1
|
Fatima S, Olshansky L. Conformational control over proton-coupled electron transfer in metalloenzymes. Nat Rev Chem 2024; 8:762-775. [PMID: 39223400 PMCID: PMC11531298 DOI: 10.1038/s41570-024-00646-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
From the reduction of dinitrogen to the oxidation of water, the chemical transformations catalysed by metalloenzymes underlie global geochemical and biochemical cycles. These reactions represent some of the most kinetically and thermodynamically challenging processes known and require the complex choreography of the fundamental building blocks of nature, electrons and protons, to be carried out with utmost precision and accuracy. The rate-determining step of catalysis in many metalloenzymes consists of a protein structural rearrangement, suggesting that nature has evolved to leverage macroscopic changes in protein molecular structure to control subatomic changes in metallocofactor electronic structure. The proton-coupled electron transfer mechanisms operative in nitrogenase, photosystem II and ribonucleotide reductase exemplify this interplay between molecular and electronic structural control. We present the culmination of decades of study on each of these systems and clarify what is known regarding the interplay between structural changes and functional outcomes in these metalloenzyme linchpins.
Collapse
Affiliation(s)
- Saman Fatima
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lisa Olshansky
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Sirohiwal A, Pantazis DA. Functional Water Networks in Fully Hydrated Photosystem II. J Am Chem Soc 2022; 144:22035-22050. [PMID: 36413491 PMCID: PMC9732884 DOI: 10.1021/jacs.2c09121] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Water channels and networks within photosystem II (PSII) of oxygenic photosynthesis are critical for enzyme structure and function. They control substrate delivery to the oxygen-evolving center and mediate proton transfer at both the oxidative and reductive endpoints. Current views on PSII hydration are derived from protein crystallography, but structural information may be compromised by sample dehydration and technical limitations. Here, we simulate the physiological hydration structure of a cyanobacterial PSII model following a thorough hydration procedure and large-scale unconstrained all-atom molecular dynamics enabled by massively parallel simulations. We show that crystallographic models of PSII are moderately to severely dehydrated and that this problem is particularly acute for models derived from X-ray free electron laser (XFEL) serial femtosecond crystallography. We present a fully hydrated representation of cyanobacterial PSII and map all water channels, both static and dynamic, associated with the electron donor and acceptor sides. Among them, we describe a series of transient channels and the attendant conformational gating role of protein components. On the acceptor side, we characterize a channel system that is absent from existing crystallographic models but is likely functionally important for the reduction of the terminal electron acceptor plastoquinone QB. The results of the present work build a foundation for properly (re)evaluating crystallographic models and for eliciting new insights into PSII structure and function.
Collapse
|
3
|
Vasilieva LG, Kaminskaya OP, Yakovlev AG, Shkuropatov AY, Semenov AY, Nadtochenko VA, Krasnovsky AA, Parson WW, Allakhverdiev SI, Govindjee G. In memory of Vladimir Anatolievich Shuvalov (1943-2022): an outstanding biophysicist. PHOTOSYNTHESIS RESEARCH 2022; 154:207-223. [PMID: 36070062 DOI: 10.1007/s11120-022-00932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
We present here a tribute to one of the foremost biophysicists of our time, Vladimir Anatolievich Shuvalov, who made important contributions in bioenergetics, especially on the primary steps of conversion of light energy into charge-separated states in both anoxygenic and oxygenic photosynthesis. For this, he and his research team exploited pico- and femtosecond transient absorption spectroscopy, photodichroism & circular dichroism spectroscopy, light-induced FTIR (Fourier-transform infrared) spectroscopy, and hole-burning spectroscopy. We remember him for his outstanding leadership and for being a wonderful mentor to many scientists in this area. Reminiscences by many [Suleyman Allakhverdiev (Russia); Robert Blankenship (USA); Richard Cogdell (UK); Arvi Freiberg (Estonia); Govindjee Govindjee (USA); Alexander Krasnovsky, jr, (Russia); William Parson (USA); Andrei Razjivin (Russia); Jian- Ren Shen (Japan); Sergei Shuvalov (Russia); Lyudmilla Vasilieva (Russia); and Andrei Yakovlev (Russia)] have included not only his wonderful personal character, but his outstanding scientific research.
Collapse
Affiliation(s)
- Lyudmila G Vasilieva
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Olga P Kaminskaya
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Andrei G Yakovlev
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russian Federation
| | - Anatoliy Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119992, Russian Federation
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina St. 4, Moscow, 117977, Russian Federation
| | - Alexander A Krasnovsky
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russian Federation
| | - William W Parson
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA.
| | - Suleyman I Allakhverdiev
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino Moscow Region, Pushchino, Russian Federation.
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russian Federation.
