1
|
Girvan P, Ying L, Dodson CA. Tetramethylrhodamine self-quenching is a probe of conformational change on the scale of 15-25 Å. Chem Commun (Camb) 2025; 61:5353-5356. [PMID: 40084975 PMCID: PMC11908412 DOI: 10.1039/d4cc04524f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Tetramethylrhodamine (TMR) is a fluorescent dye whose self-quenching has been used as a probe of multiple biological phenomena. We determine the distance-dependence of self-quenching and place bounds on the timescale of TMR dissociation. Our results validate fluorescence self-quenching as an alternative to FRET and enable future assays to be designed with confidence.
Collapse
Affiliation(s)
- Paul Girvan
- Molecular Medicine, National Heart & Lung Institute, Imperial College London, SAF Building, London SW7 2AZ, UK.
| | - Liming Ying
- National Heart & Lung Institute, Imperial College London, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London W12 0BZ, UK
| | - Charlotte A Dodson
- Molecular Medicine, National Heart & Lung Institute, Imperial College London, SAF Building, London SW7 2AZ, UK.
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
2
|
Lidumniece E, Withers-Martinez C, Hackett F, Blackman MJ, Jirgensons A. Subtilisin-like Serine Protease 1 (SUB1) as an Emerging Antimalarial Drug Target: Current Achievements in Inhibitor Discovery. J Med Chem 2022; 65:12535-12545. [PMID: 36137276 DOI: 10.1021/acs.jmedchem.2c01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widespread resistance to many antimalarial therapies currently in use stresses the need for the discovery of new classes of drugs with new modes of action. The subtilisin-like serine protease SUB1 controls egress of malaria parasites (merozoites) from the parasite-infected red blood cell. As such, SUB1 is considered a prospective target for drugs designed to interrupt the asexual blood stage life cycle of the malaria parasite. Inhibitors of SUB1 have potential as wide-spectrum antimalarial drugs, as a single orthologue of SUB1 is found in the genomes of all known Plasmodium species. This mini-perspective provides a short overview of the function and structure of SUB1 and summarizes all of the published SUB1 inhibitors. The inhibitors are classified by the methods of their discovery, including both rational design and screening.
Collapse
Affiliation(s)
| | | | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
3
|
Ahmed H, Mahmoud A, Mobarak M, Mhmoud Abd El-salam H, Mohamed T. Using femtosecond laser pulses to study the nonlinear optical properties of rhodamine 6G dissolved in water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Peptidic boronic acids are potent cell-permeable inhibitors of the malaria parasite egress serine protease SUB1. Proc Natl Acad Sci U S A 2021; 118:2022696118. [PMID: 33975947 PMCID: PMC8157947 DOI: 10.1073/pnas.2022696118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malaria is a devastating infectious disease, which causes over 400,000 deaths per annum and impacts the lives of nearly half the world's population. The causative agent, a protozoan parasite, replicates within red blood cells (RBCs), eventually destroying the cells in a lytic process called egress to release a new generation of parasites. These invade fresh RBCs to repeat the cycle. Egress is regulated by an essential parasite subtilisin-like serine protease called SUB1. Here, we describe the development and optimization of substrate-based peptidic boronic acids that inhibit Plasmodium falciparum SUB1 with low nanomolar potency. Structural optimization generated membrane-permeable, slow off-rate inhibitors that prevent Pfalciparum egress through direct inhibition of SUB1 activity and block parasite replication in vitro at submicromolar concentrations. Our results validate SUB1 as a potential target for a new class of antimalarial drugs designed to prevent parasite replication and disease progression.
Collapse
|
5
|
A malaria parasite subtilisin propeptide-like protein is a potent inhibitor of the egress protease SUB1. Biochem J 2020; 477:525-540. [PMID: 31942933 PMCID: PMC6993865 DOI: 10.1042/bcj20190918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Subtilisin-like serine peptidases (subtilases) play important roles in the life cycle of many organisms, including the protozoan parasites that are the causative agent of malaria, Plasmodium spp. As with other peptidases, subtilase proteolytic activity has to be tightly regulated in order to prevent potentially deleterious uncontrolled protein degradation. Maturation of most subtilases requires the presence of an N-terminal propeptide that facilitates folding of the catalytic domain. Following its proteolytic cleavage, the propeptide acts as a transient, tightly bound inhibitor until its eventual complete removal to generate active protease. Here we report the identification of a stand-alone malaria parasite propeptide-like protein, called SUB1-ProM, encoded by a conserved gene that lies in a highly syntenic locus adjacent to three of the four subtilisin-like genes in the Plasmodium genome. Template-based modelling and ab initio structure prediction showed that the SUB1-ProM core structure is most similar to the X-ray crystal structure of the propeptide of SUB1, an essential parasite subtilase that is discharged into the parasitophorous vacuole (PV) to trigger parasite release (egress) from infected host cells. Recombinant Plasmodium falciparum SUB1-ProM was found to be a fast-binding, potent inhibitor of P. falciparum SUB1, but not of the only other essential blood-stage parasite subtilase, SUB2, or of other proteases examined. Mass-spectrometry and immunofluorescence showed that SUB1-ProM is expressed in the PV of blood stage P. falciparum, where it may act as an endogenous inhibitor to regulate SUB1 activity in the parasite.
Collapse
|
6
|
Structural and kinetic basis for the regulation and potentiation of Hsp104 function. Proc Natl Acad Sci U S A 2020; 117:9384-9392. [PMID: 32277033 DOI: 10.1073/pnas.1921968117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hsp104 provides a valuable model for the many essential proteostatic functions performed by the AAA+ superfamily of protein molecular machines. We developed and used a powerful hydrogen exchange mass spectrometry (HX MS) analysis that can provide positionally resolved information on structure, dynamics, and energetics of the Hsp104 molecular machinery, even during functional cycling. HX MS reveals that the ATPase cycle is rate-limited by ADP release from nucleotide-binding domain 1 (NBD1). The middle domain (MD) serves to regulate Hsp104 activity by slowing ADP release. Mutational potentiation accelerates ADP release, thereby increasing ATPase activity. It reduces time in the open state, thereby decreasing substrate protein loss. During active cycling, Hsp104 transits repeatedly between whole hexamer closed and open states. Under diverse conditions, the shift of open/closed balance can lead to premature substrate loss, normal processing, or the generation of a strong pulling force. HX MS exposes the mechanisms of these functions at near-residue resolution.
