1
|
Xu S, Huo C, Chu X. Unraveling the Interplay between Stability and Flexibility in the Design of Polyethylene Terephthalate (PET) Hydrolases. J Chem Inf Model 2024; 64:7576-7589. [PMID: 39269430 PMCID: PMC11480994 DOI: 10.1021/acs.jcim.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The accumulation of polyethylene terephthalate (PET), a widely used polyester plastic in packaging and textiles, has led to a global environmental crisis. Biodegradation presents a promising strategy for PET recycling, with PET hydrolases (PETase) undertaking the task at the molecular level. Unfortunately, PETase operates only at ambient temperatures with low efficiency, limiting its industrial application. Current engineering efforts focus on enhancing the thermostability of PETase, but increased stability can reduce the structural dynamics needed for substrate binding, potentially slowing enzymatic activity. To elucidate the balance between stability and flexibility in optimizing PETase catalytic activity, we performed theoretical investigations on both wild-type PETase (WT-PETase) and a thermophilic variant (Thermo-PETase) using molecular dynamics simulations and frustration analysis. Despite being initially designed to stabilize the native structure of the enzyme, our findings reveal that Thermo-PETase exhibits an unprecedented increase in structural flexibility at the PET-binding and catalytic sites, beneficial for substrate recruitment and product release, compared to WT-PETase. Upon PET binding, we observed that the structural dynamics of Thermo-PETase is largely quenched, favoring the proximity between the catalytic residues and the carbonyl of the PET substrate. This may potentially contribute to a higher probability of a catalytic reaction occurring in Thermo-PETase compared to WT-PETase. We suggest that Thermo-PETase can exhibit higher PET-degradation performance than WT-PETase across a broad temperature range by leveraging stability and flexibility at high and low temperatures, respectively. Our findings provide valuable insights into how PETase optimizes its enzymatic performance by balancing stability and flexibility, which may contribute to future PETase design strategies.
Collapse
Affiliation(s)
- Shiqinrui Xu
- Advanced
Materials Thrust, Function Hub, The Hong
Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Chengze Huo
- Advanced
Materials Thrust, Function Hub, The Hong
Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Xiakun Chu
- Advanced
Materials Thrust, Function Hub, The Hong
Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Guangzhou
Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Division
of Life Science, The Hong Kong University
of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Kumar P, Kumar V, Sharma S, Sharma R, Warghat AR. Fritillaria steroidal alkaloids and their multi-target therapeutic mechanisms: insights from network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03502-z. [PMID: 39382678 DOI: 10.1007/s00210-024-03502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Medicinal Fritillaria herbs, known for their rich content of steroidal alkaloids, have emerged as promising candidates in the treatment of chronic diseases due to their diverse pharmacological properties. Leveraging advancements in network pharmacology and molecular docking, this study explores the multi-target mechanisms through which these alkaloids exert therapeutic effects. The integration of bioinformatics, systems biology, and pharmacology in drug discovery has provided insights into the molecular interactions and pathways influenced by Fritillaria steroidal alkaloids. This review synthesizes comprehensive literature from 1985 to 2024, revealing the potential of these compounds in addressing respiratory diseases, inflammation, and cancer. The integration of traditional Chinese medicine (TCM) with modern pharmacological techniques underscores the relevance of these compounds in next-generation drug discovery. While initial findings are promising, further empirical validation is necessary to fully harness the therapeutic potential of Fritillaria steroidal alkaloids.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vinay Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shagun Sharma
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Forest Products, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Ashish R Warghat
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
3
|
He S, Quan M, Yang LP, Au-Yeung HY, Jiang W. Kinetic-thermodynamic correlation of conformational changes in ammonium complexes of a flexible naphthocage. Chem Sci 2024:d4sc02831g. [PMID: 39282639 PMCID: PMC11391410 DOI: 10.1039/d4sc02831g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Conformational changes in non-covalent complexes are of fundamental importance to many chemical and biological processes. Yet, these low-energy structural changes are usually fast and difficult to monitor, which poses challenges in their detailed kinetic understanding. The correlation between kinetics and thermodynamics of the conformational change of a model supramolecular system featuring a flexible naphthocage and quaternary ammonium guests is described in this work. Guest binding initially locks the host in two major conformations, which then equilibrates over time to the more stable conformer. The overall rate of the system to attain conformational equilibrium is found to inversely correlate with the thermodynamic stability of the host-guest complexes, and hence not only can the kinetic parameters of the conformational exchange be predicted from the easily obtainable thermodynamic data, but the kinetic profile can also be rationalized by using the structural properties of the different guests.
Collapse
Affiliation(s)
- Shan He
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Mao Quan
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 China
| | - Liu-Pan Yang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Ho Yu Au-Yeung
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Hong Kong China
| | - Wei Jiang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
4
|
Sun P, Liu H, Zhao Y, Hao N, Deng Z, Zhao W. Construction of an antidepressant priority list based on functional, environmental, and health risks using an interpretable mixup-transformer deep learning model. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134651. [PMID: 38843640 DOI: 10.1016/j.jhazmat.2024.134651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024]
Abstract
As emerging pollutants, antidepressants (AD) must be urgently investigated for risk identification and assessment. This study constructed a comprehensive-effect risk-priority screening system (ADRank) for ADs by characterizing AD functionality, occurrence, persistence, bioaccumulation and toxicity based on the integrated assignment method. A classification model for ADs was constructed using an improved mixup-transformer deep learning method, and its classification accuracy was compared with those of other models. The accuracy of the proposed model improved by up to 23.25 % compared with the random forest model, and the reliability was 80 % more than that of the TOPSIS method. A priority screening candidate list was proposed to screen 33 high-priority ADs. Finally, SHapley Additive explanation (SHAP) visualization, molecular dynamics, and amino acid analysis were performed to analyze the correlation between AD structure and toxic receptor binding characteristics and reveal the differences in AD risk priority. ADs with more intramolecular hydrogen bonds, higher hydrophobicity, and electronegativity had a more significant risk. Van der Waals and electrostatic interactions were the primary influencing factors, and significant differences in the types and proportions of the main amino acids in the interaction between ADs and receptors were observed. The results of the study provide constructive schemes and insights for AD priority screening and risk management.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Huaishi Liu
- College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130000, China
| | - Yuanyuan Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Ning Hao
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhengyang Deng
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
5
|
Rivoire O. A role for conformational changes in enzyme catalysis. Biophys J 2024; 123:1563-1578. [PMID: 38704639 PMCID: PMC11213973 DOI: 10.1016/j.bpj.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
The role played by conformational changes in enzyme catalysis is controversial. In addition to examining specific enzymes, studying formal models can help identify the conditions under which conformational changes promote catalysis. Here, we present a model demonstrating how conformational changes can break a generic trade-off due to the conflicting requirements of successive steps in catalytic cycles, namely high specificity for the transition state to accelerate the chemical transformation and low affinity for the products to favor their release. The mechanism by which the trade-off is broken is a transition between conformations with different affinities for the substrate. The role of the effector that induces the transition is played by a substrate "handle," a part of the substrate that is not chemically transformed but whose interaction with the enzyme is nevertheless essential to rapidly complete the catalytic cycle. A key element of the model is the formalization of the constraints causing the trade-off that the presence of multiple states breaks, which we attribute to the strong chemical similarity between successive reaction states-substrates, transition states, and products. For the sake of clarity, we present our model for irreversible one-step unimolecular reactions. In this context, we demonstrate how the different forms that chemical similarities between reaction states can take impose limits on the overall catalytic turnover. We first analyze catalysts without internal degrees of freedom and then show how two-state catalysts can overcome their limitations. Our results recapitulate previous proposals concerning the role of conformational changes and substrate handles in a formalism that makes explicit the constraints that elicit these features. In addition, our approach establishes links with studies in the field of heterogeneous catalysis, where the same trade-offs are observed and where overcoming them is a well-recognized challenge.
Collapse
|
6
|
Agashe C, Saroha A, Agasti SS, Patra D. Supramolecular Modulation of Fluid Flow in a Self-Powered Enzyme Micropump. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6933-6939. [PMID: 38497757 DOI: 10.1021/acs.langmuir.3c03958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Regulating macroscopic fluid flow by catalytic harnessing of chemical energy could potentially provide a solution for powerless microfluidic devices. Earlier reports have shown that surface-anchored enzymes can actuate the surrounding fluid in the presence of the respective substrate in a concentration-dependent manner. It is also crucial to have control over the flow speed of a self-powered enzyme micropump in various applications where controlled dosing and mixing are required. However, modulating the flow speed independent of the fuel concentration remains a significant challenge. In a quest to regulate the fluid flow in such a system, a supramolecular approach has been adopted, where reversible regulation of enzyme activity was achieved by a two-faced synthetic receptor bearing sulfonamide and adamantane groups. The bovine carbonic anhydrase (BCA) enzyme containing a single binding site favorable to the sulfonamide group was used as a model enzyme, and the enzyme activity was inhibited in the presence of the two-faced inhibitor. The same effect was reflected when the immobilized enzyme was used as an engine to actuate the fluid flow. The flow velocity was reduced up to 53% in the presence of 100 μM inhibitor. Later, upon addition of a supramolecular "host" CB[7], the inhibitor was sequestered from the enzyme due to the higher binding affinity of CB[7] with the adamantane functionality of the inhibitor. As a result, the flow velocity was restored to ∼72%, thus providing successful supramolecular control over a self-powered enzyme micropump.
