dependence arises from the effects of CXCR1/2 receptor internalization, TyrRS(Mini) does not induce internalization of CXCR1/2. A rationally designed non-associating monomer and a non-dissociating dimer were constructed. With these constructs, the bell-shaped concentration dependence of leukocyte migration was shown to arise from the agonist (for migration) activity of the catalytically inactive monomer and the antagonist activity of the catalytically active dimer. Thus, the dissociating quaternary structure of TyrRS(Mini) regulates two opposing cytokine activities and suggests the possibility of dissociating quaternary structures regulating novel functions of other tRNA synthetases.
Collapse
Affiliation(s)
- My-Nuong Vo
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
9
|
Brown MV, Reader JS, Tzima E. Mammalian aminoacyl-tRNA synthetases: Cell signaling functions of the protein translation machinery. Vascul Pharmacol 2010; 52:21-6. [DOI: 10.1016/j.vph.2009.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/20/2009] [Accepted: 11/29/2009] [Indexed: 12/01/2022]
|
10
|
Guo M, Schimmel P, Yang XL. Functional expansion of human tRNA synthetases achieved by structural inventions. FEBS Lett 2009; 584:434-42. [PMID: 19932696 DOI: 10.1016/j.febslet.2009.11.064] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 02/06/2023]
Abstract
Known as an essential component of the translational apparatus, the aminoacyl-tRNA synthetase family catalyzes the first step reaction in protein synthesis, that is, to specifically attach each amino acid to its cognate tRNA. While preserving this essential role, tRNA synthetases developed other roles during evolution. Human tRNA synthetases, in particular, have diverse functions in different pathways involving angiogenesis, inflammation and apoptosis. The functional diversity is further illustrated in the association with various diseases through genetic mutations that do not affect aminoacylation or protein synthesis. Here we review the accumulated knowledge on how human tRNA synthetases used structural inventions to achieve functional expansions.
Collapse
Affiliation(s)
- Min Guo
- The Skaggs Institute for Chemical Biology, Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
11
|
Mutational separation of aminoacylation and cytokine activities of human tyrosyl-tRNA synthetase. ACTA ACUST UNITED AC 2009; 16:531-9. [PMID: 19477417 DOI: 10.1016/j.chembiol.2009.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/04/2009] [Accepted: 03/10/2009] [Indexed: 11/20/2022]
Abstract
Aminoacyl tRNA synthetases are known for catalysis of aminoacylation. Significantly, some mammalian synthetases developed cytokine functions possibly linked to disease-causing mutations in tRNA synthetases. Not understood is how epitopes for cytokine signaling were introduced into catalytic scaffolds without disturbing aminoacylation. Here we investigate human tyrosyl-tRNA synthetase, where a catalytic-domain surface helix, next to the active site, was recruited for interleukin-8-like cytokine signaling. Taking advantage of our high resolution structure, the reciprocal impact of rational mutations designed to disrupt aminoacylation or cytokine signaling was investigated with multiple assays. The collective analysis demonstrated a protective fine-structure separation of aminoacylation from cytokine activities within the conserved catalytic domain. As a consequence, disease-causing mutations affecting cell signaling can arise without disturbing aminoacylation. These results with TyrRS also predict the previously unknown binding conformation of interleukin-8-like CXC cytokines.
Collapse
|
12
|
Tsunoda M, Kusakabe Y, Tanaka N, Ohno S, Nakamura M, Senda T, Moriguchi T, Asai N, Sekine M, Yokogawa T, Nishikawa K, Nakamura KT. Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms. Nucleic Acids Res 2007; 35:4289-300. [PMID: 17576676 PMCID: PMC1934993 DOI: 10.1093/nar/gkm417] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/08/2007] [Accepted: 05/08/2007] [Indexed: 11/13/2022] Open
Abstract
The specific aminoacylation of tRNA by tyrosyl-tRNA synthetases (TyrRSs) relies on the identity determinants in the cognate tRNA(Tyr)s. We have determined the crystal structure of Saccharomyces cerevisiae TyrRS (SceTyrRS) complexed with a Tyr-AMP analog and the native tRNA(Tyr)(GPsiA). Structural information for TyrRS-tRNA(Tyr) complexes is now full-line for three kingdoms. Because the archaeal/eukaryotic TyrRSs-tRNA(Tyr)s pairs do not cross-react with their bacterial counterparts, the recognition modes of the identity determinants by the archaeal/eukaryotic TyrRSs were expected to be similar to each other but different from that by the bacterial TyrRSs. Interestingly, however, the tRNA(Tyr) recognition modes of SceTyrRS have both similarities and differences compared with those in the archaeal TyrRS: the recognition of the C1-G72 base pair by SceTyrRS is similar to that by the archaeal TyrRS, whereas the recognition of the A73 by SceTyrRS is different from that by the archaeal TyrRS but similar to that by the bacterial TyrRS. Thus, the lack of cross-reactivity between archaeal/eukaryotic and bacterial TyrRS-tRNA(Tyr) pairs most probably lies in the different sequence of the last base pair of the acceptor stem (C1-G72 vs G1-C72) of tRNA(Tyr). On the other hand, the recognition mode of Tyr-AMP is conserved among the TyrRSs from the three kingdoms.