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology and Center of Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 289 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Transcriptome analysis of Kentucky bluegrass subject to drought and ethephon treatment. PLoS One 2021; 16:e0261472. [PMID: 34914788 PMCID: PMC8675742 DOI: 10.1371/journal.pone.0261472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022] Open
Abstract
Kentucky bluegrass (Poa pratensis L.) is an excellent cool-season turfgrass utilized widely in Northern China. However, turf quality of Kentucky bluegrass declines significantly due to drought. Ethephon seeds-soaking treatment has been proved to effectively improve the drought tolerance of Kentucky bluegrass seedlings. In order to investigate the effect of ethephon leaf-spraying method on drought tolerance of Kentucky bluegrass and understand the underlying mechanism, Kentucky bluegrass plants sprayed with and without ethephon are subjected to either drought or well watered treatments. The relative water content and malondialdehyde conent were measured. Meanwhile, samples were sequenced through Illumina. Results showed that ethephon could improve the drought tolerance of Kentucky bluegrass by elevating relative water content and decreasing malondialdehyde content under drought. Transcriptome analysis showed that 58.43% transcripts (254,331 out of 435,250) were detected as unigenes. A total of 9.69% (24,643 out of 254,331) unigenes were identified as differentially expressed genes in one or more of the pairwise comparisons. Differentially expressed genes due to drought stress with or without ethephon pre-treatment showed that ethephon application affected genes associated with plant hormone, signal transduction pathway and plant defense, protein degradation and stabilization, transportation and osmosis, antioxidant system and the glyoxalase pathway, cell wall and cuticular wax, fatty acid unsaturation and photosynthesis. This study provides a theoretical basis for revealing the mechanism for how ethephon regulates drought response and improves drought tolerance of Kentucky bluegrass.
Collapse
|
5
|
Mamedov MD, Milanovsky GE, Malferrari M, Vitukhnovskaya LA, Francia F, Semenov AY, Venturoli G. Trehalose matrix effects on electron transfer in Mn-depleted protein-pigment complexes of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148413. [PMID: 33716033 DOI: 10.1016/j.bbabio.2021.148413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/15/2021] [Accepted: 03/07/2021] [Indexed: 11/18/2022]
Abstract
The kinetics of flash-induced re-reduction of the Photosystem II (PS II) primary electron donor P680 was studied in solution and in trehalose glassy matrices at different relative humidity. In solution, and in the re-dissolved glass, kinetics were dominated by two fast components with lifetimes in the range of 2-7 μs, which accounted for >85% of the decay. These components were ascribed to the direct electron transfer from the redox-active tyrosine YZ to P680+. The minor slower components were due to charge recombination between the primary plastoquinone acceptor QA- and P680+. Incorporation of the PS II complex into the trehalose glassy matrix and its successive dehydration caused a progressive increase in the lifetime of all kinetic phases, accompanied by an increase of the amplitudes of the slower phases at the expense of the faster phases. At 63% relative humidity the fast components contribution dropped to ~50%. A further dehydration of the trehalose glass did not change the lifetimes and contribution of the kinetic components. This effect was ascribed to the decrease of conformational mobility of the protein domain between YZ and P680, which resulted in the inhibition of YZ → P680+ electron transfer in about half of the PS II population, wherein the recombination between QA- and P680+ occurred. The data indicate that PS II binds a larger number of water molecules as compared to PS I complexes. We conclude that our data disprove the "water replacement" hypothesis of trehalose matrix biopreservation.
Collapse
Affiliation(s)
- Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia
| | - Georgy E Milanovsky
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia
| | - Marco Malferrari
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, Bologna, Via Irnerio, 42, Italy
| | - Liya A Vitukhnovskaya
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Kosygina Street, 4, b.1, Russia
| | - Francesco Francia
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, Bologna, Via Irnerio, 42, Italy
| | - Alexey Yu Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Leninskye gory, 1, b.40, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Kosygina Street, 4, b.1, Russia.
| | - Giovanni Venturoli
- Laboratory of Biochemistry and Molecular Biophysics, Department of Pharmacy and Biotechnology, FaBiT, University of Bologna, Bologna, Via Irnerio, 42, Italy; Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, CNISM, c/o Department of Physics and Astronomy "Augusto Righi", DIFA, University of Bologna, Bologna, Via Irnerio, 46, Italy.