Collapse
Affiliation(s)
- Chinmayee Agashe
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - Akshay Saroha
- Jawaharlal Nehru Centre for Advanced Scientific Research, Rachenahalli Lake Rd, Jakkur, Bengaluru 560064, Karnataka, India
| | - Sarit S Agasti
- Jawaharlal Nehru Centre for Advanced Scientific Research, Rachenahalli Lake Rd, Jakkur, Bengaluru 560064, Karnataka, India
| | - Debabrata Patra
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| |
Collapse
|
7
|
Odeyemi I, Douglas TA, Igie NF, Hargrove JA, Hamilton G, Bradley BB, Thai C, Le B, Unjia M, Wicherts D, Ferneyhough Z, Pillai A, Koirala S, Hagge LM, Polara H, Trievel RC, Fick RJ, Stelling AL. An optimized purification protocol for enzymatically synthesized S-adenosyl-L-methionine (SAM) for applications in solution state infrared spectroscopic studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123816. [PMID: 38198991 DOI: 10.1016/j.saa.2023.123816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
S-adenosyl-L-methionine (SAM) is an abundant biomolecule used by methyltransferases to regulate a wide range of essential cellular processes such as gene expression, cell signaling, protein functions, and metabolism. Despite considerable effort, there remain many specificity challenges associated with designing small molecule inhibitors for methyltransferases, most of which exhibit off-target effects. Interestingly, NMR evidence suggests that SAM undergoes conformeric exchange between several states when free in solution. Infrared spectroscopy can detect different conformers of molecules if present in appreciable populations. When SAM is noncovalently bound within enzyme active sites, the nature and the number of different conformations of the molecule are likely to be altered from when it is free in solution. If there are unique structures or different numbers of conformers between different methyltransferase active sites, solution-state information may provide promising structural leads to increase inhibitor specificity for a particular methyltransferase. Toward this goal, frequencies measured in SAM's infrared spectra must be assigned to the motions of specific atoms via isotope incorporation at discrete positions. The incorporation of isotopes into SAM's structure can be accomplished via an established enzymatic synthesis using isotopically labeled precursors. However, published protocols produced an intense and highly variable IR signal which overlapped with many of the signals from SAM rendering comparison between isotopes challenging. We observed this intense absorption to be from co-purifying salts and the SAM counterion, producing a strong, broad signal at 1100 cm-1. Here, we report a revised SAM purification protocol that mitigates the contaminating salts and present the first IR spectra of isotopically labeled CD3-SAM. These results provide a foundation for isotopic labeling experiments of SAM that will define which atoms participate in individual molecular vibrations, as a means to detect specific molecular conformations.
Collapse
Affiliation(s)
- Isaiah Odeyemi
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Teri A Douglas
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Nosakhare F Igie
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - James A Hargrove
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Grace Hamilton
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Brianna B Bradley
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Cathy Thai
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Brendan Le
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Maitri Unjia
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Dylan Wicherts
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Zackery Ferneyhough
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Anjali Pillai
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Shailendra Koirala
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Laurel M Hagge
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Himanshu Polara
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Raymond C Trievel
- University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, 48109, MI, USA
| | - Robert J Fick
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA
| | - Allison L Stelling
- The University of Texas at Dallas, 800 W. Campbell Rd., Richardson, 75080, TX, USA.
| |
Collapse
|
8
|
Sun P, Zhao W. Control list of high-priority chemicals based on 5-HT-RI functionality and the human health interference effects selective CNN-GRU deep learning model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169699. [PMID: 38181943 DOI: 10.1016/j.scitotenv.2023.169699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024]
Abstract
The antidepressant drug known as 5-HT reuptake inhibitor (5-HT-RI) was commonly detected in biological tissues and result in significant adverse health effects. Homology modeling was used to characterize the functionalities (efficacy and resistance), and the adverse outcome pathway was used to characterize its human health interferences (olfactory toxicity, neurotoxicity, and gut microbial interference). The convolutional neural network coupled with the gated recurrent unit (CNN-GRU) deep learning method was used to construct a comprehensive model of 5-HT-RI functionality and human health interference effects selectivity with small sample data. The architecture with 2 SE, 320 neuronal nodes and 6-folds cross-validation showed the best applicability. The results showed that the confidence interval of the constructed model reached 90 % indicating that the model had reliable prediction ability and generalization ability. Based on the CNN-GRU deep learning model, seven high-priority chemicals with a weak comprehensive effect, including D-VEN, (1R,4S)-SER, S-FLX, CTP, S-CTP, NEF, and VEN, were screened. Based on the molecular three-dimensional structure information, a comprehensive-effect three-dimensional quantitative structure-activity relationship (3D-QSAR) model was constructed to confirm the reliability of the constructed control list of 5-HT-RI high-priority chemicals. Analysis with the ranking of calculated values based on the molecular dynamics method and predicted values based on the CNN-GRU deep learning model, we found that the consistency of the three methods was above 85 %. Additionally, by analyzing the sensitivity, molecular electrostatic potential, polar surface area of the comprehensive-effect CNN-GRU deep learning model, and the electrostatic field of the 3D-QSAR models, we found that the significant effects of five key characteristics (DM, Qyy, Qxz, I, and BP), molecular electronegativity, and polarity significantly affected the high-priority degree of 5-HT-RI. In this study, we provided reasonable and reliable prediction tools and discussed theoretical methods for the risk assessment of functionality and human health interference of emerging pollutants such as 5-HT-RI.
Collapse
Affiliation(s)
- Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Peng CX, Liang F, Xia YH, Zhao KL, Hou MH, Zhang GJ. Recent Advances and Challenges in Protein Structure Prediction. J Chem Inf Model 2024; 64:76-95. [PMID: 38109487 DOI: 10.1021/acs.jcim.3c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Artificial intelligence has made significant advances in the field of protein structure prediction in recent years. In particular, DeepMind's end-to-end model, AlphaFold2, has demonstrated the capability to predict three-dimensional structures of numerous unknown proteins with accuracy levels comparable to those of experimental methods. This breakthrough has opened up new possibilities for understanding protein structure and function as well as accelerating drug discovery and other applications in the field of biology and medicine. Despite the remarkable achievements of artificial intelligence in the field, there are still some challenges and limitations. In this Review, we discuss the recent progress and some of the challenges in protein structure prediction. These challenges include predicting multidomain protein structures, protein complex structures, multiple conformational states of proteins, and protein folding pathways. Furthermore, we highlight directions in which further improvements can be conducted.
Collapse
Affiliation(s)
- Chun-Xiang Peng
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Fang Liang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yu-Hao Xia
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Kai-Long Zhao
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Ming-Hua Hou
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Gui-Jun Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
10
|
Li J, Wang L, Zhu Z, Song C. Exploring the Alternative Conformation of a Known Protein Structure Based on Contact Map Prediction. J Chem Inf Model 2024; 64:301-315. [PMID: 38117138 PMCID: PMC10777399 DOI: 10.1021/acs.jcim.3c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
The rapid development of deep learning-based methods has considerably advanced the field of protein structure prediction. The accuracy of predicting the 3D structures of simple proteins is comparable to that of experimentally determined structures, providing broad possibilities for structure-based biological studies. Another critical question is whether and how multistate structures can be predicted from a given protein sequence. In this study, analysis of tens of two-state proteins demonstrated that deep learning-based contact map predictions contain structural information on both states, which suggests that it is probably appropriate to change the target of deep learning-based protein structure prediction from one specific structure to multiple likely structures. Furthermore, by combining deep learning- and physics-based computational methods, we developed a protocol for exploring alternative conformations from a known structure of a given protein, by which we successfully approached the holo-state conformations of multiple representative proteins from their apo-state structures.
Collapse
Affiliation(s)
- Jiaxuan Li
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Lei Wang
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zefeng Zhu
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chen Song
- Center
for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Borsley S, Gallagher JM, Leigh DA, Roberts BMW. Ratcheting synthesis. Nat Rev Chem 2024; 8:8-29. [PMID: 38102412 DOI: 10.1038/s41570-023-00558-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/17/2023]
Abstract
Synthetic chemistry has traditionally relied on reactions between reactants of high chemical potential and transformations that proceed energetically downhill to either a global or local minimum (thermodynamic or kinetic control). Catalysts can be used to manipulate kinetic control, lowering activation energies to influence reaction outcomes. However, such chemistry is still constrained by the shape of one-dimensional reaction coordinates. Coupling synthesis to an orthogonal energy input can allow ratcheting of chemical reaction outcomes, reminiscent of the ways that molecular machines ratchet random thermal motion to bias conformational dynamics. This fundamentally distinct approach to synthesis allows multi-dimensional potential energy surfaces to be navigated, enabling reaction outcomes that cannot be achieved under conventional kinetic or thermodynamic control. In this Review, we discuss how ratcheted synthesis is ubiquitous throughout biology and consider how chemists might harness ratchet mechanisms to accelerate catalysis, drive chemical reactions uphill and programme complex reaction sequences.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
12
|
Cheng J, Du H, Zhou MS, Ji Y, Xie YQ, Huang HB, Zhang SH, Li F, Xiang L, Cai QY, Li YW, Li H, Li M, Zhao HM, Mo CH. Substrate-enzyme interactions and catalytic mechanism in a novel family VI esterase with dibutyl phthalate-hydrolyzing activity. ENVIRONMENT INTERNATIONAL 2023; 178:108054. [PMID: 37354883 DOI: 10.1016/j.envint.2023.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/19/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Microbial degradation has been confirmed as effective and environmentally friendly approach to remediate phthalates from the environment, and hydrolase is an effective element for contaminant degradation. In the present study, a novel dibutyl phthalate (DBP)-hydrolyzing carboxylesterase (named PS06828) from Pseudomonas sp. PS1 was heterogeneously expressed in E. coli, which was identified as a new member of the lipolytic family VI. Purified PS06828 could efficiently degrade DBP with a wide range of temperature (25-37 °C) and pH (6.5-9.0). Multi-spectroscopy methods combined with molecular docking were employed to study the interaction of PS06828 with DBP. Fluorescence and UV-visible absorption spectra revealed the simultaneous presence of static and dynamic component in the fluorescence quenching of PS06828 by DBP. Synchronous fluorescence and circular dichroism spectra showed inconspicuous alteration in micro-environmental polarity around amino acid residues but obvious increasing of α-helix and reducing of β-sheet and random coil in protein conformation. Based on the information on exact binding sites of DBP on PS06828 provided by molecular docking, the catalytic mechanism mediated by key residues (Ser113, Asp166, and His197) was proposed and subsequently confirmed by site-directed mutagenesis. The results can strengthen our mechanistic understanding of family VI esterase involved in hydrolysis of phthalic acid esters, and provide a solid foundation for further enzymatic modification.