Collapse
|
7
|
Farzan VM, Kvach MV, Aparin IO, Kireev DE, Prikazchikova TA, Ustinov AV, Shmanai VV, Shipulin GA, Korshun VA, Zatsepin TS. Novel homo Yin-Yang probes improve sensitivity in RT-qPCR detection of low copy HIV RNA. Talanta 2019; 194:226-232. [DOI: 10.1016/j.talanta.2018.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
|
8
|
Donaphon B, Bloom LB, Levitus M. Photophysical characterization of interchromophoric interactions between rhodamine dyes conjugated to proteins. Methods Appl Fluoresc 2018; 6:045004. [PMID: 29985159 DOI: 10.1088/2050-6120/aad20f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rhodamine dyes in aqueous solution form non-fluorescent dimers with a plane-to-plane stacking geometry (H-dimers). The self-quenching properties of these dimers have been exploited to probe the conformation and dynamics of proteins using a variety of fluorescence approaches that require the interpretation of fluorescence intensities, lifetimes and fluctuations. Here, we report on a systematic study of the photophysical properties of three rhodamine dyes (tetramethylrhodamine, Alexa 488 and Alexa 546) covalently bound to the E. coli sliding clamp (β clamp) with emphasis on the properties of the H-dimers that form when the dimeric protein is labeled with one dye at each side of the dimer interface. Overall, results are consistent with an equilibrium between non-emissive dimers and unstacked monomers that experience efficient dynamic quenching Protein constructs labeled with tetramethylrhodamine show the characteristic features of H-dimers in their absorption spectra and a c.a. 40-fold quenching of fluorescence intensity. The degree of quenching decreases when samples are labeled with a tetramethylrhodamine derivative bearing a six-carbon linker. H-dimers do not form in samples labeled with Alexa 488 and A546, but fluorescence is still quenched in these samples through a dynamic mechanism. These results should help researchers design and interpret fluorescence experiments that take advantage of the properties of rhodamine dimers in protein research.
Collapse
Affiliation(s)
- Bryan Donaphon
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States of America
| | | | | |
Collapse
|
9
|
Pino P, Caldelari R, Mukherjee B, Vahokoski J, Klages N, Maco B, Collins CR, Blackman MJ, Kursula I, Heussler V, Brochet M, Soldati-Favre D. A multistage antimalarial targets the plasmepsins IX and X essential for invasion and egress. Science 2018; 358:522-528. [PMID: 29074775 DOI: 10.1126/science.aaf8675] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Abstract
Regulated exocytosis by secretory organelles is important for malaria parasite invasion and egress. Many parasite effector proteins, including perforins, adhesins, and proteases, are extensively proteolytically processed both pre- and postexocytosis. Here we report the multistage antiplasmodial activity of the aspartic protease inhibitor hydroxyl-ethyl-amine-based scaffold compound 49c. This scaffold inhibits the preexocytosis processing of several secreted rhoptry and microneme proteins by targeting the corresponding maturases plasmepsins IX (PMIX) and X (PMX), respectively. Conditional excision of PMIX revealed its crucial role in invasion, and recombinantly active PMIX and PMX cleave egress and invasion factors in a 49c-sensitive manner.
Collapse
Affiliation(s)
- Paco Pino
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland.
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Budhaditya Mukherjee
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Natacha Klages
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Christine R Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, Mill Hill, London NW1 1AT, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, Mill Hill, London NW1 1AT, UK.,Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.,Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Volker Heussler
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| | - Mathieu Brochet
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine-University of Geneva, Centre Médical Universitaire (CMU), 1211 Geneva, Switzerland.
| |
Collapse
|
10
|
Hanczyc P, Mikhailovsky A, Boyer DR, Sawaya MR, Heeger A, Eisenberg D. Ultrafast Time-Resolved Studies on Fluorescein for Recognition Strands Architecture in Amyloid Fibrils. J Phys Chem B 2018; 122:8-18. [PMID: 29237120 PMCID: PMC11721640 DOI: 10.1021/acs.jpcb.7b07923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein aggregation is associated with numerous devastating diseases such as Alzheimer's, Parkinson's, and prion diseases. Development of therapeutics would benefit from knowledge of the structural organization of protein molecules in these amyloid aggregates, particularly in their aqueous biological milieu. However, detailed structural studies to date have been mainly on the solid state and have required large quantities of purified aggregate. Moreover, these conventional methods require the aggregated assembly to remain structurally stable over days or weeks required to perform the experiment, whereas the pathologically relevant species of in vivo aggregates may be shorter lived. Here, we show the organization of protein chains in dissolved amyloid aggregates can be readily determined spectroscopically using minute quantities of fluorescein-labeled protein segments in a matter of minutes. Specifically, we investigated the possibility of using the ultrafast dynamics of fluorescein to distinguish among three categories of β-sheet geometry: (1) antiparallel in-register, (2) parallel in-register, or (3) antiparallel out-of-register. Fluorescein, the most commonly used staining dye in biology and medicine, was covalently attached to the N-termini of peptide sequences selected from a library of known amyloid crystal structures. We investigated the aggregates in solution using steady-state and time-resolved absorption and fluorescence spectroscopy. We found that the dynamics of fluorescein relaxation from the excited state revealed amyloid structure-specific information. Particularly, the nonfluorescent cation form of fluorescein showed remarkable sensitivity to local environments created during aggregation. We demonstrate that time-resolved absorption is capable of differentiating strand organization in β-sheet aggregates when strong intermolecular coupling between chromophores occurs. This approach can be useful in optical recognition of specific fibril architectures of amyloid aggregates.
Collapse
Affiliation(s)
- Piotr Hanczyc
- Center for Polymers & Organic Solids, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alexander Mikhailovsky
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - David R. Boyer
- Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, United States
| | - Michael R. Sawaya
- Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, United States
| | - Alan Heeger
- Center for Polymers & Organic Solids, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - David Eisenberg
- Howard Hughes Medical Institute, UCLA-DOE Institute of Genomics and Proteomics, Los Angeles, California 90095-1570, United States
| |
Collapse
|
11
|
Purohit A, England JK, Douma LG, Tondnevis F, Bloom LB, Levitus M. Electrostatic Interactions at the Dimer Interface Stabilize the E. coli β Sliding Clamp. Biophys J 2017; 113:794-804. [PMID: 28834716 DOI: 10.1016/j.bpj.2017.06.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
Sliding clamps are ring-shaped oligomeric proteins that encircle DNA and associate with DNA polymerases for processive DNA replication. The dimeric Escherichia coli β-clamp is closed in solution but must adopt an open conformation to be assembled onto DNA by a clamp loader. To determine what factors contribute to the stability of the dimer interfaces in the closed conformation and how clamp dynamics contribute to formation of the open conformation, we identified conditions that destabilized the dimer and measured the effects of these conditions on clamp dynamics. We characterized the role of electrostatic interactions in stabilizing the β-clamp interface. Increasing salt concentration results in decreased dimer stability and faster subunit dissociation kinetics. The equilibrium dissociation constant of the dimeric clamp varies with salt concentration as predicted by simple charge-screening models, indicating that charged amino acids contribute to the remarkable stability of the interface at physiological salt concentrations. Mutation of a charged residue at the interface (Arg-103) weakens the interface significantly, whereas effects are negligible when a hydrophilic (Ser-109) or a hydrophobic (Ile-305) amino acid is mutated instead. It has been suggested that clamp opening by the clamp loader takes advantage of spontaneous opening-closing fluctuations at the clamp's interface, but our time-resolved fluorescence and fluorescence correlation experiments rule out conformational fluctuations that lead to a significant fraction of open states.