| |
Collapse
|
6
|
Kaminskaya OP, Shuvalov VA. Analysis of the transformation effect in cytochrome b559 of photosystem II in terms of the model of the heme-quinone redox interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1161-1172. [PMID: 32314739 DOI: 10.1016/j.bbabio.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Transformation of three-component redox pattern of cytochrome (Cyt) b559 in PS II membrane fragments upon various treatments is manifested in decrease of the relative content (R) of the high potential (HP) redox form of Cyt b559 and concomitant increase in the fractions of the two lower potential forms. Redox titration of Cyt b559 in different types of PS II membrane preparations was performed and revealed that (1) alteration of redox titration curve of Cyt b559 upon treatment of a sample is not specific to the type of treatment; (2) each value of RHP defines the individual shape of the redox titration curve; (3) population of Cyt b559 may exist in several stable forms with multicomponent redox pattern: three types of three-component redox pattern and one type of two-component redox pattern as well as in the form with a single Em; (4) transformation of Cyt b559 proceeds as successive conversion between the stable forms with multicomponent redox pattern; (5) upon harsh treatments, Cyt b559 abruptly converts into the state with a single Em which value is intermediate between the Em values of the two lower potential forms. Analysis of the data using the model of Cyt b559-quinone redox interaction revealed that diminution of RHP in a range from 80 to 10% reflects a shift in redox equilibrium between the heme group of Cyt b559 and the interacting quinone, due to a gradual decrease of 90 mV in Em of the heme group at the virtually unchanged Em of the quinone component.
Collapse
Affiliation(s)
- Olga P Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Vladimir A Shuvalov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
7
|
Kubin M, Kern J, Gul S, Kroll T, Chatterjee R, Löchel H, Fuller FD, Sierra RG, Quevedo W, Weniger C, Rehanek J, Firsov A, Laksmono H, Weninger C, Alonso-Mori R, Nordlund DL, Lassalle-Kaiser B, Glownia JM, Krzywinski J, Moeller S, Turner JJ, Minitti MP, Dakovski GL, Koroidov S, Kawde A, Kanady JS, Tsui EY, Suseno S, Han Z, Hill E, Taguchi T, Borovik AS, Agapie T, Messinger J, Erko A, Föhlisch A, Bergmann U, Mitzner R, Yachandra VK, Yano J, Wernet P. Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:054307. [PMID: 28944255 PMCID: PMC5586166 DOI: 10.1063/1.4986627] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/15/2017] [Indexed: 05/19/2023]
Abstract
X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6-15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.
Collapse
Affiliation(s)
- Markus Kubin
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | | | - Sheraz Gul
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Ruchira Chatterjee
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Heike Löchel
- Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Franklin D Fuller
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Wilson Quevedo
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Christian Weniger
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Jens Rehanek
- Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Anatoly Firsov
- Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Hartawan Laksmono
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Dennis L Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jacek Krzywinski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Stefan Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Joshua J Turner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Michael P Minitti
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Georgi L Dakovski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Anurag Kawde
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, SE 90187 Umeå, Sweden
| | - Jacob S Kanady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Emily Y Tsui
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sandy Suseno
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhiji Han
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Ethan Hill
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Taketo Taguchi
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Andrew S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | - Alexei Erko
- Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | | | - Uwe Bergmann
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Rolf Mitzner
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Philippe Wernet
- Institute for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| |
Collapse
|
8
|
Pieper J. The functional role of protein dynamics in photosynthetic reaction centers investigated by elastic and quasielastic neutron scattering. EPJ WEB OF CONFERENCES 2015. [DOI: 10.1051/epjconf/20158302013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
9
|
Kaminskaya OP, Shuvalov VA. Biphasic reduction of cytochrome b559 by plastoquinol in photosystem II membrane fragments: evidence for two types of cytochrome b559/plastoquinone redox equilibria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:471-83. [PMID: 23357332 DOI: 10.1016/j.bbabio.2013.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
In photosystem II membrane fragments with oxidized cytochrome (Cyt) b559 reduction of Cyt b559 by plastoquinol formed in the membrane pool under illumination and by exogenous decylplastoquinol added in the dark was studied. Reduction of oxidized Cyt b559 by plastoquinols proceeds biphasically comprising a fast component with a rate constant higher than (10s)(-1), named phase I, followed by a slower dark reaction with a rate constant of (2.7min)(-1) at pH6.5, termed phase II. The extents of both components of Cyt b559 reduction increased with increasing concentrations of the quinols, with that, maximally a half of oxidized Cyt b559 can be photoreduced or chemically reduced in phase I at pH6.5. The photosystem II herbicide dinoseb but not 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) competed with the quinol reductant in phase I. The results reveal that the two components of the Cyt b559 redox reaction reflect two redox equilibria attaining in different time domains. One-electron redox equilibrium between oxidized Cyt b559 and the photosystem II-bound plastoquinol is established in phase I of Cyt b559 reduction. Phase II is attributed to equilibration of Cyt b559 redox forms with the quinone pool. The quinone site involved in phase I of Cyt b559 reduction is considered to be the site regulating the redox potential of Cyt b559 which can accommodate quinone, semiquinone and quinol forms. The properties of this site designated here as QD clearly suggest that it is distinct from the site QC found in the photosystem II crystal structure.