Collapse
Affiliation(s)
- Jiliang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou, China
| | - Meng-Sha Zhou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yuan Ji
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - You-Qun Xie
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - He-Biao Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shu-Hui Zhang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Meng Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Markin CJ, Mokhtari DA, Du S, Doukov T, Sunden F, Cook JA, Fordyce PM, Herschlag D. Decoupling of catalysis and transition state analog binding from mutations throughout a phosphatase revealed by high-throughput enzymology. Proc Natl Acad Sci U S A 2023; 120:e2219074120. [PMID: 37428919 PMCID: PMC10629569 DOI: 10.1073/pnas.2219074120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Using high-throughput microfluidic enzyme kinetics (HT-MEK), we measured over 9,000 inhibition curves detailing impacts of 1,004 single-site mutations throughout the alkaline phosphatase PafA on binding affinity for two transition state analogs (TSAs), vanadate and tungstate. As predicted by catalytic models invoking transition state complementary, mutations to active site and active-site-contacting residues had highly similar impacts on catalysis and TSA binding. Unexpectedly, most mutations to more distal residues that reduced catalysis had little or no impact on TSA binding and many even increased tungstate affinity. These disparate effects can be accounted for by a model in which distal mutations alter the enzyme's conformational landscape, increasing the occupancy of microstates that are catalytically less effective but better able to accommodate larger transition state analogs. In support of this ensemble model, glycine substitutions (rather than valine) were more likely to increase tungstate affinity (but not more likely to impact catalysis), presumably due to increased conformational flexibility that allows previously disfavored microstates to increase in occupancy. These results indicate that residues throughout an enzyme provide specificity for the transition state and discriminate against analogs that are larger only by tenths of an Ångström. Thus, engineering enzymes that rival the most powerful natural enzymes will likely require consideration of distal residues that shape the enzyme's conformational landscape and fine-tune active-site residues. Biologically, the evolution of extensive communication between the active site and remote residues to aid catalysis may have provided the foundation for allostery to make it a highly evolvable trait.
Collapse
Affiliation(s)
- Craig J. Markin
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | | | - Siyuan Du
- Department of Biochemistry, Stanford University, Stanford, CA94305
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Tzanko Doukov
- Stanford Synchrotron Radiation Light Source, Stanford Linear Accelerator Centre National Accelerator Laboratory, Menlo Park, CA94025
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Jordan A. Cook
- Department of Biochemistry, Stanford University, Stanford, CA94305
| | - Polly M. Fordyce
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Bioengineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- Chan Zuckerberg Biohub, San Francisco, CA94110
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, CA94305
- ChEM-H Institute, Stanford University, Stanford, CA94305
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
| |
Collapse
|
14
|
Escobedo N, Monzon AM, Fornasari MS, Palopoli N, Parisi G. Combining Protein Conformational Diversity and Phylogenetic Information Using CoDNaS and CoDNaS-Q. Curr Protoc 2023; 3:e764. [PMID: 37184204 DOI: 10.1002/cpz1.764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
CoDNaS (http://ufq.unq.edu.ar/codnas/) and CoDNaS-Q (http://ufq.unq.edu.ar/codnasq) are repositories of proteins with different degrees of conformational diversity. Following the ensemble nature of the native state, conformational diversity represents the structural differences between the conformers in the ensemble. Each entry in CoDNaS and CoDNaS-Q contains a redundant collection of experimentally determined conformers obtained under different conditions. These conformers represent snapshots of the protein dynamism. While CoDNaS contains examples of conformational diversity at the tertiary level, a recent development, CoDNaS-Q, contains examples at the quaternary level. In the emerging age of accurate protein structure prediction by machine learning approaches, many questions remain open regarding the characterization of protein dynamism. In this context, most bioinformatics resources take advantage of distinct features derived from protein alignments, however, the complexity and heterogeneity of information makes it difficult to recover reliable biological signatures. Here we present five protocols to explore tertiary and quaternary conformational diversity at the individual protein level as well as for the characterization of the distribution of conformational diversity at the protein family level in a phylogenetic context. These protocols can provide curated protein families with experimentally known conformational diversity, facilitating the exploration of sequence determinants of protein dynamism. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Assessing conformational diversity with CoDNaS Alternate Protocol 1: Assessing conformational diversity at the quaternary level with CoDNaS-Q Basic Protocol 2: Exploring conformational diversity in a protein family Alternate Protocol 2: Exploring quaternary conformational diversity in a protein family Basic Protocol 3: Representing conformational diversity in a phylogenetic context.
Collapse
Affiliation(s)
- Nahuel Escobedo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - María Silvina Fornasari
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolas Palopoli
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Parisi
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Sindhu T, Rajamanikandan S, Jeyakanthan J, Pal D. Investigation of protein-ligand binding motions through protein conformational morphing and clustering of cytochrome bc1-aa3 super complex. J Mol Graph Model 2023; 118:108347. [PMID: 36208591 DOI: 10.1016/j.jmgm.2022.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022]
Abstract
Cytochrome b (QcrB) is considered an essential subunit in the electron transport chain that coordinates the action of the entire cytochrome bc1 oxidase. It has been identified as an attractive drug target for a new promising clinical candidate Q203 that depletes the intracellular ATP levels in the bacterium, Mycobacterium tuberculosis. However, single point polymorphism (T313A/I) near the quinol oxidation site of QcrB developed resistance to Q203. In the present study, we analyze the structural changes and drug-resistance mechanism of QcrB due to the point mutation in detail through conformational morphing and molecular docking studies. By morphing, we generated conformers between the open and closed state of the electron transporting cytochrome bc1-aa3 super complex. We clustered them to identify four intermediate structures and relevant intra- and intermolecular motions that may be of functional relevance, especially the binding of Q203 in wild and mutant QcrB intermediate structures and their alteration in developing drug resistance. The difference in the binding score and hydrogen bond interactions between Q203 and the wild-type and mutant intermediate structures of QcrB from molecular docking studies showed that the point mutation T313A severely affected the binding affinity of the candidate drug. Together, the findings provide an in-depth understanding of QcrB inhibition in different conformations, including closed, intermediate, and open states of cytochrome bc1-aa3 super complex in Mycobacterium tuberculosis at the atomic level. We also obtain insights for designing QcrB and cytochrome bc1-aa3 inhibitors as potential therapeutics that may combat drug resistance in tuberculosis.
Collapse
Affiliation(s)
- Thangaraj Sindhu
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Sundarraj Rajamanikandan
- Research and Development Wing, Sree Balaji Medical College and Hospital (BIHER), Chennai, Tamil Nadu, India
| | | | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, Karnataka, India.
| |
Collapse
|
16
|
Marwa Abdullah Saleh, Karima Fadhil Ali, Basma M. Abd Razik. Synthesizing, Studying Molecular Docking, Characterizing, and Preliminary Evaluating Anti-Bacterial Effects of Derivatives of Serotonin Contain Imidazolidine Ring. AL MUSTANSIRIYAH JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 22:1-16. [DOI: 10.32947/ajps.v22i3.884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
This study included synthesis of new serotonin derivatives in which imidazolidine rings are present in their structures. The final imidazolidine derivatives compounds were synthesized by reaction of synthesized
Schiff bases derivatives of serotonin with the glycine (NH2-CH2COOH) in presence of tetrahydrofuran (THF) as a solvent. The imidazolidine derivatives were identified by physical characteristics, FT-IR spectroscopy and 1H- NMR spectroscopy. Biological activities against two Gram negative (Klebsiella and E. coli) and two Gram positive (Streptococcus pyogenes and Staphylococcus aureus) bacteria were also distinguished. All the synthesized compounds III(a-d) exhibit moderate activities on four types of bacteria comparing with the activity of standard drug (Trimethoprim) but the highest activities of these compounds occur on Streptococcus pyogenes and their least activities occur on E. coli. The synthesized compounds were studied for the molecular docking to know the interaction and affinity of binding between them and bacteria
Collapse
|
17
|
Molecular and thermodynamic mechanisms for protein adaptation. EUROPEAN BIOPHYSICS JOURNAL 2022; 51:519-534. [DOI: 10.1007/s00249-022-01618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
|
18
|
Deepak Shyl ES, Malgija B, Iniyan AM, Vincent SGP. Mutation in
MCL1
predicted loop to helix structural transition stabilizes
MCL1–Bax
binding interaction favoring cancer cell survival. Proteins 2022; 90:1699-1713. [DOI: 10.1002/prot.26347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Eby‐nesar Stella‐glory Deepak Shyl
- International Centre for Nanobiotechnology (ICN), Centre for Marine Science and Technology (CMST) Manonmaniam Sundaranar University Kanyakumari Tamil Nadu India
| | - Beutline Malgija
- Computational Science Laboratory, MCC‐MRF Innovation Park Madras Christian College Chennai Tamil Nadu India
| | - Appadurai Muthamil Iniyan
- International Centre for Nanobiotechnology (ICN), Centre for Marine Science and Technology (CMST) Manonmaniam Sundaranar University Kanyakumari Tamil Nadu India
- York Bioscience Private Limited Ambattur Industrial Estate Chennai Tamil Nadu India
| | - Samuel Gnana Prakash Vincent
- International Centre for Nanobiotechnology (ICN), Centre for Marine Science and Technology (CMST) Manonmaniam Sundaranar University Kanyakumari Tamil Nadu India
| |
Collapse
|
19
|
Cen S, Huang N, Lian D, Shen A, Zhao MX, Zhang Z. Conformational enantiodiscrimination for asymmetric construction of atropisomers. Nat Commun 2022; 13:4735. [PMID: 35961985 PMCID: PMC9374765 DOI: 10.1038/s41467-022-32432-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023] Open
Abstract
Molecular conformations induced by the rotation about single bonds play a crucial role in chemical transformations. Revealing the relationship between the conformations of chiral catalysts and the enantiodiscrimination is a formidable challenge due to the great difficulty in isolating the conformers. Herein, we report a chiral catalytic system composed of an achiral catalytically active unit and an axially chiral 1,1'-bi-2-naphthol (BINOL) unit which are connected via a C-O single bond. The two conformers of the catalyst induced by the rotation about the C-O bond, are determined via single-crystal X-ray diffraction and found to respectively lead to the formation of highly important axially chiral 1,1'-binaphthyl-2,2'-diamine (BINAM) and 2-amino-2'-hydroxy-1,1'-binaphthyl (NOBIN) derivatives in high yields (up to 98%), with excellent enantioselectivities (up to 98:2 e.r.) and opposite absolute configurations. The results highlight the importance of conformational dynamics of chiral catalysts in asymmetric catalysis.