Collapse
Affiliation(s)
- Masaru Tsunoda
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshio Kusakabe
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Nobutada Tanaka
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Satoshi Ohno
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Masashi Nakamura
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Toshiya Senda
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Tomohisa Moriguchi
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Norio Asai
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Mitsuo Sekine
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Takashi Yokogawa
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuya Nishikawa
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuo T. Nakamura
- School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan, Department of Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan, Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan and Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
13
|
van Horssen R, Eggermont AMM, ten Hagen TLM. Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes. Cytokine Growth Factor Rev 2006; 17:339-48. [PMID: 16945568 DOI: 10.1016/j.cytogfr.2006.08.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endothelial monocyte-activating polypeptide-II (EMAP-II) is a pro-inflammatory cytokine with anti-angiogenic properties. Its precursor, proEMAP, is identical to the p43 auxiliary component of the tRNA multisynthetase complex and therefore involved in protein translation. Although most of the activities have been ascribed to the active form EMAP-II, also p43 has reported cytokine properties. ProEMAP/p43 and EMAP-II act on many levels and on many cell types including endothelial cells, immune cells and fibroblasts. In this review we summarize all available data on isolation, expression and functions of EMAP-II both in physiological processes as well as in pathological settings, like cancer. We also discuss the different reported mechanisms for processing of proEMAP/p43 into EMAP-II. Finally, we speculate on the possible applications of this cytokine for (cancer) therapy.
Collapse
Affiliation(s)
- Remco van Horssen
- Laboratory of Experimental Surgical Oncology, Department of Surgical Oncology, Erasmus University MC - Daniel den Hoed Cancer Center, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
14
|
Yang XL, Otero FJ, Ewalt KL, Liu J, Swairjo MA, Köhrer C, RajBhandary UL, Skene RJ, McRee DE, Schimmel P. Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis. EMBO J 2006; 25:2919-29. [PMID: 16724112 PMCID: PMC1500858 DOI: 10.1038/sj.emboj.7601154] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 04/27/2006] [Indexed: 11/09/2022] Open
Abstract
Aminoacylation of tRNA is the first step of protein synthesis. Here, we report the co-crystal structure of human tryptophanyl-tRNA synthetase and tRNATrp. This enzyme is reported to interact directly with elongation factor 1alpha, which carries charged tRNA to the ribosome. Crystals were generated from a 50/50% mixture of charged and uncharged tRNATrp. These crystals captured two conformations of the complex, which are nearly identical with respect to the protein and a bound tryptophan. They are distinguished by the way tRNA is bound. In one, uncharged tRNA is bound across the dimer, with anticodon and acceptor stem interacting with separate subunits. In this cross-dimer tRNA complex, the class I enzyme has a class II-like tRNA binding mode. This structure accounts for biochemical investigations of human TrpRS, including species-specific charging. In the other conformation, presumptive aminoacylated tRNA is bound only by the anticodon, the acceptor stem being free and having space to interact precisely with EF-1alpha, suggesting that the product of aminoacylation can be directly handed off to EF-1alpha for the next step of protein synthesis.
Collapse
Affiliation(s)
- Xiang-Lei Yang
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Park SG, Ewalt KL, Kim S. Functional expansion of aminoacyl-tRNA synthetases and their interacting factors: new perspectives on housekeepers. Trends Biochem Sci 2005; 30:569-74. [PMID: 16125937 DOI: 10.1016/j.tibs.2005.08.004] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/13/2005] [Accepted: 08/12/2005] [Indexed: 11/19/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that join amino acids to tRNAs, thereby linking the genetic code to specific amino acids. Once considered a class of 'housekeeping' enzymes, ARSs are now known to participate in a wide variety of functions, including transcription, translation, splicing, inflammation, angiogenesis and apoptosis. Three nonenzymatic proteins--ARS-interacting multi-functional proteins (AIMPs)--associate with ARSs in a multi-synthetase complex of higher eukaryotes. Similarly to ARSs, AIMPs have novel functions unrelated to their support role in protein synthesis, acting as a cytokine to control angiogenesis, immune response and wound repair, and as a crucial regulator for cell proliferation and DNA repair. Evaluation of the functional roles of individual ARSs and AIMPs might help to elucidate why these proteins as a whole contribute such varied functions and interactions in complex systems.