Collapse
Affiliation(s)
- Olga P Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | | |
Collapse
|
10
|
Kaminskaya OP, Erokhina LG, Shuvalov VA. Study of the nature of biphasic reduction of cytochrome b559 by plastoquinol in photosystem II membrane fragments. DOKL BIOCHEM BIOPHYS 2013; 447:273-6. [DOI: 10.1134/s1607672912060026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Indexed: 11/23/2022]
|
11
|
|
12
|
Pieper J, Trapp M, Skomorokhov A, Natkaniec I, Peters J, Renger G. Temperature-dependent vibrational and conformational dynamics of photosystem II membrane fragments from spinach investigated by elastic and inelastic neutron scattering. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1213-9. [PMID: 22465855 DOI: 10.1016/j.bbabio.2012.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/07/2012] [Accepted: 03/16/2012] [Indexed: 11/27/2022]
Abstract
Vibrational and conformational protein dynamics of photosystem II (PS II) membrane fragments from spinach were investigated by elastic and inelastic incoherent neutron scattering (EINS and IINS). As to the EINS experiments, the average atomic mean square displacement values of PS II membrane fragments hydrated at a relative humidity of 57% exhibit a dynamical transition at ~230K. In contrast, the dynamical transition was absent at a relative humidity of 44%. These findings are in agreement with previous studies which reported a "freezing" of protein mobility due to dehydration (Pieper et al. (2008) Eur. Biophys. J. 37: 657-663) and its correlation with an inhibition of electron transfer from Q(A)(-) to Q(B) (Kaminskaya et al. (2003) Biochemistry 42, 8119-8132). IINS spectra of a sample hydrated at a relative humidity of 57% show a distinct Boson peak at ~7.5meV at 20K, which shifts towards lower energy values upon temperature increase to 250K. This unexpected effect is interpreted in terms of a "softening" of the protein matrix along with the onset of conformational protein dynamics as revealed by the EINS experiments. Information on the density of vibrational states of pigment-protein complexes is important for a realistic calculation of excitation energy transfer kinetics and spectral lineshapes and is often routinely obtained by optical line-narrowing spectroscopy at liquid helium temperature. The data presented here demonstrate that IINS is a valuable experimental tool in determining the density of vibrational states not only at cryogenic, but also at nearly physiological temperatures up to 250K. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Jörg Pieper
- Institute of Physics, University of Tartu, Tartu, Estonia.
| | | | | | | | | | | |
Collapse
|
13
|
Renger G. Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1164-76. [PMID: 22353626 DOI: 10.1016/j.bbabio.2012.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/27/2012] [Accepted: 02/05/2012] [Indexed: 11/24/2022]
Abstract
The reactions of light induced oxidative water splitting were analyzed within the framework of the empirical rate constant-distance relationship of non-adiabatic electron transfer in biological systems (C. C. Page, C. C. Moser, X. Chen , P. L. Dutton, Nature 402 (1999) 47-52) on the basis of structure information on Photosystem II (PS II) (A. Guskov, A. Gabdulkhakov, M. Broser, C. Glöckner, J. Hellmich, J. Kern, J. Frank, W. Saenger, A. Zouni, Chem. Phys. Chem. 11 (2010) 1160-1171, Y. Umena, K. Kawakami, J-R Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9Å. Nature 47 (2011) 55-60). Comparison of these results with experimental data leads to the following conclusions: 1) The oxidation of tyrosine Y(z) by the cation radical P680(+·) in systems with an intact water oxidizing complex (WOC) is kinetically limited by the non-adiabatic electron transfer step and the extent of this reaction is thermodynamically determined by relaxation processes in the environment including rearrangements of hydrogen bond network(s). In marked contrast, all Y(z)(ox) induced oxidation steps in the WOC up to redox state S(3) are kinetically limited by trigger reactions which are slower by orders of magnitude than the rates calculated for non-adiabatic electron transfer. 3) The overall rate of the triggered reaction sequence of Y(z)(ox) reduction by the WOC in redox state S(3) eventually leading to formation and release of O(2) is kinetically limited by an uphill electron transfer step. Alternative models are discussed for this reaction. The protein matrix of the WOC and bound water molecules provide an optimized dynamic landscape of hydrogen bonded protons for catalyzing oxidative water splitting energetically driven by light induced formation of the cation radical P680(+·). In this way the PS II core acts as a molecular machine formed during a long evolutionary process. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
|
14
|
Müh F, Glöckner C, Hellmich J, Zouni A. Light-induced quinone reduction in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:44-65. [PMID: 21679684 DOI: 10.1016/j.bbabio.2011.05.021] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