Collapse
Affiliation(s)
- Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Nini Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Dongsheng Lian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Ahui Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Mei-Xin Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| |
Collapse
|
20
|
Kamboj S, Harms C, Wright D, Nash A, Kumar L, Klein-Seetharaman J, Sarkar SK. Identification of allosteric fingerprints of alpha-synuclein aggregates in matrix metalloprotease-1 and substrate-specific virtual screening with single molecule insights. Sci Rep 2022; 12:5764. [PMID: 35388085 PMCID: PMC8987064 DOI: 10.1038/s41598-022-09866-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Alpha-synuclein (aSyn) has implications in pathological protein aggregations in neurodegeneration. Matrix metalloproteases (MMPs) are broad-spectrum proteases and cleave aSyn, leading to aggregation. Previous reports showed that allosteric communications between the two domains of MMP1 on collagen fibril and fibrin depend on substrates, activity, and ligands. This paper reports quantification of allostery using single molecule measurements of MMP1 dynamics on aSyn-induced aggregates by calculating Forster Resonance Energy Transfer (FRET) between two dyes attached to the catalytic and hemopexin domains of MMP1. The two domains of MMP1 prefer open conformations that are inhibited by a single point mutation E219Q of MMP1 and tetracycline, an MMP inhibitor. A two-state Poisson process describes the interdomain dynamics, where the two states and kinetic rates of interconversion between them are obtained from histograms and autocorrelations of FRET values. Since a crystal structure of aSyn-bound MMP1 is unavailable, binding poses were predicted by molecular docking of MMP1 with aSyn using ClusPro. MMP1 dynamics were simulated using predicted binding poses and compared with the experimental interdomain dynamics to identify an appropriate pose. The selected aSyn-MMP1 binding pose near aSyn residue K45 was simulated and analyzed to define conformational changes at the catalytic site. Allosteric residues in aSyn-bound MMP1 exhibiting strong correlations with the catalytic motif residues were compared with allosteric residues in free MMP1, and aSyn-specific residues were identified. The allosteric residues in aSyn-bound MMP1 are K281, T283, G292, G327, L328, E329, R337, F343, G345, N346, Y348, G353, Q354, D363, Y365, S366, S367, F368, P371, R372, V374, K375, A379, F391, A394, R399, M414, F419, V426, and C466. Shannon entropy was defined to quantify MMP1 dynamics. Virtual screening was performed against a site on selected aSyn-MMP1 binding poses, which showed that lead molecules differ between free MMP1 and substrate-bound MMP1. Also, identifying aSyn-specific allosteric residues in MMP1 enabled further selection of lead molecules. In other words, virtual screening needs to take substrates into account for potential substrate-specific control of MMP1 activity in the future. Molecular understanding of interactions between MMP1 and aSyn-induced aggregates may open up the possibility of degrading aggregates by targeting MMPs.
Collapse
Affiliation(s)
- Sumaer Kamboj
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Chase Harms
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Derek Wright
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Anthony Nash
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Lokender Kumar
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | | | - Susanta K Sarkar
- Department of Physics, Colorado School of Mines, Golden, CO, USA.
| |
Collapse
|
21
|
Galenkamp NS, Maglia G. Single-Molecule Sampling of Dihydrofolate Reductase Shows Kinetic Pauses and an Endosteric Effect Linked to Catalysis. ACS Catal 2022; 12:1228-1236. [PMID: 35096468 PMCID: PMC8787752 DOI: 10.1021/acscatal.1c04388] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/13/2021] [Indexed: 12/21/2022]
Abstract
![]()
The ability to sample multiple reactions
on the same single enzyme
is important to link rare intermediates with catalysis and to unravel
the role of conformational changes. Despite decades of efforts, however,
the single-molecule characterization of nonfluorogenic enzymes during
multiple catalytic turnovers has been elusive. Here, we show that
nanopore currents allow sampling the dynamic exchange between five
structural intermediates during E. coli dihydrofolate reductase (DHFR) catalysis. We found that an endosteric
effect promotes the binding of the substrate to the enzyme with a
specific hierarchy. The chemical step then switched the enzyme from
the closed to the occluded conformation, which in turn promotes the
release of the reduced cofactor NADP+. Unexpectedly, only
a few reactive complexes lead to catalysis. Furthermore, second-long
catalytic pauses were observed, possibly reflecting an off-path conformation
generated during the reaction. Finally, the free energy from multiple
cofactor binding events were required to release the product and switch
DHFR back to the reactive conformer. This catalytic fueled concerted
mechanism is likely to have evolved to improve the catalytic efficiency
of DHFR under the high concentrations of NADP+ in E. coli and might be a general feature for complex
enzymatic reactions where the binding and release of the products
must be tightly controlled.
Collapse
Affiliation(s)
- Nicole Stéphanie Galenkamp
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
22
|
Mamane V, Weiss R, Cornaton Y, Khartabil H, Groslambert L, Hénon E, Pale P, Djukic JP. Deciphering the Role of Noncovalent Interactions in the Conformations of Dibenzo‐1,5‐dichalcogenocines. Chempluschem 2022; 87:e202100518. [DOI: 10.1002/cplu.202100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Victor Mamane
- University of Strasbourg: Universite de Strasbourg Institut of Chemistry 1 Rue Blaise Pascal 67008 Strasbourg FRANCE
| | - Robin Weiss
- Université de Strasbourg: Universite de Strasbourg Institut de Chimie de Strasbourg FRANCE
| | - Yann Cornaton
- Université de Strasbourg: Universite de Strasbourg Institut de Chimie de Strasbroug FRANCE
| | - Hassan Khartabil
- Université de Reims Champagne-Ardenne: Universite de Reims Champagne-Ardenne Institut de Chimie Moléculaire FRANCE
| | - Loïc Groslambert
- Universite de Strasbourg Institut de Chimie de Strasbourg FRANCE
| | - Eric Hénon
- Universite de Reims Champagne-Ardenne Institut de Chimie Moléculaire FRANCE
| | - Patrick Pale
- Universite de Strasbourg Institut de Cimie de Strasbourg FRANCE
| | | |
Collapse
|
23
|
Elramadi E, Ghosh A, Valiyev I, Biswas P, Paululat T, Schmittel M. Catalytic machinery in motion: Controlling catalysis via speed. Chem Commun (Camb) 2022; 58:8073-8076. [DOI: 10.1039/d2cc02555h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three 3-component copper(I)-based slider-on-deck systems served as catalysts for a click reaction showing a higher catalytic activity with increasing sliding speed. Upon addition of brake stones, the motion of the...
Collapse
|
24
|
Shoji M, Murakawa T, Nakanishi S, Boero M, Shigeta Y, Hayashi H, Okajima T. Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase. Chem Sci 2022; 13:10923-10938. [PMID: 36320691 PMCID: PMC9491219 DOI: 10.1039/d2sc01356h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022] Open
Abstract
Copper amine oxidase from Arthrobacter globiformis (AGAO) catalyses the oxidative deamination of primary amines via a large conformational change of a topaquinone (TPQ) cofactor during the semiquinone formation step. This conformational change of TPQ occurs in the presence of strong hydrogen bonds and neighboring bulky amino acids, especially the conserved Asn381, which restricts TPQ conformational changes over the catalytic cycle. Whether such a semiquinone intermediate is catalytically active or inert has been a matter of debate in copper amine oxidases. Here, we show that the reaction rate of the Asn381Ala mutant decreases 160-fold, and the X-ray crystal structures of the mutant reveals a TPQ-flipped conformation in both the oxidized and reduced states, preceding semiquinone formation. Our hybrid quantum mechanics/molecular mechanics (QM/MM) simulations show that the TPQ conformational change is realized through the sequential steps of the TPQ ring-rotation and slide. We determine that the bulky side chain of Asn381 hinders the undesired TPQ ring-rotation in the oxidized form, favoring the TPQ ring-rotation in reduced TPQ by a further stabilization leading to the TPQ semiquinone form. The acquired conformational flexibility of TPQ semiquinone promotes a high reactivity of Cu(i) to O2, suggesting that the semiquinone form is catalytically active for the subsequent oxidative half-reaction in AGAO. The ingenious molecular mechanism exerted by TPQ to achieve the “state-specific” reaction sheds new light on a drastic environmental transformation around the catalytic center. The large conformational change of topaquinone in bacterial copper amine oxidase occurs through the TPQ ring rotation and slide, which are essential to stabilize the semiquinone form.![]()
Collapse
Affiliation(s)
- Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
- JST-PRESTO 4-1-8 Honcho Kawaguchi 332-0012 Saitama Japan
| | - Takeshi Murakawa
- Department of Biochemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| | - Shota Nakanishi
- Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Osaka Japan
| | - Mauro Boero
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS, UMR 7504 23 rue du Loess F-67034 France
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba 1-1-1 Tennodai Tsukuba 305-8577 Ibaraki Japan
| | - Hideyuki Hayashi
- Department of Chemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Osaka Japan
- Department of Chemistry, Osaka Medical and Pharmaceutical University 2-7 Daigakumachi Takatsuki 569-8686 Osaka Japan
| |
Collapse
|
25
|
Atalar MN, Aras A, Türkan F, Barlak N, Yildiko Ü, Karatas OF, Alma MH. The effects of Daucus carota extract against PC3, PNT1a prostate cells, acetylcholinesterase, glutathione S-transferase, and α-glycosidase; an in vitro-in silico study. J Food Biochem 2021; 45:e13975. [PMID: 34676566 DOI: 10.1111/jfbc.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022]
Abstract
Daucus carota L. ssp. major (DCM) plant is widely used in traditional medicine to treat some types of cancer and various diseases. Therefore, we evaluated the biological activities of this plant to define its effects against prostate cancer (PCa), Alzheimer's disease (AD), oxidation, and diabetes mellitus (DM) as well as identified its phenolic composition. To determine the anti-cancer properties of the plant extract, we treated PCa cells with the extract at a concentration range of 0.25, 0.5, 1, 2, and 4 mg/ml. Significant results were obtained against the PC3 cells compared to normal PNT1a prostate epithelial cells. As a result of precise measurements at the millimolar level, it was observed that the plant extract showed an effective inhibition (IC50 ) against glutathione S-transferase (GST; 12.84 mM), acetyl cholinesterase (AChE; 15.07 mM), and α-Gly (11.75 mM) enzymes when compared with standard inhibitors. Antioxidant activities of DCM methanol extract were determined via two well-known in vitro techniques. The extracts showed antioxidant activities against the DPPH and ABTS+ . The LC-ESI-MS/MS was used to determine the phenolic compounds of methanol extract from DCM. Chlorogenic acid (2,089.096 µg/g), shikimic acid (193.14 µg/g), and coumarin (113.604 µg/g) were characterized as major phenolic compounds. In addition, the interactions of chlorogenic acid, chrysin, coumarin, and shikimic acid with the used three enzymes have been calculated using molecular docking simulation. PRACTICAL APPLICATIONS: Plant natural phenolic compounds have protective effects such as anti-inflammatory, antioxidant, anticarcinogen, and enzyme inhibitory. Therefore, it has an important place in the food and pharmaceutical industry. The present study aims to reveal the enzyme inhibitory, antioxidant, and anticarcinogenic properties of the Daucus carota ssp. Major (DCM) plant extract. Significant results were obtained against the PC3 cells compared to normal PNT1a prostate epithelial cells. DCM extract demonstrated considerable antioxidant activity and inhibitory potential on used metabolic enzymes. These biological effects are thought to have a relationship with rich chemical composition.