Collapse
Affiliation(s)
- Anirban Purohit
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Jennifer K England
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, The Genetics Institute, University of Florida, Gainesville, Florida
| | - Farzaneh Tondnevis
- Department of Biochemistry and Molecular Biology, The Genetics Institute, University of Florida, Gainesville, Florida
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, The Genetics Institute, University of Florida, Gainesville, Florida.
| | - Marcia Levitus
- School of Molecular Sciences and Biodesign Institute, Arizona State University, Tempe, Arizona.
| |
Collapse
|
12
|
TAMRA/TAMRA Fluorescence Quenching Systems for the Activity Assay of Alkaline Phosphatase. SENSORS 2017; 17:s17081877. [PMID: 28809819 PMCID: PMC5579763 DOI: 10.3390/s17081877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/07/2017] [Accepted: 08/13/2017] [Indexed: 11/17/2022]
Abstract
We introduce two types of fluorescence-quenching assay for alkaline phosphatases (APs) by using a carboxytetramethyl-rhodamine (TAMRA)-labeled phosphate-binding tag molecule (TAMRA-Phos-tag). In the first assay, TAMRA-labeled O-phosphorylethanolamine (TAMRA-PEA) was used as an artificial AP-substrate. TAMRA-Phos-tag specifically captured TAMRA-PEA to form a 1:1 complex at pH 7.4; the intensity of the fluorescence peak of the complex at 580 nm (λex = 523 nm) was significantly reduced to 32% of the average value for the two individual components as a result of the mutual approach of the TAMRA moieties. As TAMRA-PEA was dephosphorylated by AP, the resulting TAMRA-labeled ethanolamine dissociated and the fluorescence increased in a manner dependent on the AP dose and the time. In the second assay, pyrophosphate (PP), a natural AP-substrate, was used as a bridging ligand to form a dimeric TAMRA-Phos-tag complex. The dimerization reduced the fluorescence intensity to 49% of that in the absence of PP. As pyrophosphate was hydrolyzed to two orthophosphate moieties by AP, the 580-nm fluorescence recovered in a time-dependent manner. By examining the initial slope of this time-dependent fluorescence recovery, we succeeded in evaluating the 50% inhibitory concentrations of orthovanadate toward two AP isozymes under near-physiological conditions.
Collapse
|
13
|
Abstract
The grand scale, ultimate efficiency, and sustainability of natural photosynthesis have inspired generations of researchers in biomimetic light energy utilization. As an essential and ubiquitous component in all photosynthetic machinery, lipids and their assemblies have long been recognized as powerful molecular scaffolds in building artificial photosynthetic systems. Model lipid bilayers, such as black lipid membranes and liposomes (vesicles), have been extensively used to host natural as well as synthetic photo- and redox-active species, thereby enabling key photosynthetic processes, such as energy transfer and photoinduced electron transfer, to be examined in well-defined, natural-like membrane settings. Despite their long history, these lipid models remain highly relevant and still enjoy wide practice today. In this Account, we share with the reader our recent effort of introducing electrode-supported lipid nanoassemblies as new lipid models into photosynthesis biomimicking. This line of research builds off several solid-supported lipid bilayer architectures established relatively recently by workers in membrane biophysics and reveals important new features that match and sometimes exceed what earlier lipid models are capable of offering. Here, our eight-year exploration unfolds in three sections: (1) New photosynthetic mimics based on solid-supported lipid bilayers. This systematic effort has brought three solid-supported bilayers into artificial photosynthesis research: lipid bilayers supported on indium tin oxide electrodes, hybrid bilayers, and tethered lipid bilayers formed on gold. Quantitative on-electrode deposition of various photo- and redox-active agents, including fullerene, Ru(bpy)32+, and porphyrin, is realized via liposomal hosts. Vectorial electron transfer across single lipid-bilayer leaflets is achieved between electron donor/acceptor directionally organized therein, taking advantage of multiple incorporation sites offered by these bilayers as well as their sequential formation on electrodes. Supported on electrodes, these bilayers uniformly afford reliable photocurrent generation and modular system design. (2) Gold-supported hybrid bilayers as a powerful model platform for probing biomembrane-associated photoelectrochemical processes. These hybrid nanostructures consist of one alkanethiol (or substituted alkanethiol) and one lipid monolayer, whose chemical identity and makeup can be separately controlled and modified. Such precise molecular organization and flexible formation, in turn, enable a series of physicochemical parameters key to photosynthetic processes to be explicitly examined and cross-compared. A few such examples, based on donor/acceptor distance and loading, interfacial dipole, and redox level, are included here to illustrate the usefulness and versatility of this system. (3) Mimicking photosynthesis with supercomplexed lipid nanoassemblies. This research effort was motivated to address the low light absorption suffered by single-bilayer based photosynthetic mimics and has yielded a new lipid-based approach to mimicking Nature's way of organizing multiple photosynthetic subunits. Rhodamine and fullerene assembled within these lipid supercomplexes display robust electronic communication. The remarkable possibility of using lipid matrix to further improve photoconversion efficiency is revealed by cholesterol, whose addition triggers exciton formation that promotes faster energy and electron transfer in these lipid nanoassemblies.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Wei Zhan
- Department of Chemistry and
Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
14
|
Wang M, Chen J, Lian T, Zhan W. Mimicking Photosynthesis with Supercomplexed Lipid Nanoassemblies: Design, Performance, and Enhancement Role of Cholesterol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7326-7338. [PMID: 27352779 DOI: 10.1021/acs.langmuir.6b01608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report here a new approach to mimicking photosynthesis that relies on supercomplexed lipid nanoassemblies to organize small organic species for coordinated light harvesting, energy/electron transfer, and photo-to-electrochemical energy conversion. Specifically, we demonstrate efficient photoinduced electron transfer (PeT) between rhodamine and fullerene assembled together via electrostatically bound liposome and lipid bilayer hosts. The remarkable impact of the lipid matrix on the photoconversion efficiency is further revealed by cholesterol, whose addition is found to modify the distribution and organization of the coassembled rhodamine dyes and thus their photodynamics. This significantly expedites the energy transfer (ET) among rhodamine dyes, as well as the PeT between rhodamines and fullerenes. A respectable 14% photon-to-electron conversion efficiency was achieved for this supercomplexed system containing 5% rhodamines, 5% fullerenes, and 30% cholesterol. The morphology, photodynamics, and photoelectrochemical behavior of these lipid supercomplexes were thoroughly characterized using atomic force microscopy (AFM), fluorescence microscopy, steady-state and time-resolved fluorescence spectroscopy, and transient absorption (TA) and photoaction spectroscopy. A detailed discussion on enhancement mechanisms of cholesterol in this lipid-complexed photosynthesis-mimicking system is provided at the end.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849, United States
| | - Jinquan Chen
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Wei Zhan
- Department of Chemistry and Biochemistry, Auburn University , Auburn, Alabama 36849, United States
| |
Collapse
|
15
|
|
16
|
Stallmach R, Kavishwar M, Withers-Martinez C, Hackett F, Collins CR, Howell SA, Yeoh S, Knuepfer E, Atid AJ, Holder AA, Blackman MJ. Plasmodium falciparum SERA5 plays a non-enzymatic role in the malarial asexual blood-stage lifecycle. Mol Microbiol 2015; 96:368-87. [PMID: 25599609 PMCID: PMC4671257 DOI: 10.1111/mmi.12941] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 02/02/2023]
Abstract
The malaria parasite Plasmodium falciparum replicates in an intraerythrocytic parasitophorous vacuole (PV). The most abundant P. falciparum PV protein, called SERA5, is essential in blood stages and possesses a papain-like domain, prompting speculation that it functions as a proteolytic enzyme. Unusually however, SERA5 possesses a Ser residue (Ser596) at the position of the canonical catalytic Cys of papain-like proteases, and the function of SERA5 or whether it performs an enzymatic role is unknown. In this study, we failed to detect proteolytic activity associated with the Ser596-containing parasite-derived or recombinant protein. However, substitution of Ser596 with a Cys residue produced an active recombinant enzyme with characteristics of a cysteine protease, demonstrating that SERA5 can bind peptides. Using targeted homologous recombination in P. falciparum, we substituted Ser596 with Ala with no phenotypic consequences, proving that SERA5 does not perform an essential enzymatic role in the parasite. We could also replace an internal segment of SERA5 with an affinity-purification tag. In contrast, using almost identical targeting constructs, we could not truncate or C-terminally tag the SERA5 gene, or replace Ser596 with a bulky Arg residue. Our findings show that SERA5 plays an indispensable but non-enzymatic role in the P. falciparum blood-stage life cycle.