The photosystem II core complex is the water:plastoquinone oxidoreductase of oxygenic photosynthesis situated in the thylakoid membrane of cyanobacteria, algae and plants. It catalyzes the light-induced transfer of electrons from water to plastoquinone accompanied by the net transport of protons from the cytoplasm (stroma) to the lumen, the production of molecular oxygen and the release of plastoquinol into the membrane phase. In this review, we outline our present knowledge about the "acceptor side" of the photosystem II core complex covering the reaction center with focus on the primary (Q(A)) and secondary (Q(B)) quinones situated around the non-heme iron with bound (bi)carbonate and a comparison with the reaction center of purple bacteria. Related topics addressed are quinone diffusion channels for plastoquinone/plastoquinol exchange, the newly discovered third quinone Q(C), the relevance of lipids, the interactions of quinones with the still enigmatic cytochrome b559 and the role of Q(A) in photoinhibition and photoprotection mechanisms. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Frank Müh
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | |
Collapse
|
15
|
Chernev P, Zaharieva I, Dau H, Haumann M. Carboxylate shifts steer interquinone electron transfer in photosynthesis. J Biol Chem 2011; 286:5368-74. [PMID: 21169354 PMCID: PMC3037649 DOI: 10.1074/jbc.m110.202879] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/10/2010] [Indexed: 11/06/2022] Open
Abstract
Understanding the mechanisms of electron transfer (ET) in photosynthetic reaction centers (RCs) may inspire novel catalysts for sunlight-driven fuel production. The electron exit pathway of type II RCs comprises two quinone molecules working in series and in between a non-heme iron atom with a carboxyl ligand (bicarbonate in photosystem II (PSII), glutamate in bacterial RCs). For decades, the functional role of the iron has remained enigmatic. We tracked the iron site using microsecond-resolution x-ray absorption spectroscopy after laser-flash excitation of PSII. After formation of the reduced primary quinone, Q(A)(-), the x-ray spectral changes revealed a transition (t½ ≈ 150 μs) from a bidentate to a monodentate coordination of the bicarbonate at the Fe(II) (carboxylate shift), which reverted concomitantly with the slower ET to the secondary quinone Q(B). A redox change of the iron during the ET was excluded. Density-functional theory calculations corroborated the carboxylate shift both in PSII and bacterial RCs and disclosed underlying changes in electronic configuration. We propose that the iron-carboxyl complex facilitates the first interquinone ET by optimizing charge distribution and hydrogen bonding within the Q(A)FeQ(B) triad for high yield Q(B) reduction. Formation of a specific priming intermediate by nuclear rearrangements, setting the stage for subsequent ET, may be a common motif in reactions of biological redox cofactors.
Collapse
Affiliation(s)
- Petko Chernev
- From the Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Ivelina Zaharieva
- From the Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Holger Dau
- From the Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Michael Haumann
- From the Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| |
Collapse
|
16
|
Kaminskaya OP, Erokhina LG, Shuvalov VA. Properties of photoreduction reaction of cytochrome b559 in photosystem II membrane fragments. DOKL BIOCHEM BIOPHYS 2010; 432:133-6. [DOI: 10.1134/s1607672910030117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Pieper J, Renger G. Protein dynamics investigated by neutron scattering. PHOTOSYNTHESIS RESEARCH 2009; 102:281-293. [PMID: 19763874 DOI: 10.1007/s11120-009-9480-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 07/19/2009] [Indexed: 05/28/2023]
Abstract
This contribution describes incoherent quasielastic neutron scattering (QENS) as a suitable tool for investigations of protein dynamics with special emphasis on applications in photosynthesis research. QENS characterizes protein dynamics via the measurement of energy and momentum exchange between sample system and incident low-energy neutrons (1 meV<E<20 meV). This method is especially sensitive for picosecond motions of hydrogen atoms because it makes use of the exceptionally large incoherent neutron scattering cross section of protons and their almost homogeneous distribution in proteins. After a short introduction into the basic principles of neutron scattering, a more detailed description of QENS will be presented including a short overview on instrumentation and theory. Recent QENS results will be discussed for the antenna complex LHC II and PS II membrane fragments. It is shown that diffusive protein dynamics is indispensable for enabling Q(A)(-·) reoxidation by Q(B) at temperatures above 240 K, which explains the strong dependence of this electron transfer step on temperature and hydration level of the sample. Finally, a new laser-QENS pump-probe technique will be introduced which permits in situ monitoring of protein dynamics correlated with a change of the functional state of the sample, i.e. a direct observation of structure-dynamics-function relationships in real time.