Collapse
Affiliation(s)
- Mehmet Nuri Atalar
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
| | - Abdülmelik Aras
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Igdır University, Igdır, Turkey
| | - Neslisah Barlak
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Cancer Therapeutics Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Ümit Yildiko
- Department of Environmental Engineering, Faculty of Engineering, Igdir University, Igdir, Turkey.,Department of Bioengineering, Kafkas University, Kars, Turkey
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey.,Cancer Therapeutics Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Hakkı Alma
- Department of Biochemistry, Faculty of Science and Arts, Iğdır University, Iğdır, Turkey
| |
Collapse
|
26
|
Yan DN, Cai LX, Cheng PM, Hu SJ, Zhou LP, Sun QF. Photooxidase Mimicking with Adaptive Coordination Molecular Capsules. J Am Chem Soc 2021; 143:16087-16094. [PMID: 34553600 DOI: 10.1021/jacs.1c06390] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One important feature of enzyme catalysis is the induced-fit conformational change after binding substrates. Herein, we report a biomimetic water-soluble molecular capsule featuring adaptive structural change toward substrate binding, which offers an ideal platform for efficient photocatalysis. The molecular capsule was coordination-assembled from three anthracene-bridged bis-TPT [TPT = 2,4,6-tris(4-pyridyl)-1,3,5-triazine] ligands and six (bpy)Pd(NO3)2 (bpy = 2,2'-bipyridine). Once substrates bind to its hydrophobic cavity, this capsule would undergo quantitative capsule-to-bowl transformation. Visible-light absorption brought about by both the anthracene units and the charge-transfer absorption on the late-formed quintuple π-π stacked host-guest complex efficiently facilitates aerobic photooxidation for the sulfide guests by visible-light irradiation under mild conditions. Desired turnover numbers and product selectivity (sulfoxide over sulfone) have been achieved by the transformable nature of the catalyst and the hydrophilicity of the sulfoxide product. Such a photocatalytic process enabled by an adaptive coordination capsule and substrates as the allosteric effector paves the way for constructing artificial systems to mimic enzyme catalysis.
Collapse
Affiliation(s)
- Dan-Ni Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Pei-Ming Cheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
27
|
Liu H, Li Q, Zhao D, Zhang M, Jiang S, Li C. Changes in the structure and digestibility of myoglobin treated with sodium chloride. Food Chem 2021; 363:130284. [PMID: 34120050 DOI: 10.1016/j.foodchem.2021.130284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Myoglobin is a protein not easily broken down by digestive enzymes due to its rigid structure. This study evaluated the structural characteristics of myoglobin under various sodium chloride treatments (0.4-0.8 mol/L for 5-10 h) and the impacts on its digestibility using spectroscopic and molecular dynamics simulation techniques. Myoglobin digestibility was 40% following pepsin digestion and 60% after being sequentially digested by pepsin and trypsin. The α-helix content of myoglobin did not change significantly following sodium chloride treatment but hydrophobic amino acids were exposed and the binding of phenylalanine targeted by some digestive enzymes became more stable, leading to the reduced digestibility.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
28
|
Du H, Hu RW, Zhao HM, Huang HB, Xiang L, Liu BL, Feng NX, Li H, Li YW, Cai QY, Mo CH. Mechanistic insight into esterase-catalyzed hydrolysis of phthalate esters (PAEs) based on integrated multi-spectroscopic analyses and docking simulation. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124901. [PMID: 33360702 DOI: 10.1016/j.jhazmat.2020.124901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/01/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A novel PAE-hydrolyzing esterase (named Hyd) gene was screened from the genomic library of Rhodococcus sp. 2G and was successfully expressed in heterologous E. coli, which was defined as a new family of esterolytic enzymes. The purified Hyd could efficiently degrade various PAEs, displaying high activity and stability with a broad range of pH (4-10) and temperature (20-60 °C). Interaction mechanism of Hyd with dibutyl phthalate (DBP) was investigated by integrated multi-spectroscopic and docking simulation methods. Fluorescence and UV-vis spectra revealed that DBP could quench the fluorescence of Hyd through a static quenching mechanism. The results from synchronous fluorescence and CD spectra confirmed that the DBP binding to Hyd triggered conformational and micro-environmental changes of Hyd, which were characterized by increased stretching extent and random coil, and decreased α-helix and β-sheet. Molecular docking study showed that DBP could be bound to the cavity of Hyd with hydrogen bonding and hydrophobic interaction. A novel and distinctive catalytic mechanism was proposed: two key residues Thr190 and Ser191 might catalyze the hydrolysis of DBP, instead of the conserved catalytic triad (Ser-His-Asp) reported elsewhere, which was confirmed by site-directed mutagenesis.
Collapse
Affiliation(s)
- Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Wen Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - He-Biao Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bai-Lin Liu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
29
|
Molecular docking and density functional theory studies of potent 1,3-disubstituted-9H-pyrido[3,4-b]indoles antifilarial compounds. Struct Chem 2021. [DOI: 10.1007/s11224-021-01772-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Bioinformatic Analysis of Structure and Function of LIM Domains of Human Zyxin Family Proteins. Int J Mol Sci 2021; 22:ijms22052647. [PMID: 33808029 PMCID: PMC7961639 DOI: 10.3390/ijms22052647] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Members of the human Zyxin family are LIM domain-containing proteins that perform critical cellular functions and are indispensable for cellular integrity. Despite their importance, not much is known about their structure, functions, interactions and dynamics. To provide insights into these, we used a set of in-silico tools and databases and analyzed their amino acid sequence, phylogeny, post-translational modifications, structure-dynamics, molecular interactions, and functions. Our analysis revealed that zyxin members are ohnologs. Presence of a conserved nuclear export signal composed of LxxLxL/LxxxLxL consensus sequence, as well as a possible nuclear localization signal, suggesting that Zyxin family members may have nuclear and cytoplasmic roles. The molecular modeling and structural analysis indicated that Zyxin family LIM domains share similarities with transcriptional regulators and have positively charged electrostatic patches, which may indicate that they have previously unanticipated nucleic acid binding properties. Intrinsic dynamics analysis of Lim domains suggest that only Lim1 has similar internal dynamics properties, unlike Lim2/3. Furthermore, we analyzed protein expression and mutational frequency in various malignancies, as well as mapped protein-protein interaction networks they are involved in. Overall, our comprehensive bioinformatic analysis suggests that these proteins may play important roles in mediating protein-protein and protein-nucleic acid interactions.
Collapse
|
31
|
Šterk M, Markovič R, Marhl M, Fajmut A, Dobovišek A. Flexibility of enzymatic transitions as a hallmark of optimized enzyme steady-state kinetics and thermodynamics. Comput Biol Chem 2021; 91:107449. [PMID: 33588154 DOI: 10.1016/j.compbiolchem.2021.107449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/05/2020] [Accepted: 02/02/2021] [Indexed: 11/25/2022]
Abstract
We investigate the relations between the enzyme kinetic flexibility, the rate of entropy production, and the Shannon information entropy in a steady-state enzyme reaction. All these quantities are maximized with respect to enzyme rate constants. We show that the steady-state, which is characterized by the most flexible enzymatic transitions between the enzyme conformational states, coincides with the global maxima of the Shannon information entropy and the rate of entropy production. This steady-state of an enzyme is referred to as globally optimal. This theoretical approach is then used for the analysis of the kinetic and the thermodynamic performance of the enzyme triose-phosphate isomerase. The analysis reveals that there exist well-defined maxima of the kinetic flexibility, the rate of entropy production, and the Shannon information entropy with respect to any arbitrarily chosen rate constant of the enzyme and that these maxima, calculated from the measured kinetic rate constants for the triose-phosphate isomerase are lower, however of the same order of magnitude, as the maxima of the globally optimal state of the enzyme. This suggests that the triose-phosphate isomerase could be a well, but not fully evolved enzyme, as it was previously claimed. Herein presented theoretical investigations also provide clear evidence that the flexibility of enzymatic transitions between the enzyme conformational states is a requirement for the maximal Shannon information entropy and the maximal rate of entropy production.