Collapse
Affiliation(s)
- Robert Stallmach
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Manoli Kavishwar
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | | | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Christine R Collins
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Steven A Howell
- Division of Molecular Structure, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Sharon Yeoh
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Avshalom J Atid
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical ResearchLondon, NW7 1AA, UK
| |
Collapse
|
17
|
Ectopic expression of a Neospora caninum Kazal type inhibitor triggers developmental defects in Toxoplasma and Plasmodium. PLoS One 2015; 10:e0121379. [PMID: 25803874 PMCID: PMC4372514 DOI: 10.1371/journal.pone.0121379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/31/2015] [Indexed: 11/19/2022] Open
Abstract
Regulated proteolysis is known to control a variety of vital processes in apicomplexan parasites including invasion and egress of host cells. Serine proteases have been proposed as targets for drug development based upon inhibitor studies that show parasite attenuation and transmission blockage. Genetic studies suggest that serine proteases, such as subtilisin and rhomboid proteases, are essential but functional studies have proved challenging as active proteases are difficult to express. Proteinaceous Protease Inhibitors (PPIs) provide an alternative way to address the role of serine proteases in apicomplexan biology. To validate such an approach, a Neospora caninum Kazal inhibitor (NcPI-S) was expressed ectopically in two apicomplexan species, Toxoplasma gondii tachyzoites and Plasmodium berghei ookinetes, with the aim to disrupt proteolytic processes taking place within the secretory pathway. NcPI-S negatively affected proliferation of Toxoplasma tachyzoites, while it had no effect on invasion and egress. Expression of the inhibitor in P. berghei zygotes blocked their development into mature and invasive ookinetes. Moreover, ultra-structural studies indicated that expression of NcPI-S interfered with normal formation of micronemes, which was also confirmed by the lack of expression of the micronemal protein SOAP in these parasites. Our results suggest that NcPI-S could be a useful tool to investigate the function of proteases in processes fundamental for parasite survival, contributing to the effort to identify targets for parasite attenuation and transmission blockage.
Collapse
|
18
|
Binder JK, Douma LG, Ranjit S, Kanno DM, Chakraborty M, Bloom LB, Levitus M. Intrinsic stability and oligomerization dynamics of DNA processivity clamps. Nucleic Acids Res 2014; 42:6476-86. [PMID: 24728995 PMCID: PMC4041429 DOI: 10.1093/nar/gku255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
Abstract
Sliding clamps are ring-shaped oligomeric proteins that are essential for processive deoxyribonucleic acid replication. Although crystallographic structures of several clamps have been determined, much less is known about clamp structure and dynamics in solution. Here, we characterized the intrinsic solution stability and oligomerization dynamics of the homodimeric Escherichia coli β and the homotrimeric Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) clamps using single-molecule approaches. We show that E. coli β is stable in solution as a closed ring at concentrations three orders of magnitude lower than PCNA. The trimeric structure of PCNA results in slow subunit association rates and is largely responsible for the lower solution stability. Despite this large difference, the intrinsic lifetimes of the rings differ by only one order of magnitude. Our results show that the longer lifetime of the E. coli β dimer is due to more prominent electrostatic interactions that stabilize the subunit interfaces.
Collapse
Affiliation(s)
- Jennifer K Binder
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Suman Ranjit
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - David M Kanno
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Manas Chakraborty
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Marcia Levitus
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| |
Collapse
|
19
|
Stennett EMS, Ciuba MA, Levitus M. Photophysical processes in single molecule organic fluorescent probes. Chem Soc Rev 2014; 43:1057-75. [DOI: 10.1039/c3cs60211g] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Abstract
Noncovalently "stacked" tetramethylrhodamine (TMR) dimers have been used to both report and perturb the allosteric equilibrium in GroEL. A GroEL mutant (K242C) has been labeled with TMR, close to the peptide-binding site in the apical domain, such that TMR molecules on adjacent subunits are able to form dimers in the T allosteric state. Addition of ATP induces the transition to the R state and the separation of the peptide-binding sites, with concomitant unstacking of the TMR dimers. A statistical analysis of the spectra allowed us to compute the number and orientation of TMR dimers per ring as a function of the average number of TMR molecules per ring. The TMR dimers thus serve as quantitative reporter of the allosteric state of the system. The TMR dimers also serve as a surrogate for substrate protein, substituting in a more homogeneous, quantifiable manner for the heterogeneous intersubunit, intraring, noncovalent cross-links provided by the substrate protein. The characteristic stimulation of the ATPase activity by substrate protein is also mimicked by the TMR dimers. Using an expanded version of the nested cooperativity model, we determine values for the free energy of the TT to TR and TR to RR allosteric equilibria to be 27 ± 11 and 46 ± 2 kJ/mol, respectively. The free energy of unstacking of the TMR dimers was estimated at 2.6 ± 1.0 kJ/mol dimer. These results demonstrate that GroEL can perform work during the T to R transition, supporting the iterative annealing model of chaperonin function.
Collapse
|
21
|
Fulle S, Withers-Martinez C, Blackman MJ, Morris GM, Finn PW. Molecular determinants of binding to the Plasmodium subtilisin-like protease 1. J Chem Inf Model 2013; 53:573-83. [PMID: 23414065 PMCID: PMC3608215 DOI: 10.1021/ci300581z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PfSUB1, a subtilisin-like protease of the human malaria parasite Plasmodium falciparum, is known to play important roles during the life cycle of the parasite and has emerged as a promising antimalarial drug target. In order to provide a detailed understanding of the origin of binding determinants of PfSUB1 substrates, we performed molecular dynamics simulations in combination with MM-GBSA free energy calculations using a homology model of PfSUB1 in complex with different substrate peptides. Key interactions, as well as residues that potentially make a major contribution to the binding free energy, are identified at the prime and nonprime side of the scissile bond and comprise peptide residues P4 to P2'. This finding stresses the requirement for peptide substrates to interact with both prime and nonprime side residues of the PfSUB1 binding site. Analyzing the energetic contributions of individual amino acids within the peptide-PfSUB1 complexes indicated that van der Waals interactions and the nonpolar part of solvation energy dictate the binding strength of the peptides and that the most favorable interactions are formed by peptide residues P4 and P1. Hot spot residues identified in PfSUB1 are dispersed over the entire binding site, but clustered areas of hot spots also exist and suggest that either the S4-S2 or the S1-S2' binding site should be exploited in efforts to design small molecule inhibitors. The results are discussed with respect to which binding determinants are specific to PfSUB1 and, therefore, might allow binding selectivity to be obtained.