Collapse
Affiliation(s)
- Jörg Pieper
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| | | |
Collapse
|
18
|
Renger G, Renger T. Photosystem II: The machinery of photosynthetic water splitting. PHOTOSYNTHESIS RESEARCH 2008; 98:53-80. [PMID: 18830685 DOI: 10.1007/s11120-008-9345-7] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
This review summarizes our current state of knowledge on the structural organization and functional pattern of photosynthetic water splitting in the multimeric Photosystem II (PS II) complex, which acts as a light-driven water: plastoquinone-oxidoreductase. The overall process comprises three types of reaction sequences: (1) photon absorption and excited singlet state trapping by charge separation leading to the ion radical pair [Formula: see text] formation, (2) oxidative water splitting into four protons and molecular dioxygen at the water oxidizing complex (WOC) with P680+* as driving force and tyrosine Y(Z) as intermediary redox carrier, and (3) reduction of plastoquinone to plastoquinol at the special Q(B) binding site with Q(A)-* acting as reductant. Based on recent progress in structure analysis and using new theoretical approaches the mechanism of reaction sequence (1) is discussed with special emphasis on the excited energy transfer pathways and the sequence of charge transfer steps: [Formula: see text] where (1)(RC-PC)* denotes the excited singlet state (1)P680* of the reaction centre pigment complex. The structure of the catalytic Mn(4)O(X)Ca cluster of the WOC and the four step reaction sequence leading to oxidative water splitting are described and problems arising for the electronic configuration, in particular for the nature of redox state S(3), are discussed. The unravelling of the mode of O-O bond formation is of key relevance for understanding the mechanism of the process. This problem is not yet solved. A multistate model is proposed for S(3) and the functional role of proton shifts and hydrogen bond network(s) is emphasized. Analogously, the structure of the Q(B) site for PQ reduction to PQH(2) and the energetic and kinetics of the two step redox reaction sequence are described. Furthermore, the relevance of the protein dynamics and the role of water molecules for its flexibility are briefly outlined. We end this review by presenting future perspectives on the water oxidation process.
Collapse
Affiliation(s)
- Gernot Renger
- Max Volmer Laboratory for Biophysical Chemistry, Berlin Institute of Technology, Berlin, Germany.
| | | |
Collapse
|
19
|
Nöring B, Shevela D, Renger G, Messinger J. Effects of methanol on the Si-state transitions in photosynthetic water-splitting. PHOTOSYNTHESIS RESEARCH 2008; 98:251-260. [PMID: 18819015 DOI: 10.1007/s11120-008-9364-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/04/2008] [Indexed: 05/26/2023]
Abstract
From a chemical point of view methanol is one of the closest analogues of water. Consistent with this idea EPR spectroscopy studies have shown that methanol binds at-or at least very close to-the Mn(4)O(x)Ca cluster of photosystem II (PSII). In contrast, Clark-type oxygen rate measurements demonstrate that the O(2) evolving activity of PSII is surprisingly unaffected by methanol concentrations of up to 10%. Here we study for the first time in detail the effect of methanol on photosynthetic water-splitting by employing a Joliot-type bare platinum electrode. We demonstrate a linear dependence of the miss parameter for S( i ) state advancement on the methanol concentrations in the range of 0-10% (v/v). This finding is consistent with the idea that methanol binds in PSII with similar affinity as water to one or both substrate binding sites at the Mn(4)O(x)Ca cluster. The possibility is discussed that the two substrate water molecules bind at different stages of the cycle, one during the S(4) --> S(0) and the other during the S(2) --> S(3) transition.
Collapse
Affiliation(s)
- Birgit Nöring
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
20
|
The effect of hydration on protein flexibility in photosystem II of green plants studied by quasielastic neutron scattering. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:657-63. [PMID: 18351332 DOI: 10.1007/s00249-008-0297-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 02/14/2008] [Accepted: 02/26/2008] [Indexed: 10/22/2022]
Abstract
The effect of hydration on protein dynamics in photosystem II (PS II) membrane fragments from spinach has been investigated by using the method of quasielastic neutron scattering (QENS) at room temperature. The QENS data obtained indicate that the protein dynamics is strongly dependent on the extent of hydration. In particular, the hydration-induced activation of localized diffusive protein motions and QA- reoxidation by QB in PS II appear to be correlated in their onset at a hydration value of about 45% relative humidity (r.h.). These findings underline the crucial functional relevance of localized diffusive protein motions on the picosecond-timescale for the reactions of light-induced photosynthetic water splitting under formation of plastoquinol and molecular oxygen in PS II of green plants.
Collapse
|
21
|
Kern J, Renger G. Photosystem II: structure and mechanism of the water:plastoquinone oxidoreductase. PHOTOSYNTHESIS RESEARCH 2007; 94:183-202. [PMID: 17634752 DOI: 10.1007/s11120-007-9201-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 05/16/2007] [Indexed: 05/07/2023]
Abstract
This mini-review briefly summarizes our current knowledge on the reaction pattern of light-driven water splitting and the structure of Photosystem II that acts as a water:plastoquinone oxidoreductase. The overall process comprises three types of reaction sequences: (a) light-induced charge separation leading to formation of the radical ion pair P680+*QA(-*) ; (b) reduction of plastoquinone to plastoquinol at the QB site via a two-step reaction sequence with QA(-*) as reductant and (c) oxidative water splitting into O2 and four protons at a manganese-containing catalytic site via a four-step sequence driven by P680+* as oxidant and a redox active tyrosine YZ acting as mediator. Based on recent progress in X-ray diffraction crystallographic structure analysis the array of the cofactors within the protein matrix is discussed in relation to the functional pattern. Special emphasis is paid on the structure of the catalytic sites of PQH2 formation (QB-site) and oxidative water splitting (Mn4OxCa cluster). The energetics and kinetics of the reactions taking place at these sites are presented only in a very concise manner with reference to recent up-to-date reviews. It is illustrated that several questions on the mechanism of oxidative water splitting and the structure of the catalytic sites are far from being satisfactorily answered.