Collapse
Affiliation(s)
- Marko Šterk
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska Ulica 8, 2000, Maribor, Slovenia; University of Maribor, Faculty of Education, Koroška Cesta 160, 2000, Maribor, Slovenia
| | - Rene Markovič
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Education, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Energy Technology, Hočevarjev Trg 1, 8270, Krško, Slovenia
| | - Marko Marhl
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska Ulica 8, 2000, Maribor, Slovenia; University of Maribor, Faculty of Education, Koroška Cesta 160, 2000, Maribor, Slovenia
| | - Aleš Fajmut
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Health Sciences, Žitna Ulica 15, 2000, Maribor, Slovenia
| | - Andrej Dobovišek
- University of Maribor, Faculty of Natural Sciences and Mathematics, Koroška Cesta 160, 2000, Maribor, Slovenia; University of Maribor, Faculty of Medicine, Taborska Ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
32
|
Kirst C, Zoller F, Bräuniger T, Mayer P, Fattakhova-Rohlfing D, Karaghiosoff K. Investigation of Structural Changes of Cu(I) and Ag(I) Complexes Utilizing a Flexible, Yet Sterically Demanding Multidentate Phosphine Oxide Ligand. Inorg Chem 2021; 60:2437-2445. [PMID: 33534576 DOI: 10.1021/acs.inorgchem.0c03334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The syntheses of a sterically demanding, multidentate bis(quinaldinyl)phenylphosphine oxide ligand and some Cu(I) and Ag(I) complexes thereof are described. By introducing a methylene group between the quinoline unit and phosphorus, the phosphine oxide ligand gains additional flexibility. This specific ligand design induces not only a versatile coordination chemistry but also a rarely observed and investigated behavior in solution. The flexibility of the birdlike ligand offers the unexpected opportunity of open-wing and closed-wing coordination to the metal. In fact, the determined crystal structures of these complexes show both orientations. Investigations of the ligand in solution show a strong dependency of the chemical shift of the CH2 protons on the solvent used. Variable-temperature, multinuclear NMR spectroscopy was carried out, and an interesting dynamic behavior of the complexes is observed. Due to the introduced flexibility, the quinaldinyl substituents change their arrangements from open-wing to closed-wing upon cooling, while still staying coordinated to the metal. This change in conformation is completely reversible when warming up the sample. Based on 2D NMR spectra measured at -80 °C, an assignment of the signals corresponding to the different arrangements was possible. Additionally, the copper(I) complex shows reversible redox activity in solution. The combination of structural flexibility of a multidentate ligand and the positive redox properties of the resulting complexes comprises key factors for a possible application of such compounds in transition-metal catalysis. Via a reorganization of the ligand, occurring transition states could be stabilized, and selectivity might be enhanced.
Collapse
Affiliation(s)
- Christin Kirst
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, DE 81377 Munich, Germany
| | - Florian Zoller
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, DE 81377 Munich, Germany.,Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.,Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Thomas Bräuniger
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, DE 81377 Munich, Germany
| | - Peter Mayer
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, DE 81377 Munich, Germany
| | - Dina Fattakhova-Rohlfing
- Institute of Energy and Climate Research (IEK-1): Materials Synthesis and Processing, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany.,Faculty of Engineering and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Konstantin Karaghiosoff
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, DE 81377 Munich, Germany
| |
Collapse
|
33
|
Hemmer K, Cokoja M, Fischer RA. Exploitation of Intrinsic Confinement Effects of MOFs in Catalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202001606] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Karina Hemmer
- Chair of Inorganic and Metal-Organic Chemistry Catalysis Research Center and Department of Chemistry Technical University of Munich Ernst-Otto-Fischer-Straße 1 D-85748 Garching Germany
| | - Mirza Cokoja
- Chair of Inorganic and Metal-Organic Chemistry Catalysis Research Center and Department of Chemistry Technical University of Munich Ernst-Otto-Fischer-Straße 1 D-85748 Garching Germany
| | - Roland A. Fischer
- Chair of Inorganic and Metal-Organic Chemistry Catalysis Research Center and Department of Chemistry Technical University of Munich Ernst-Otto-Fischer-Straße 1 D-85748 Garching Germany
| |
Collapse
|
34
|
Liu D, Di B, Peng Z, Yin C, Zhu H, Wen X, Chen Q, Zhu J, Wu K. Surface-mediated ordering of pristine Salen molecules on coinage metals. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00874e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational isomers of Salen molecules and their self-assembled structures on coinage metal surfaces.
Collapse
Affiliation(s)
- Dan Liu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Bin Di
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Zhantao Peng
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Cen Yin
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Hao Zhu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Xiaojie Wen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Qiwei Chen
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei 230029
- China
| | - Kai Wu
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
35
|
Rodríguez-Núñez K, Bernal C, Martínez R. Immobilized Biocatalyst Engineering: High throughput enzyme immobilization for the integration of biocatalyst improvement strategies. Int J Biol Macromol 2020; 170:61-70. [PMID: 33358947 DOI: 10.1016/j.ijbiomac.2020.12.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
The increasing use of sustainable manufacturing technologies in the industry presents a constant challenge for the development of suitable biocatalysts. Traditionally, improved biocatalysts are developed either using protein engineering (PE) or enzyme immobilization (EI). However, these approaches are usually not simultaneously applied. In this work, we designed and validated an enzyme improvement platform, Immobilized Biocatalyst Engineering (IBE), which simultaneously integrates PE and EI, with a unique combination of improvement through amino acid substitutions and attachment to a support material, allowing to select variants that would not be found through single or subsequent PE and EI improvement strategies. Our results show that there is a significant difference on the best performing variants identified through IBE, when compared to those that could be identified as soluble enzymes and then immobilized, especially when evaluating variants with low enzyme as soluble enzymes and high activity when immobilized. IBE allows evaluating thousands of variants in a short time through an integrated screening, and selection can be made with more information, resulting in the detection of highly stable and active heterogeneous biocatalysts. This novel approach can translate into a higher probability of finding suitable biocatalysts for highly demanding processes.
Collapse
Affiliation(s)
- Karen Rodríguez-Núñez
- Laboratorio de Tecnología de Enzimas para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, 1720010 La Serena, Chile
| | - Claudia Bernal
- Laboratorio de Tecnología de Enzimas para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, 1720010 La Serena, Chile; Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, Universidad de La Serena, Benavente 980, 1720010 La Serena, Chile.
| | - Ronny Martínez
- Laboratorio de Tecnología de Enzimas para Bioprocesos, Departamento de Ingeniería en Alimentos, Universidad de La Serena, Av. Raúl Bitrán 1305, 1720010 La Serena, Chile.
| |
Collapse
|
36
|
O'Rourke KF, D'Amico RN, Sahu D, Boehr DD. Distinct conformational dynamics and allosteric networks in alpha tryptophan synthase during active catalysis. Protein Sci 2020; 30:543-557. [PMID: 33314435 DOI: 10.1002/pro.4011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/21/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022]
Abstract
Experimental observations of enzymes under active turnover conditions have brought new insight into the role of protein motions and allosteric networks in catalysis. Many of these studies characterize enzymes under dynamic chemical equilibrium conditions, in which the enzyme is actively catalyzing both the forward and reverse reactions during data acquisition. We have previously analyzed conformational dynamics and allosteric networks of the alpha subunit of tryptophan synthase under such conditions using NMR. We have proposed that this working state represents a four to one ratio of the enzyme bound with the indole-3-glycerol phosphate substrate (E:IGP) to the enzyme bound with the products indole and glyceraldehyde-3-phosphate (E:indole:G3P). Here, we analyze the inactive D60N variant to deconvolute the contributions of the substrate- and products-bound states to the working state. While the D60N substitution itself induces small structural and dynamic changes, the D60N E:IGP and E:indole:G3P states cannot entirely account for the conformational dynamics and allosteric networks present in the working state. The act of chemical bond breakage and/or formation, or possibly the generation of an intermediate, may alter the structure and dynamics present in the working state. As the enzyme transitions from the substrate-bound to the products-bound state, millisecond conformational exchange processes are quenched and new allosteric connections are made between the alpha active site and the surface which interfaces with the beta subunit. The structural ordering of the enzyme and these new allosteric connections may be important in coordinating the channeling of the indole product into the beta subunit.
Collapse
Affiliation(s)
- Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Debashish Sahu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
37
|
Hjörleifsson JG, Helland R, Magnúsdóttir M, Ásgeirsson B. The high catalytic rate of the cold-active Vibrio alkaline phosphatase requires a hydrogen bonding network involving a large interface loop. FEBS Open Bio 2020; 11:173-184. [PMID: 33197282 PMCID: PMC7780099 DOI: 10.1002/2211-5463.13041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022] Open
Abstract
The role of surface loops in mediating communication through residue networks is still a relatively poorly understood part in the study of cold adaptation of enzymes, especially in terms of their quaternary interactions. Alkaline phosphatase (AP) from the psychrophilic marine bacterium Vibrio splendidus (VAP) is characterized by an analogous large surface loop in each monomer, referred to as the large loop, that hovers over the active site of the other monomer. It presumably has a role in the high catalytic efficiency of VAP which accompanies its extremely low thermal stability. Here, we designed several different variants of VAP with the aim of removing intersubunit interactions at the dimer interface. Breaking the intersubunit contacts from one residue in particular (Arg336) reduced the temperature stability of the catalytically potent conformation and caused a 40% drop in catalytic rate. The high catalytic rates of enzymes from cold‐adapted organisms are often associated with increased dynamic flexibility. Comparison of the relative B‐factors of the R336L crystal structure to that of the wild‐type confirmed surface flexibility was increased in a loop on the opposite monomer, but not in the large loop. The increase in flexibility resulted in a reduced catalytic rate. The large loop increases the area of the interface between the subunits through its contacts and may facilitate an alternating structural cycle demanded by a half‐of‐sites reaction mechanism through stronger ties, as the dimer oscillates between high affinity (active) or low phosphoryl group affinity (inactive).