Collapse
Affiliation(s)
- Sang Gyu Park
- National Creative Research Initiatives Center for ARS Network, College of Pharmacy, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-742, Korea
| | | | | |
Collapse
|
16
|
Bonnefond L, Giegé R, Rudinger-Thirion J. Evolution of the tRNATyr/TyrRS aminoacylation systems. Biochimie 2005; 87:873-83. [PMID: 16164994 DOI: 10.1016/j.biochi.2005.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/18/2005] [Accepted: 03/17/2005] [Indexed: 11/29/2022]
Abstract
The tRNA identity rules ensuring fidelity of translation are globally conserved throughout evolution except for tyrosyl-tRNA synthetases (TyrRSs) that display species-specific tRNA recognition. This discrimination originates from the presence of a conserved identity pair, G1-C72, located at the top of the acceptor stem of tRNA(Tyr) from eubacteria that is invariably replaced by an unusual C1-G72 pair in archaeal and eubacterial tRNA(Tyr). In addition to the key role of pair 1-72 in tyrosylation, discriminator base A73, the anticodon triplet and the large variable region (present in eubacterial tRNA(Tyr) but not found in eukaryal tRNA(Tyr)) contribute to tyrosylation with variable strengths. Crystallographic structures of two tRNA(Tyr)/TyrRS complexes revealed different interaction modes in accordance with the phylum-specificity. Recent functional studies on the human mitochondrial tRNA(Tyr)/TyrRS system indicates strong deviations from the canonical tyrosylation rules. These differences are discussed in the light of the present knowledge on TyrRSs.
Collapse
Affiliation(s)
- Luc Bonnefond
- Département Mécanismes et Macromolécules de la Synthèse Protéique et Cristallogenèse, UPR 9002, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15, rue René Descartes, 67084 Strasbourg cedex, France
| | | | | |
Collapse
|
17
|
Tzima E, Reader JS, Irani-Tehrani M, Ewalt KL, Schwartz MA, Schimmel P. Biologically active fragment of a human tRNA synthetase inhibits fluid shear stress-activated responses of endothelial cells. Proc Natl Acad Sci U S A 2003; 100:14903-7. [PMID: 14630953 PMCID: PMC299850 DOI: 10.1073/pnas.2436330100] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) is active in translation and angiogenesis. In particular, an N-terminally truncated fragment, T2-TrpRS, that is closely related to a natural splice variant is a potent antagonist of vascular endothelial growth factor-induced angiogenesis in several in vivo models. In contrast, full-length native TrpRS is inactive in the same models. However, vascular endothelial growth factor stimulation is only one of many physiological and pathophysiological stimuli to which the vascular endothelium responds. To investigate more broadly the role of T2-TrpRS in vascular homeostasis and pathophysiology, the effect of T2-TrpRS on well characterized endothelial cell (EC) responses to flow-induced fluid shear stress was studied. T2-TrpRS inhibited activation by flow of protein kinase B (Akt), extracellular signal-regulated kinase 1/2, and EC NO synthase and prevented transcription of several shear stress-responsive genes. In addition, T2-TrpRS interfered with the unique ability of ECs to align in the direction of fluid flow. In all of these assays, native TrpRS was inactive, demonstrating that angiogenesis-related activity requires fragment production. These results demonstrate that T2-TrpRS can regulate extracellular signal-activated protein kinase, Akt, and EC NO synthase activation pathways that are associated with angiogenesis, cytoskeletal reorganization, and shear stress-responsive gene expression. Thus, this biological fragment of TrpRS may have a role in the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- E Tzima
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2003; 20:555-62. [PMID: 12749362 DOI: 10.1002/yea.944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
19
|
Yang XL, Skene RJ, McRee DE, Schimmel P. Crystal structure of a human aminoacyl-tRNA synthetase cytokine. Proc Natl Acad Sci U S A 2002; 99:15369-74. [PMID: 12427973 PMCID: PMC137723 DOI: 10.1073/pnas.242611799] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2002] [Indexed: 11/18/2022] Open
Abstract
The 20 aminoacyl-tRNA synthetases catalyze the first step of protein synthesis and establish the rules of the genetic code through aminoacylation reactions. Biological fragments of two human enzymes, tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase, connect protein synthesis to cell-signaling pathways including angiogenesis. Alternative splicing or proteolysis produces these fragments. The proangiogenic N-terminal fragment mini-TyrRS has IL-8-like cytokine activity that, like other CXC cytokines, depends on a Glu-Leu-Arg motif. Point mutations in this motif abolish cytokine activity. The full-length native TyrRS lacks cytokine activity. No structure has been available for any mammalian tRNA synthetase that, in turn, might give insight into why mini-TyrRS and not TyrRS has cytokine activities. Here, the structure of human mini-TyrRS, which contains both the catalytic and the anticodon recognition domain, is reported to a resolution of 1.18 A. The critical Glu-Leu-Arg motif is located on an internal alpha-helix of the catalytic domain, where the guanidino side chain of R is part of a hydrogen-bonding network tethering the anticodon-recognition domain back to the catalytic site. Whereas the catalytic domains of the human and bacterial enzymes superimpose, the spatial disposition of the anticodon recognition domain relative to the catalytic domain is unique in mini-TyrRS relative to the bacterial orthologs. This unique orientation of the anticodon-recognition domain can explain why the fragment mini-TyrRS, and not full-length native TyrRS, is active in cytokine-signaling pathways.
Collapse
Affiliation(s)
- Xiang-Lei Yang
- The Skaggs Institute for Chemical Biology, BCC-379, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|