Collapse
Affiliation(s)
- Jan Kern
- Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany.
| | | |
Collapse
|
22
|
Kaminskaya O, Shuvalov VA, Renger G. Two reaction pathways for transformation of high potential cytochrome b559 of PS II into the intermediate potential form. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:550-8. [PMID: 17400179 DOI: 10.1016/j.bbabio.2007.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/04/2006] [Accepted: 02/03/2007] [Indexed: 11/17/2022]
Abstract
This study describes an analysis of different treatments that influence the relative content and the midpoint potential of HP Cyt b559 in PS II membrane fragments from higher plants. Two basically different types of irreversible modification effects are distinguished: the HP form of Cyt b559 is either predominantly affected when the heme group is oxidized ("O-type" effects) or when it is reduced ("R-type" effects). Transformation of HP Cyt b559 to lower potential redox forms (IP and LP forms) by the "O-type" mechanism is induced by high pH and detergent treatments. In this case the effects consist of a gradual decrease in the relative content of HP Cyt b559 while its midpoint potential remains unaffected. Transformation of HP Cyt b559 via an "R-type" mechanism is caused by a number of exogenous compounds denoted L: herbicides, ADRY reagents and tetraphenylboron. These compounds are postulated to bind to the PS II complex at a quinone binding site designated as Q(C) which interacts with Cyt b559 and is clearly not the Q(B) site. Binding of compounds L to the Q(C) site when HP Cyt b559 is oxidized gives rise to a gradual decrease in the E(m) of HP Cyt b559 with increasing concentration of L (up to 10 K(ox)(L) values) while the relative content of HP Cyt b559 is unaffected. Higher concentrations of compounds L required for their binding to Q(C) site when HP Cyt b559 is reduced (described by K(red)(L)) induce a conversion of HP Cyt b559 to lower potential redox forms ("R-type" transformation). Two reaction pathways for transitions of Cyt b559 between the different protein conformations that are responsible for the HP and IP/LP redox forms are proposed and new insights into the functional regulation of Cyt b559 via the Q(C) site are discussed.
Collapse
Affiliation(s)
- Olga Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russia
| | | | | |
Collapse
|
23
|
Kaminskaya OP, Shuvalov VA, Renger G. The PS II complex possesses a quinone-binding site that differs from QA and QB and interacts with cytochrome b559. DOKL BIOCHEM BIOPHYS 2007; 412:12-4. [PMID: 17506344 DOI: 10.1134/s1607672907010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- O P Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, ul. Institutskaya 2, Pushchino, Moscow oblast 142290, Russia
| | | | | |
Collapse
|
24
|
Mamedov MD, Tyunyatkina AA, Siletsky SA, Semenov AY. Voltage changes involving photosystem II quinone–iron complex turnover. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2006; 35:647-54. [PMID: 16708211 DOI: 10.1007/s00249-006-0069-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/10/2006] [Accepted: 04/20/2006] [Indexed: 11/28/2022]
Abstract
An electrometrical technique was used to investigate proton-coupled electron transfer between the primary plastoquinone acceptor Q (A) (-) and the oxidized non-heme iron Fe(3+) on the acceptor side of photosystem II core particles incorporated into phospholipid vesicles. The sign of the transmembrane electric potential difference Deltapsi (negative charging of the proteoliposome interior) indicates that the iron-quinone complex faces the interior surface of the proteoliposome membrane. Preoxidation of the non-heme iron was achieved by addition of potassium ferricyanide entrapped into proteoliposomes. Besides the fast unresolvable kinetic phase (tau approximately 0.1 micro s) of Deltapsi generation related to electron transfer between the redox-active tyrosine Y(Z) and Q(A), an additional phase in the submillisecond time domain (tau approximately 0.1 ms at 23 degrees C, pH 7.0) and relative amplitude approximately 20% of the amplitude of the fast phase was observed under exposure to the first flash. This phase was absent under the second laser flash, as well as upon the first flash in the presence of DCMU, an inhibitor of electron transfer between Q(A) and the secondary quinone Q(B). The rate of the additional electrogenic phase is decreased by about one-half in the presence of D(2)O and is reduced with the temperature decrease. On the basis of the above observations we suggest that the submillisecond electrogenic reaction induced by the first flash is due to the vectorial transfer of a proton from external aqueous phase to an amino acid residue(s) in the vicinity of the non-heme iron. The possible role of the non-heme iron in cyclic electron transfer in photosystem II complex is discussed.