Collapse
Affiliation(s)
| | - Ronny Helland
- Department of Chemistry, Faculty of Science and Technology, The Norwegian Structural Biology Centre (NorStruct), UiT, The Arctic University of Tromsø, Norway
| | - Manuela Magnúsdóttir
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Bjarni Ásgeirsson
- Department of Biochemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
38
|
Li Q, Zhao D, Liu H, Zhang M, Jiang S, Xu X, Zhou G, Li C. "Rigid" structure is a key determinant for the low digestibility of myoglobin. Food Chem X 2020; 7:100094. [PMID: 32617526 PMCID: PMC7322683 DOI: 10.1016/j.fochx.2020.100094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/13/2020] [Accepted: 06/06/2020] [Indexed: 01/13/2023] Open
Abstract
Myoglobin, a critical protein responsible for meat color, has been shown insusceptible to digestion. The underlying mechanism is not clear. The present study aimed to evaluate whether the structural properties of myoglobin are associated with its insusceptibility to digestion using spectroscopic and computational techniques. Myoglobin was degraded by only 7.03% by pepsin and 33.00% by pancreatin. The structure of myoglobin still maintained α-helix after the two-step digestion, with the exposure of some aromatic residues. In addition, molecular dynamics modeling suggested that hydrophobic amino acid residues (Phe 111, Leu 10, Ala 115, Pro 116) in pepsin and polar amino acid residues (Tyr 146, Thr 95) in myoglobin were found in the proximity of binding sites, which could result in the low digestibility of myoglobin. Our findings provide a new insight into the underlying mechanisms on the difficulty in digestion of myoglobin.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Di Zhao
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuai Jiang
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE, Key Laboratory of Meat Processing, MARA, Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
39
|
D'Amico RN, Murray AM, Boehr DD. Driving Protein Conformational Cycles in Physiology and Disease: "Frustrated" Amino Acid Interaction Networks Define Dynamic Energy Landscapes: Amino Acid Interaction Networks Change Progressively Along Alpha Tryptophan Synthase's Catalytic Cycle. Bioessays 2020; 42:e2000092. [PMID: 32720327 DOI: 10.1002/bies.202000092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Indexed: 12/22/2022]
Abstract
A general framework by which dynamic interactions within a protein will promote the necessary series of structural changes, or "conformational cycle," required for function is proposed. It is suggested that the free-energy landscape of a protein is biased toward this conformational cycle. Fluctuations into higher energy, although thermally accessible, conformations drive the conformational cycle forward. The amino acid interaction network is defined as those intraprotein interactions that contribute most to the free-energy landscape. Some network connections are consistent in every structural state, while others periodically change their interaction strength according to the conformational cycle. It is reviewed here that structural transitions change these periodic network connections, which then predisposes the protein toward the next set of network changes, and hence the next structural change. These concepts are illustrated by recent work on tryptophan synthase. Disruption of these dynamic connections may lead to aberrant protein function and disease states.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - Alec M Murray
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| |
Collapse
|
40
|
Biswas S, Mandal S, Biswas P, Chakraborty T. Probing the Endo/ Exo Isomeric Variants of a Binary Complex of Cyclopropylamine with p-Fluorophenol by LIF Spectroscopy: A Comparative Study with Ammonia Complex. J Phys Chem A 2020; 124:5896-5906. [PMID: 32559102 DOI: 10.1021/acs.jpca.0c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conformational isomers of an O-H···N hydrogen-bonded binary complex between para-fluorophenol (pFP) and a nonrigid primary amine base, cyclopropylamine (CPA), have been probed by means of laser-induced fluorescence (LIF) spectroscopy in a supersonic jet expansion. Two closely spaced electronic origin bands have been identified in the measured LIF excitation spectrum, and their assignments have been corroborated by making comparisons with the spectra of the parent pFP-NH3 complex recorded under the same expansion condition. The observation is consistent with the presence of endo and exo isomeric variants of the complex predicted by electronic structure theory methods, and the endo isomer is stabilized by ∼2 kcal/mol additionally owing to the formation of a C-H···O and a C-H···π type of weak hydrogen bonds between the two moieties. In the fluorescence excitation (FE) spectrum, the low-frequency bands for different intermolecular modes gain substantial intensity, and this spectral feature is in contrast to that of the pFP-NH3 complex. The Franck-Condon intensity of the bands has been simulated invoking Duschinsky rotation scheme, taking into consideration the ground- and excited-state geometries.
Collapse
Affiliation(s)
- Souvick Biswas
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Subhasis Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pinakpani Biswas
- Environmental Research Group (R&D), Tata Steel India Ltd., Jamshedpur 831 001, India
| | - Tapas Chakraborty
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
41
|
Kadirvel P, Subramanian A, Sridharan N, Subramanian S, Vimaladhasan S, Anishetty S. Molecular dynamics simulation study of Plasmodium falciparum and Escherichia coli SufA: Exploration of conformational changes possibly involved in iron-sulfur cluster transfer. J Biomol Struct Dyn 2020; 39:3300-3311. [PMID: 32364014 DOI: 10.1080/07391102.2020.1764389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron-sulfur (Fe-S) clusters are one of the earliest known metal complexes in biological molecules. Suf system is one of the Fe-S biogenesis pathways. SufA belongs to the Suf pathway. It is an A-type carrier protein that transfers Fe-S clusters from the scaffold to target proteins. Structural studies were performed for the Suf pathway protein, SufA, in order to explore the conformational changes that probably aid in the transfer of Fe-S clusters to target proteins. Three-dimensional (3D) structure of Plasmodium falciparum (Pf) SufA homodimer was obtained by homology modeling using 3D structure of Escherichia coli (Ec) SufA as template. Molecular dynamics (MD) simulation of Pf SufA and Ec SufA homodimers followed by trajectory and pocket analyses were carried out. A co-ordinated displacement of the homodimeric chains in the interfacial region, resembling a swinging trapeze-like movement was observed. Potential involvement of this swinging trapeze-like movement of the residues belonging to the interfacial region has been proposed as a probable mechanism that assists in the transfer of Fe-S cluster from SufA to apo proteins. This was substantiated by protein-protein interaction studies in Pf SufA by performing molecular docking of 3D conformations of Pf SufA obtained from MD trajectory at every 1 ns interval with Pf ferredoxin.Communicated by Ramaswamy H. Sarma.
Collapse
|
42
|
Capraro DT, Burban DJ, Jennings PA. Unraveling Allostery in a Knotted Minimal Methyltransferase by NMR Spectroscopy. J Mol Biol 2020; 432:3018-3032. [PMID: 32135193 DOI: 10.1016/j.jmb.2020.02.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/17/2022]
Abstract
The methyltransferases that belong to the SpoU-TrmD family contain trefoil knots in their backbone fold. Recent structural dynamic and binding analyses of both free and bound homologs indicate that the knot within the polypeptide backbone plays a significant role in the biological activity of the molecule. The knot loops form the S-adenosyl-methionine (SAM)-binding pocket as well as participate in SAM binding and catalysis. Knots contain both at once a stable core as well as moving parts that modulate long-range motions. Here, we sought to understand allosteric effects modulated by the knotted topology. Uncovering the residues that contribute to these changes and the functional aspects of these protein motions are essential to understanding the interplay between the knot, activation of the methyltransferase, and the implications in RNA interactions. The question we sought to address is as follows: How does the knot, which constricts the backbone as well as forms the SAM-binding pocket with its three distinctive loops, affect the binding mechanism? Using a minimally tied trefoil protein as the framework for understanding the structure-function roles, we offer an unprecedented view of the conformational mechanics of the knot and its relationship to the activation of the ligand molecule. Focusing on the biophysical characterization of the knot region by NMR spectroscopy, we identify the SAM-binding region and observe changes in the dynamics of the loops that form the knot. Importantly, we also observe long-range allosteric changes in flanking helices consistent with winding/unwinding in helical propensity as the knot tightens to secure the SAM cofactor.
Collapse
Affiliation(s)
- Dominique T Capraro
- University of California, San Diego, 9500 Gilman Drive, Natural Science Building #3110, La Jolla, CA 92093, USA
| | - David J Burban
- University of California, San Diego, 9500 Gilman Drive, Natural Science Building #3110, La Jolla, CA 92093, USA
| | - Patricia A Jennings
- University of California, San Diego, 9500 Gilman Drive, Natural Science Building #3110, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Veevers R, Cawley G, Hayward S. Investigation of sequence features of hinge-bending regions in proteins with domain movements using kernel logistic regression. BMC Bioinformatics 2020; 21:137. [PMID: 32272894 PMCID: PMC7147021 DOI: 10.1186/s12859-020-3464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/20/2020] [Indexed: 11/12/2022] Open
Abstract
Background Hinge-bending movements in proteins comprising two or more domains form a large class of functional movements. Hinge-bending regions demarcate protein domains and collectively control the domain movement. Consequently, the ability to recognise sequence features of hinge-bending regions and to be able to predict them from sequence alone would benefit various areas of protein research. For example, an understanding of how the sequence features of these regions relate to dynamic properties in multi-domain proteins would aid in the rational design of linkers in therapeutic fusion proteins. Results The DynDom database of protein domain movements comprises sequences annotated to indicate whether the amino acid residue is located within a hinge-bending region or within an intradomain region. Using statistical methods and Kernel Logistic Regression (KLR) models, this data was used to determine sequence features that favour or disfavour hinge-bending regions. This is a difficult classification problem as the number of negative cases (intradomain residues) is much larger than the number of positive cases (hinge residues). The statistical methods and the KLR models both show that cysteine has the lowest propensity for hinge-bending regions and proline has the highest, even though it is the most rigid amino acid. As hinge-bending regions have been previously shown to occur frequently at the terminal regions of the secondary structures, the propensity for proline at these regions is likely due to its tendency to break secondary structures. The KLR models also indicate that isoleucine may act as a domain-capping residue. We have found that a quadratic KLR model outperforms a linear KLR model and that improvement in performance occurs up to very long window lengths (eighty residues) indicating long-range correlations. Conclusion In contrast to the only other approach that focused solely on interdomain hinge-bending regions, the method provides a modest and statistically significant improvement over a random classifier. An explanation of the KLR results is that in the prediction of hinge-bending regions a long-range correlation is at play between a small number amino acids that either favour or disfavour hinge-bending regions. The resulting sequence-based prediction tool, HingeSeek, is available to run through a webserver at hingeseek.cmp.uea.ac.uk.