Collapse
Affiliation(s)
- Simone Fulle
- InhibOx Ltd. , Oxford Centre for Innovation, New Road, Oxford OX1 1BY, U.K
| | | | | | | | | |
Collapse
|
22
|
Gonçalves MB, Dreyer J, Lupieri P, Barrera-Patiño C, Ippoliti E, Webb MR, Corrie JET, Carloni P. Structural prediction of a rhodamine-based biosensor and comparison with biophysical data. Phys Chem Chem Phys 2013; 15:2177-83. [DOI: 10.1039/c2cp42396k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Sinclair A, Mulcahy LE, Geldeard L, Malik S, Fielder MD, Le Gresley A. Development of an in situ culture-free screening test for the rapid detection of Staphylococcus aureus within healthcare environments. Org Biomol Chem 2013; 11:3307-13. [DOI: 10.1039/c3ob40150b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Ruecker A, Shea M, Hackett F, Suarez C, Hirst EMA, Milutinovic K, Withers-Martinez C, Blackman MJ. Proteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyte. J Biol Chem 2012; 287:37949-63. [PMID: 22984267 PMCID: PMC3488066 DOI: 10.1074/jbc.m112.400820] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/04/2012] [Indexed: 12/22/2022] Open
Abstract
The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte.
Collapse
Affiliation(s)
- Andrea Ruecker
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Michael Shea
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Fiona Hackett
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Catherine Suarez
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Elizabeth M. A. Hirst
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Katarina Milutinovic
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Chrislaine Withers-Martinez
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Michael J. Blackman
- From the Division of Parasitology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| |
Collapse
|
25
|
Withers-Martinez C, Suarez C, Fulle S, Kher S, Penzo M, Ebejer JP, Koussis K, Hackett F, Jirgensons A, Finn P, Blackman MJ. Plasmodium subtilisin-like protease 1 (SUB1): insights into the active-site structure, specificity and function of a pan-malaria drug target. Int J Parasitol 2012; 42:597-612. [PMID: 22543039 PMCID: PMC3378952 DOI: 10.1016/j.ijpara.2012.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 03/29/2012] [Accepted: 04/12/2012] [Indexed: 01/09/2023]
Abstract
Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have several parasite-derived substrates, proteolytic cleavage of which is important both for egress and maturation of the merozoite surface to enable invasion. Here we have used molecular modelling, existing knowledge of SUB1 substrates, and recombinant expression and characterisation of additional Plasmodium SUB1 orthologues, to examine the active site architecture and substrate specificity of P. falciparum SUB1 and its orthologues from the two other major human malaria pathogens Plasmodium vivax and Plasmodium knowlesi, as well as from the rodent malaria species, Plasmodium berghei. Our results reveal a number of unusual features of the SUB1 substrate binding cleft, including a requirement to interact with both prime and non-prime side residues of the substrate recognition motif. Cleavage of conserved parasite substrates is mediated by SUB1 in all parasite species examined, and the importance of this is supported by evidence for species-specific co-evolution of protease and substrates. Two peptidyl alpha-ketoamides based on an authentic PfSUB1 substrate inhibit all SUB1 orthologues examined, with inhibitory potency enhanced by the presence of a carboxyl moiety designed to introduce prime side interactions with the protease. Our findings demonstrate that it should be possible to develop ‘pan-reactive’ drug-like compounds that inhibit SUB1 in all three major human malaria pathogens, enabling production of broad-spectrum antimalarial drugs targeting SUB1.
Collapse
|
26
|
Castro BM, de Almeida RFM, Fedorov A, Prieto M. The photophysics of a Rhodamine head labeled phospholipid in the identification and characterization of membrane lipid phases. Chem Phys Lipids 2012; 165:311-9. [PMID: 22405877 DOI: 10.1016/j.chemphyslip.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 11/27/2022]
Abstract
The organization of lipids and proteins into domains in cell membranes is currently an established subject within biomembrane research. Fluorescent probes have been used to detect and characterize these membrane lateral heterogeneities. However, a comprehensive understanding of the link between the probes' fluorescence features and membrane lateral organization can only be achieved if their photophysical properties are thoroughly defined. In this work, a systematic characterization of N-(lyssamine Rhodamine B sulfonyl)-1,2-dioleoyl-sn-3-phosphatidylehanolamine (Rhod-DOPE) absorption and fluorescence behavior in gel, liquid-ordered (l(o)) and liquid-disordered (l(d)) model membranes was performed. In agreement with a previous study, it was found that Rhod-DOPE fluorescence lifetimes present a strong sensitivity to lipid phases, becoming significantly shorter in l(o) membranes as the probe membrane concentration increases. The sensitivity of Rhod-DOPE absorption and fluorescence properties to the membrane phase was further explored. In particular, the fluorescence lifetime sensitivity was shown to be a consequence of the enhanced Rhod-DOPE fluorescence dynamic self-quenching, due to the formation of probe-rich membrane domains in these condensed phases that cannot be considered as typical probe aggregates, as excitonic interaction is not observed. The highly efficient dynamic self-quenching was shown to be specific to l(o) phases, pointing to an important effect of membrane dipole potential in this process. Altogether, this work establishes how to use Rhod-DOPE fluorescence properties in the study of membrane lipid lateral heterogeneities, in particular cholesterol-enriched lipid rafts.
Collapse
Affiliation(s)
- Bruno M Castro
- Centro de Química Física-Molecular, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal.
| | | | | | | |
Collapse
|
27
|
Zhou R, Kunzelmann S, Webb MR, Ha T. Detecting intramolecular conformational dynamics of single molecules in short distance range with subnanometer sensitivity. NANO LETTERS 2011; 11:5482-8. [PMID: 22023515 PMCID: PMC3237907 DOI: 10.1021/nl2032876] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Single molecule detection is useful for characterizing nanoscale objects such as biological macromolecules, nanoparticles and nanodevices with nanometer spatial resolution. Fluorescence resonance energy transfer (FRET) is widely used as a single-molecule assay to monitor intramolecular dynamics in the distance range of 3-8 nm. Here we demonstrate that self-quenching of two rhodamine derivatives can be used to detect small conformational dynamics corresponding to subnanometer distance changes in a FRET-insensitive short-range at the single molecule level. A ParM protein mutant labeled with two rhodamines works as a single molecule adenosine 5'-diphosphate (ADP) sensor that has 20 times brighter fluorescence signal in the ADP bound state than the unbound state. Single molecule time trajectories show discrete transitions between fluorescence on and off states that can be directly ascribed to ADP binding and dissociation events. The conformational changes observed with 20:1 contrast are only 0.5 nm in magnitude and are between crystallographic distances of 1.6 and 2.1 nm, demonstrating exquisite sensitivity to short distance scale changes. The systems also allowed us to gain information on the photophysics of self-quenching induced by rhodamine stacking: (1) photobleaching of either of the two rhodamines eliminates quenching of the other rhodamine fluorophore and (2) photobleaching from the highly quenched, stacked state is only 2-fold slower than from the unstacked state.