Collapse
Affiliation(s)
- M D Mamedov
- A N Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992, Moscow, Leninskie Gory, Russia.
| | | | | | | |
Collapse
|
25
|
Kaminskaya O, Kern J, Shuvalov VA, Renger G. Extinction coefficients of cytochromes b559 and c550 of Thermosynechococcus elongatus and Cyt b559/PS II stoichiometry of higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:333-41. [PMID: 15950926 DOI: 10.1016/j.bbabio.2005.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/21/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
"Reduced minus oxidized" difference extinction coefficients Deltavarepsilon in the alpha-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1+/-1.0 mM(-1) cm(-1) and 27.0+/-1.0 mM(-1) cm(-1) were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from -250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with E(m) values at pH 6.5 of 244+/-11 mV and -94+/-21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the alpha-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the Q(B) site and the microenvironment of the heme group of Cyt b559 are discussed.
Collapse
Affiliation(s)
- Olga Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russia
| | | | | | | |
Collapse
|
26
|
Kühn P, Pieper J, Kaminskaya O, Eckert HJ, Lechner RE, Shuvalov V, Renger G. Reaction pattern of photosystem II: oxidative water cleavage and protein flexibility. PHOTOSYNTHESIS RESEARCH 2005; 84:317-23. [PMID: 16049792 DOI: 10.1007/s11120-004-7079-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 12/02/2004] [Indexed: 05/03/2023]
Abstract
This short communication addresses three topics of photosynthetic water cleavage in Photosystem II (PS II): (a) effect of protonation in the acidic range on the extent of the 'fast' ns kinetics of P680+. reduction by YZ, (b) mechanism of O-O bond formation and (c) role of protein flexibility in the functional integrity of PS II. Based on measurements of light-induced absorption changes and quasielastic neutron scattering in combination with mechanistic considerations, evidence is presented for the protein acting as a functionally active constituent of the water cleavage machinery, in particular, for directed local proton transfer. A specific flexibility emerging above a threshold of about 230 K is an indispensable prerequisite for oxygen evolution and plastoquinol formation.
Collapse
Affiliation(s)
- Philipp Kühn
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Kopecky J, Azarkovich M, Pfündel EE, Shuvalov VA, Heber U. Thermal dissipation of light energy is regulated differently and by different mechanisms in lichens and higher plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:156-167. [PMID: 15822011 DOI: 10.1055/s-2005-837471] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Modulated chlorophyll fluorescence was used to compare dissipation of light energy as heat in photosystem II of homoiohydric and poikilohydric photosynthetic organisms which were either hydrated or dehydrated. In hydrated chlorolichens with an alga as the photobiont, fluorescence quenching revealed a dominant mechanism of energy dissipation which was based on a protonation reaction when zeaxanthin was present. CO2 was effective as a weak protonating agent and actinic light was not necessary. In a hydrated cyanobacterial lichen, protonation by CO2 was ineffective to initiate energy dissipation. This was also true for leaves of higher plants. Thus, regulation of zeaxanthin-dependent energy dissipation by protonation was different in leaves and in chlorolichens. A mechanism of energy dissipation different from that based on zeaxanthin became apparent on dehydration of both lichens and leaves. Quenching of maximum or Fm fluorescence increased strongly during dehydration. In lichens, this was also true for so-called basal or Fo fluorescence. In contrast to zeaxanthin-dependent quenching, dehydration-induced quenching could not be inhibited by dithiothreitol. Both zeaxanthin-dependent and dehydration-induced quenching cooperated in chlorolichens to increase thermal dissipation of light energy if desiccation occurred in the light. In cyanolichens, which do not possess a zeaxanthin cycle, only desiccation-induced thermal energy dissipation was active in the dry state. Fluorescence emission spectra of chlorolichens revealed stronger desiccation-induced suppression of 685-nm fluorescence than of 720-nm fluorescence. In agreement with earlier reports of , fluorescence excitation data showed that desiccation reduced flow of excitation energy from chlorophyll b of the light harvesting complex II to emitting centres more than flow from chlorophyll a of core pigments. The data are discussed in relation to regulation and localization of thermal energy dissipation mechanisms. It is concluded that desiccation-induced fluorescence quenching of lichens results from the reversible conversion of energy-conserving to energy-dissipating photosystem II core complexes.
Collapse
Affiliation(s)
- J Kopecky
- Institute of Microbiology, Academy of Sciences, Department of Autotrophic Microorganisms, Opatovicky mlyn, 379 81 Trebon, Czech Republic
| | | | | | | | | |
Collapse
|