Collapse
Affiliation(s)
- Ruth Veevers
- Computational Biology Laboratory, School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Gavin Cawley
- Computational Biology Laboratory, School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - Steven Hayward
- Computational Biology Laboratory, School of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
44
|
Wang J, Peng C, Yu Y, Chen Z, Xu Z, Cai T, Shao Q, Shi J, Zhu W. Exploring Conformational Change of Adenylate Kinase by Replica Exchange Molecular Dynamic Simulation. Biophys J 2020; 118:1009-1018. [PMID: 31995738 DOI: 10.1016/j.bpj.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022] Open
Abstract
Replica exchange molecular dynamics (REMD) simulation is a popular enhanced sampling method that is widely used for exploring the atomic mechanism of protein conformational change. However, the requirement of huge computational resources for REMD, especially with the explicit solvent model, largely limits its application. In this study, the availability and efficiency of a variant of velocity-scaling REMD (vsREMD) was assessed with adenylate kinase as an example. Although vsREMD achieved results consistent with those from conventional REMD and experimental studies, the number of replicas required for vsREMD (30) was much less than that for conventional REMD (80) to achieve a similar acceptance rate (∼0.2), demonstrating high efficiency of vsREMD to characterize the protein conformational change and associated free-energy profile. Thus, vsREMD is a highly efficient approach for studying the large-scale conformational change of protein systems.
Collapse
Affiliation(s)
- Jinan Wang
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Cheng Peng
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuqu Yu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoqiang Chen
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Cai
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Shao
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiye Shi
- UCB Biopharma SPRL, Braine-l'Alleud, Belgium
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Open Studio for Druggability Research of Marine Lead Compounds, Qingdao National Laboratory for Marine Science and Technology, Jimo, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Jeong WJ, Yu J, Song WJ. Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chem Commun (Camb) 2020; 56:9586-9599. [DOI: 10.1039/d0cc03137b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have extracted and categorized the desirable properties of proteins that are adapted as the scaffolds for artificial metalloenzymes.
Collapse
Affiliation(s)
- Woo Jae Jeong
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jaeseung Yu
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Woon Ju Song
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
46
|
Yin X, Liu Y, Meng L, Zhou H, Wu J, Yang L. Semi-rational hinge engineering: modulating the conformational transformation of glutamate dehydrogenase for enhanced reductive amination activity towards non-natural substrates. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02576f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The hinge region was identified to be a promising hotspot for activity engineering of GluDHs, providing a potent alternative for developing high-performance biocatalysts toward valuable optically pure l-amino acid production.
Collapse
Affiliation(s)
- Xinjian Yin
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Yayun Liu
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Lijun Meng
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Haisheng Zhou
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Jianping Wu
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| | - Lirong Yang
- Institute of Bioengineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
47
|
Avram S, Mernea M, Limban C, Borcan F, Chifiriuc C. Potential Therapeutic Approaches to Alzheimer's Disease By Bioinformatics, Cheminformatics And Predicted Adme-Tox Tools. Curr Neuropharmacol 2020; 18:696-719. [PMID: 31885353 PMCID: PMC7536829 DOI: 10.2174/1570159x18666191230120053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is considered a severe, irreversible and progressive neurodegenerative disorder. Currently, the pharmacological management of AD is based on a few clinically approved acethylcholinesterase (AChE) and N-methyl-D-aspartate (NMDA) receptor ligands, with unclear molecular mechanisms and severe side effects. METHODS Here, we reviewed the most recent bioinformatics, cheminformatics (SAR, drug design, molecular docking, friendly databases, ADME-Tox) and experimental data on relevant structurebiological activity relationships and molecular mechanisms of some natural and synthetic compounds with possible anti-AD effects (inhibitors of AChE, NMDA receptors, beta-secretase, amyloid beta (Aβ), redox metals) or acting on multiple AD targets at once. We considered: (i) in silico supported by experimental studies regarding the pharmacological potential of natural compounds as resveratrol, natural alkaloids, flavonoids isolated from various plants and donepezil, galantamine, rivastagmine and memantine derivatives, (ii) the most important pharmacokinetic descriptors of natural compounds in comparison with donepezil, memantine and galantamine. RESULTS In silico and experimental methods applied to synthetic compounds led to the identification of new AChE inhibitors, NMDA antagonists, multipotent hybrids targeting different AD processes and metal-organic compounds acting as Aβ inhibitors. Natural compounds appear as multipotent agents, acting on several AD pathways: cholinesterases, NMDA receptors, secretases or Aβ, but their efficiency in vivo and their correct dosage should be determined. CONCLUSION Bioinformatics, cheminformatics and ADME-Tox methods can be very helpful in the quest for an effective anti-AD treatment, allowing the identification of novel drugs, enhancing the druggability of molecular targets and providing a deeper understanding of AD pathological mechanisms.
Collapse
Affiliation(s)
| | - Maria Mernea
- Address correspondence to this author at the Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95th Spl. Independentei, Bucharest, Romania; Tel/Fax: ++4-021-318-1573; E-mail:
| | | | | | | |
Collapse
|
48
|
Mix-and-inject XFEL crystallography reveals gated conformational dynamics during enzyme catalysis. Proc Natl Acad Sci U S A 2019; 116:25634-25640. [PMID: 31801874 DOI: 10.1073/pnas.1901864116] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How changes in enzyme structure and dynamics facilitate passage along the reaction coordinate is a fundamental unanswered question. Here, we use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL), ambient-temperature X-ray crystallography, computer simulations, and enzyme kinetics to characterize how covalent catalysis modulates isocyanide hydratase (ICH) conformational dynamics throughout its catalytic cycle. We visualize this previously hypothetical reaction mechanism, directly observing formation of a thioimidate covalent intermediate in ICH microcrystals during catalysis. ICH exhibits a concerted helical displacement upon active-site cysteine modification that is gated by changes in hydrogen bond strength between the cysteine thiolate and the backbone amide of the highly strained Ile152 residue. These catalysis-activated motions permit water entry into the ICH active site for intermediate hydrolysis. Mutations at a Gly residue (Gly150) that modulate helical mobility reduce ICH catalytic turnover and alter its pre-steady-state kinetic behavior, establishing that helical mobility is important for ICH catalytic efficiency. These results demonstrate that MISC can capture otherwise elusive aspects of enzyme mechanism and dynamics in microcrystalline samples, resolving long-standing questions about the connection between nonequilibrium protein motions and enzyme catalysis.
Collapse
|
49
|
|
50
|
Hanževački M, Banhatti RD, Čondić-Jurkić K, Smith AS, Smith DM. Exploring Reactive Conformations of Coenzyme A during Binding and Unbinding to Pyruvate Formate-Lyase. J Phys Chem A 2019; 123:9345-9356. [PMID: 31580071 DOI: 10.1021/acs.jpca.9b06913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pyruvate formate-lyase (PFL) is a glycyl radical enzyme that converts pyruvate and coenzyme A (CoA) into formate and acetyl-CoA in two half-reactions. Recently, we showed that the acetylation of the PFL active site in the first half-reaction induces subtle conformational changes, leading to the opening of a potential channel for CoA entry. Entry of CoA into the active site is crucial for the second half-reaction, involving the acetyl transfer to CoA, and the completion of the catalytic cycle. Using steered molecular dynamics (SMD) simulations, performed on acetylated and nonacetylated monomeric PFL model systems, we first of all investigate the possible entry/exit pathways of CoA with respect to the active site through the previously identified channel. We then perform umbrella sampling simulations on multiple snapshots from SMD trajectories as well as unrestrained molecular dynamics simulations starting from the final structures obtained from entry SMD, with a view to identifying possible bound states of CoA in the near vicinity of the active site. Detailed study of the unrestrained dissociation processes reveals the presence of stable and reactive bound states of CoA close to the active site, one of which is in an ideal position for triggering the second half-reaction. Examination of the spatial distributions associated with the reactive bound states allows us to discuss the free energy barriers. Umbrella sampling, performed on snapshots from unrestrained dynamics confirms the above findings. The significance of the results for the catalysis are discussed for both acetylated and nonacetylated systems.
Collapse
Affiliation(s)
- Marko Hanževački
- Group for Computational Life Sciences, Division for Physical Chemistry , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia.,PULS Group, Department of Physics, Interdisciplinary Center for Nanostructured Films , Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - Radha Dilip Banhatti
- Group for Computational Life Sciences, Division for Physical Chemistry , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| | - Karmen Čondić-Jurkić
- Group for Computational Life Sciences, Division for Physical Chemistry , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia.,Memorial Sloan Kettering Cancer Center , New York , New York 10065 , United States
| | - Ana-Sunčana Smith
- Group for Computational Life Sciences, Division for Physical Chemistry , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia.,PULS Group, Department of Physics, Interdisciplinary Center for Nanostructured Films , Friedrich-Alexander-Universität Erlangen-Nürnberg , Cauerstraße 3 , 91058 Erlangen , Germany
| | - David M Smith
- Group for Computational Life Sciences, Division for Physical Chemistry , Ruđer Bošković Institute , Bijenička cesta 54 , 10000 Zagreb , Croatia
| |
Collapse
|