Collapse
Affiliation(s)
- Ruobo Zhou
- Department of Physics and Center for the Physics of Living Cells, University of Illinois, Urbana-Champaign, Illinois 61801, United States
| | | | | | | |
Collapse
|
28
|
Chang CC, Cheng SF, Lin CH, Chen SSL, Chang DK. Stability of gp41 hairpin and helix bundle assembly probed by combined stacking and circular dichroic approaches. J Struct Biol 2011; 175:406-14. [DOI: 10.1016/j.jsb.2011.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/17/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
|
29
|
Abstract
Kinesin-1 is an ATP-driven, processive motor that transports cargo along microtubules in a tightly regulated stepping cycle. Efficient gating mechanisms ensure that the sequence of kinetic events proceeds in proper order, generating a large number of successive reaction cycles. To study gating, we created two mutant constructs with extended neck-linkers and measured their properties using single-molecule optical trapping and ensemble fluorescence techniques. Due to a reduction in the inter-head tension, the constructs access an otherwise rarely populated conformational state where both motor heads remain bound to the microtubule. ATP-dependent, processive backstepping and futile hydrolysis were observed under moderate hindering loads. Based on measurements, we formulated a comprehensive model for kinesin motion that incorporates reaction pathways for both forward and backward stepping. In addition to inter-head tension, we find that neck-linker orientation is also responsible for ensuring gating in kinesin.
Collapse
|
30
|
Global identification of multiple substrates for Plasmodium falciparum SUB1, an essential malarial processing protease. Infect Immun 2011; 79:1086-97. [PMID: 21220481 DOI: 10.1128/iai.00902-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan pathogen responsible for the most severe form of human malaria, Plasmodium falciparum, replicates asexually in erythrocytes within a membrane-bound parasitophorous vacuole (PV). Following each round of intracellular growth, the PV membrane (PVM) and host cell membrane rupture to release infectious merozoites in a protease-dependent process called egress. Previous work has shown that, just prior to egress, an essential, subtilisin-like parasite protease called PfSUB1 is discharged into the PV lumen, where it directly cleaves a number of important merozoite surface and PV proteins. These include the essential merozoite surface protein complex MSP1/6/7 and members of a family of papain-like putative proteases called SERA (serine-rich antigen) that are implicated in egress. To determine whether PfSUB1 has additional, previously unrecognized substrates, we have performed a bioinformatic and proteomic analysis of the entire late asexual blood stage proteome of the parasite. Our results demonstrate that PfSUB1 is responsible for the proteolytic processing of a range of merozoite, PV, and PVM proteins, including the rhoptry protein RAP1 (rhoptry-associated protein 1) and the merozoite surface protein MSRP2 (MSP7-related protein-2). Our findings imply multiple roles for PfSUB1 in the parasite life cycle, further supporting the case for considering the protease as a potential new antimalarial drug target.
Collapse
|
31
|
|
32
|
Jameson DM, Ross JA. Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 2010; 110:2685-708. [PMID: 20232898 DOI: 10.1021/cr900267p] [Citation(s) in RCA: 416] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David M Jameson
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB222, Honolulu, Hawaii 96813, USA.
| | | |
Collapse
|
33
|
Kunzelmann S, Webb MR. A fluorescent, reagentless biosensor for ADP based on tetramethylrhodamine-labeled ParM. ACS Chem Biol 2010; 5:415-25. [PMID: 20158267 PMCID: PMC2855616 DOI: 10.1021/cb9003173] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Fluorescence assays for ADP detection are of considerable current interest, both in basic research and in drug discovery, as they provide a generic method for measuring the activity of ATPases and kinases. The development of a novel fluorescent biosensor is described that is based on a tetramethylrhodamine-labeled, bacterial actin homologue, ParM. The design of the biosensor takes advantage of the large conformational change of ParM on ADP binding and the strong quenching of the tetramethylrhodamine fluorescence by stacking of the dye. ParM was labeled with two tetramethylrhodamines in close proximity, whereby the fluorophores are able to interact with each other. ADP binding alters the distance and relative orientation of the tetramethylrhodamines, which leads to a change in this stacking interaction and so in the fluorescence intensity. The final ADP biosensor shows ∼15-fold fluorescence increase in response to ADP binding. It has relatively weak affinity for ADP (Kd = 30 μM), enabling it to be used at substoichiometric concentrations relative to ADP, while reporting ADP concentration changes in a wide range around the Kd value, namely, submicromolar to tens of micromolar. The biosensor strongly discriminates against ATP (>100-fold), allowing ADP detection against a background of millimolar ATP. At 20 °C, the labeled ParM binds ADP with a rate constant of 9.5 × 104 M−1 s−1 and the complex dissociates at 2.9 s−1. Thus, the biosensor is suitable for real-time measurements, and its performance in such assays is demonstrated using a sugar kinase and a mammalian protein kinase.
Collapse
Affiliation(s)
- Simone Kunzelmann
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Martin R. Webb
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| |
Collapse
|
34
|
Huang X, Zhang T. Cascade nucleophilic addition-cyclic Michael addition of arynes and phenols/anilines bearing ortho alpha,beta-unsaturated groups: facile synthesis of 9-functionalized xanthenes/acridines. J Org Chem 2010; 75:506-9. [PMID: 20020766 DOI: 10.1021/jo902311a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile synthesis of xanthenes and acridines based on a cascade nucleophilic addition-cyclic Michael addition process of arynes and phenols/anilines substituted with alpha,beta-unsaturated groups at the ortho positions is described. The reaction has also been successfully extended to the synthesis of 9-spiro-xanthene and acridine derivatives with potential biochemical interest.
Collapse
Affiliation(s)
- Xian Huang
- Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou 310028, People's Republic of China.
| | | |
Collapse
|
35
|
Saini G, Sharma A, Kaur S, Bindra K, Sathe V, Tripathi S, Mhahajan C. Rhodamine 6G interaction with solvents studied by vibrational spectroscopy and density functional theory. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2009.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Cheng SF, Kantchev AB, Chang DK. Fluorescence evidence for a loose self-assembly of the fusion peptide of influenza virus HA2 in the lipid bilayer. Mol Membr Biol 2009; 20:345-51. [PMID: 14578049 DOI: 10.1080/0968708031000138046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Steady state fluorescence experiments were performed on a 25-mer synthetic peptide incorporated in the phospholipid vesicle to study the role of oligomerization of the fusion peptide in membrane fusion. It was found from fluorescence resonance energy transfer (FRET) that the extent of lipid mixing and the initial mixing rate varied with the fusion peptide concentration in a higher than linear fashion, indicating that the peptide promoted membrane mixing as oligomers. Results of self-quenching of the Rhodamine (Rho) in Rho-labelled peptide incorporated in the phospholipid bilayer indicated that the peptide molecules assembled in the bilayer with an order higher than dimer. The data also revealed that the peptides were not tightly packed in the membrane. Binding affinity measurement monitored by the NBD fluorescence intensity on the fluorophore-labelled fusion peptide supports the notion of self-association of the peptide in the vesicular dispersion. In the sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) experiments, a diffuse band with apparent molecular mass close to a dimeric species of the wild type fusion peptide suggested that the fusion peptides formed loose oligomers under the influence of SDS detergent in the electric field. The result is in contrast to a less fusion-active variant which appears to exhibit less propensity for self-association.
Collapse
Affiliation(s)
- Shu-Fang Cheng
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China 115
| | | | | |
Collapse
|
37
|
Koussis K, Withers-Martinez C, Yeoh S, Child M, Hackett F, Knuepfer E, Juliano L, Woehlbier U, Bujard H, Blackman MJ. A multifunctional serine protease primes the malaria parasite for red blood cell invasion. EMBO J 2009; 28:725-35. [PMID: 19214190 PMCID: PMC2647770 DOI: 10.1038/emboj.2009.22] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 01/14/2009] [Indexed: 11/16/2022] Open
Abstract
The malaria parasite Plasmodium falciparum replicates within an intraerythrocytic parasitophorous vacuole (PV). Rupture of the host cell allows release (egress) of daughter merozoites, which invade fresh erythrocytes. We previously showed that a subtilisin-like protease called PfSUB1 regulates egress by being discharged into the PV in the final stages of merozoite development to proteolytically modify the SERA family of papain-like proteins. Here, we report that PfSUB1 has a further role in ‘priming' the merozoite prior to invasion. The major protein complex on the merozoite surface comprises three proteins called merozoite surface protein 1 (MSP1), MSP6 and MSP7. We show that just before egress, all undergo proteolytic maturation by PfSUB1. Inhibition of PfSUB1 activity results in the accumulation of unprocessed MSPs on the merozoite surface, and erythrocyte invasion is significantly reduced. We propose that PfSUB1 is a multifunctional processing protease with an essential role in both egress of the malaria merozoite and remodelling of its surface in preparation for erythrocyte invasion.
Collapse
|
38
|
A Fluorescence Lifetime-Based Assay for Protease Inhibitor Profiling on Human Kallikrein 7. ACTA ACUST UNITED AC 2008; 14:1-9. [DOI: 10.1177/1087057108327328] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluorescence lifetime is an intrinsic parameter describing the fluorescence process. Changes in the fluorophore's physicochemical environment can lead to changes in the fluorescence lifetime. When used as the readout in biological assays, it is thought to deliver superior results to conventional optical readouts. Hence it has the potential to replace readout technologies currently established in drug discovery such as absorption, luminescence or fluorescence intensity. Here we report the development of an activity assay for human kallikrein 7, a serine protease involved in skin diseases. As a probe, we have selected a blue-fluorescent acridone dye, featuring a remarkably long lifetime that can be quenched by either of the 2 natural amino acids, tyrosine and tryptophan. Incorporating this probe and 1 of the quenching amino acids on either side of the scissile bond of the substrate peptide enables us to monitor the enzymatic activity by quantifying the increase in the fluorescence lifetime signal. A systematic investigation of substrate structures has led to a homogenous, microplate-based, compound profiling assay that yields inhibitory constants down into the single-digit nanomolar range. This type of assay has now been added to our standard portfolio of screening techniques, and is routinely used for compound profiling. ( Journal of Biomolecular Screening 2009:1-9)
Collapse
|
39
|
Yeoh S, O'Donnell RA, Koussis K, Dluzewski AR, Ansell KH, Osborne SA, Hackett F, Withers-Martinez C, Mitchell GH, Bannister LH, Bryans JS, Kettleborough CA, Blackman MJ. Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 2008; 131:1072-83. [PMID: 18083098 DOI: 10.1016/j.cell.2007.10.049] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/31/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
The most virulent form of malaria is caused by waves of replication of blood stages of the protozoan pathogen Plasmodium falciparum. The parasite divides within an intraerythrocytic parasitophorous vacuole until rupture of the vacuole and host-cell membranes releases merozoites that invade fresh erythrocytes to repeat the cycle. Despite the importance of merozoite egress for disease progression, none of the molecular factors involved are known. We report that, just prior to egress, an essential serine protease called PfSUB1 is discharged from previously unrecognized parasite organelles (termed exonemes) into the parasitophorous vacuole space. There, PfSUB1 mediates the proteolytic maturation of at least two essential members of another enzyme family called SERA. Pharmacological blockade of PfSUB1 inhibits egress and ablates the invasive capacity of released merozoites. Our findings reveal the presence in the malarial parasitophorous vacuole of a regulated, PfSUB1-mediated proteolytic processing event required for release of viable parasites from the host erythrocyte.
Collapse
Affiliation(s)
- Sharon Yeoh
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dowse TJ, Koussis K, Blackman MJ, Soldati-Favre D. Roles of proteases during invasion and egress by Plasmodium and Toxoplasma. Subcell Biochem 2008; 47:121-139. [PMID: 18512347 DOI: 10.1007/978-0-387-78267-6_10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Apicomplexan pathogens replicate exclusively within the confines of a host cell. Entry into (invasion) and exit from (egress) these cells requires an array of specialized parasite molecules, many of which have long been considered to have potential as targets of drug or vaccine-based therapies. In this chapter the authors discuss the current state of knowledge regarding the role of parasite proteolytic enzymes in these critical steps in the life cycle of two clinically important apicomplexan genera, Plasmodium and Toxoplasma. At least three distinct proteases of the cysteine mechanistic class have been implicated in egress of the malaria parasite from cells of its vertebrate and insect host. In contrast, the bulk of the evidence indicates a prime role for serine proteases of the subtilisin and rhomboid families in invasion by both parasites. Whereas proteases involved in egress may function predominantly to degrade host cell structures, proteases involved in invasion probably act primarily as maturases and 'sheddases', required to activate and ultimately remove ligands involved in interactions with the host cell.
Collapse
Affiliation(s)
- Timothy J Dowse
- Department of Biological Sciences, Imperial College, London, UK
| | | | | | | |
Collapse
|
41
|
Borbas KE, Kee HL, Holten D, Lindsey JS. A compact water-soluble porphyrin bearing an iodoacetamido bioconjugatable site. Org Biomol Chem 2008; 6:187-94. [DOI: 10.1039/b715072e] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
de Almeida RFM, Borst J, Fedorov A, Prieto M, Visser AJWG. Complexity of lipid domains and rafts in giant unilamellar vesicles revealed by combining imaging and microscopic and macroscopic time-resolved fluorescence. Biophys J 2007; 93:539-53. [PMID: 17449668 PMCID: PMC1896224 DOI: 10.1529/biophysj.106.098822] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The application of fluorescence lifetime imaging microscopy to study gel/fluid and raftlike lipid domains in giant unilamellar vesicles (GUVs) is demonstrated here. Different regions of the ternary dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine/cholesterol phase diagram were studied. The head-labeled phospholipid Rhodamine-dioleoylphosphatidylethanolamine (Rhod-DOPE) was used as a fluorescent probe. Gel/fluid and liquid-ordered (l(o))/liquid-disordered (l(d)) phase separation were clearly visualized upon two-photon excitation. Fluorescence intensity decays in different regions of a GUV were also obtained with the microscope in fixed laser-beam configuration. The ensemble behavior of the system was studied by obtaining fluorescence intensity decays of Rhod-DOPE in nongiant vesicle suspensions. The fingerprints for gel/fluid coexistence and for the presence of l(o) raftlike phase, based on fluorescence lifetime imaging microscopy histograms and images, and on the fluorescence intensity decay parameters of Rhod-DOPE, are presented. The presence of three lipid phases in one single GUV is detected unequivocally. From the comparison of lifetime parameters, it can be concluded that the l(o) phase is formed in the binary dipalmitoylphosphatidylcholine/cholesterol but not in the dioleoylphosphatidylcholine/cholesterol mixture. The domains apparent in fluorescence intensity images have a more complex substructure revealed by analysis of the lifetime data. The potential applications of this combined imaging/microscopic/macroscopic methodology are discussed.
Collapse
Affiliation(s)
- Rodrigo F M de Almeida
- MicroSpectroscopy Centre, Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Webb MR. Development of fluorescent biosensors for probing the function of motor proteins. MOLECULAR BIOSYSTEMS 2007; 3:249-56. [PMID: 17372653 DOI: 10.1039/b614154d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biosensors are becoming widely used both in basic research and in screening assays and reagentless sensors with fluorescent reporter groups attached to proteins form one class. This article describes the development of sensors for two small molecules, driven in particular by the need for high sensitivity and time resolution to probe mechanistic aspects of ATP-coupled motor proteins. The biosensors are for the products of the ATPase reaction, ADP and inorganic phosphate. The interplay between the possibilities for design and understanding the mechanism of the signal are discussed. Examples are described of how these sensors have been applied to understanding myosin and helicase motors.
Collapse
Affiliation(s)
- Martin R Webb
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK NW7 1AA.
| |
Collapse
|
44
|
Jean L, Withers-Martinez C, Hackett F, Blackman MJ. Unique insertions within Plasmodium falciparum subtilisin-like protease-1 are crucial for enzyme maturation and activity. Mol Biochem Parasitol 2005; 144:187-97. [PMID: 16183148 DOI: 10.1016/j.molbiopara.2005.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/14/2005] [Accepted: 07/27/2005] [Indexed: 11/22/2022]
Abstract
Parasite serine proteases play essential roles in the asexual erythrocytic life cycle of the malaria parasite. The timing and location of expression of Plasmodium falciparum subtilisin-like protease-1 (PfSUB-1) are consistent with a role in erythrocyte invasion. Maturation of PfSUB-1 involves two autocatalytic processing events in which an 82 kDa precursor is converted to a 54 kDa form, followed by further cleavage to produce a 47 kDa form. Here we have compared PfSUB-1 with a number of Plasmodium orthologues and the most closely related bacterial subtilase sequences and find that, like many malarial proteins, PfSUB-1 possesses both low and high complexity insertions. The latter take the form of six surface-associated strands or loops which are conserved in all SUB-1 orthologues but not present in any other subtilase. Several mutants of PfSUB-1 with deletions of all, or part, of each of the six loop insertions were produced in an insect cell expression system. Aside from loop III, which was dispensable, individual deletion of the loop insertions revealed a role in protein maturation and/or stability. Specific substitutions within loop II inhibited maturation and enzyme activity. Mutations in loops V and VI specifically inhibited the second step of autocatalytic maturation providing evidence that the two processing steps have distinct structural requirements and that conversion to p47 is not a prerequisite for proteolytic activity in trans.
Collapse
Affiliation(s)
- Létitia Jean
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | | | | | | |
Collapse
|
45
|
Cheng SF, Wu CW, Kantchev EAB, Chang DK. Structure and membrane interaction of the internal fusion peptide of avian sarcoma leukosis virus. ACTA ACUST UNITED AC 2005; 271:4725-36. [PMID: 15606759 DOI: 10.1111/j.1432-1033.2004.04436.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structure and membrane interaction of the internal fusion peptide (IFP) fragment of the avian sarcoma and leucosis virus (ASLV) envelope glycoprotein was studied by an array of biophysical methods. The peptide was found to induce lipid mixing of vesicles more strongly than the fusion peptide derived from the N-terminal fusion peptide of influenza virus (HA2-FP). It was observed that the helical structure was enhanced in association with the model membranes, particularly in the N-terminal portion of the peptide. According to the infrared study, the peptide inserted into the membrane in an oblique orientation, but less deeply than the influenza HA2-FP. Analysis of NMR data in sodium dodecyl sulfate micelle suspension revealed that Pro13 of the peptide was located near the micelle-water interface. A type II beta-turn was deduced from NMR data for the peptide in aqueous medium, demonstrating a conformational flexibility of the IFP in analogy to the N-terminal FP such as that of gp41. A loose and multimodal self-assembly was deduced from the rhodamine fluorescence self-quenching experiments for the peptide bound to the membrane bilayer. Oligomerization of the peptide and its variants can also be observed in the electrophoretic experiments, suggesting a property in common with other N-terminal FP of class I fusion proteins.
Collapse
Affiliation(s)
- Shu-Fang Cheng
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
46
|
Saini GSS, Kaur S, Tripathi SK, Mahajan CG, Thanga HH, Verma AL. Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2005; 61:653-658. [PMID: 15649797 DOI: 10.1016/j.saa.2004.05.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 05/14/2004] [Indexed: 05/24/2023]
Abstract
We report here electronic absorption, fluorescence and resonance Raman studies of rhodamine 6G laser dye dispersed in the polymethylcyanoacrylate matrix. In the electronic absorption and fluorescence spectra of dispersed rhodamine 6G, band maxima are red shifted compared to solution. Raman spectra show some new bands. These spectral changes arise due to matrix effect and interaction between rhodamine 6G and the host material involving amine group of rhodamine.
Collapse
Affiliation(s)
- G S S Saini
- Department of Physics, Punjab University, Sector 14, Chandigarh 160014, India.
| | | | | | | | | | | |
Collapse
|
47
|
Eccleston JF, Hutchinson JP, Jameson DM. Fluorescence-Based Assays. PROGRESS IN MEDICINAL CHEMISTRY 2005; 43:19-48. [PMID: 15850822 DOI: 10.1016/s0079-6468(05)43002-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- John F Eccleston
- National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | |
Collapse
|
48
|
Abstract
The life cycle of the malaria parasite contains three distinct invasive forms, or zoites. For at least two of these--the sporozoite and the blood-stage merozoite--invasion into their respective host cell requires the activity of parasite proteases. This review summarizes the evidence for this, discusses selected well-described proteolytic modifications linked to invasion, and describes recent progress towards identifying the proteases involved.
Collapse
Affiliation(s)
- Michael J Blackman
- Division of Parasitology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
| |
Collapse
|
49
|
Lang MJ, Fordyce PM, Engh AM, Neuman KC, Block SM. Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 2004; 1:133-9. [PMID: 15782176 PMCID: PMC1483847 DOI: 10.1038/nmeth714] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 09/02/2004] [Indexed: 11/09/2022]
Abstract
We constructed a microscope-based instrument capable of simultaneous, spatially coincident optical trapping and single-molecule fluorescence. The capabilities of this apparatus were demonstrated by studying the force-induced strand separation of a dye-labeled, 15-base-pair region of double-stranded DNA (dsDNA), with force applied either parallel ('unzipping' mode) or perpendicular ('shearing' mode) to the long axis of the region. Mechanical transitions corresponding to DNA hybrid rupture occurred simultaneously with discontinuous changes in the fluorescence emission. The rupture force was strongly dependent on the direction of applied force, indicating the existence of distinct unbinding pathways for the two force-loading modes. From the rupture force histograms, we determined the distance to the thermodynamic transition state and the thermal off rates in the absence of load for both processes.
Collapse
Affiliation(s)
- Matthew J Lang
- Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Proteases play critical roles in the life cycle of the malaria parasite, Plasmodium spp. Within the asexual erythrocytic cycle, responsible for the clinical manifestations of malaria, substantial interest has focused on the role of parasite serine proteases as a result of indications that they are involved in red blood cell invasion. Over the past 6 years, three Plasmodium genes encoding serine proteases of the subtilisin-like clan, or subtilases, have been identified. All are expressed in the asexual blood stages and, in at least two cases, the gene products localize to secretory organelles of the invasive merozoite. They may have potential as novel drug targets. Here, we review progress in our understanding of the maturation, specificity, structure and function of these Plasmodium subtilases.
Collapse
|