1
|
Noji T, Saito K, Ishikita H. Absence of a link between stabilized charge-separated state and structural changes proposed from crystal structures of a photosynthetic reaction center. Commun Chem 2024; 7:192. [PMID: 39215069 PMCID: PMC11364808 DOI: 10.1038/s42004-024-01281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Structural differences between illuminated and unilluminated crystal structures led to the proposal that the charge-separated state was stabilized by structural changes in its membrane extrinsic protein subunit H in a bacterial photosynthetic reaction center [Katona, G. et al. Nat. Struct. Mol. Biol. 2005, 12, 630-631]. Here, we explored the proposal by titrating all titratable sites and calculating the redox potential (Em) values in these crystal structures. Contrary to the expected charge-separated states, Em for quinone, Em(QA/QA•-), is even lower in the proposed charge-separated structure than in the ground-state structure. The subunit-H residues, which were proposed to exhibit electron-density changes in the two crystal structures, contribute to an Em(QA/QA•-) difference of only <0.5 mV. Furthermore, the protonation states of the titratable residues in the entire reaction center are practically identical in the two structures. These findings indicate that the proposed structural differences are irrelevant to explaining the significant prolongation of the charge-separated-state lifetime.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 1, Japan.
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Sugo Y, Tamura H, Ishikita H. Electron Transfer Route between Quinones in Type-II Reaction Centers. J Phys Chem B 2022; 126:9549-9558. [PMID: 36374126 PMCID: PMC9707520 DOI: 10.1021/acs.jpcb.2c05713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Indexed: 11/16/2022]
Abstract
In photosynthetic reaction centers from purple bacteria (PbRCs) and photosystem II (PSII), the photoinduced charge separation is terminated by an electron transfer between the primary (QA) and secondary (QB) quinones. Here, we investigate the electron transfer route, calculating the superexchange coupling (HQA-QB) for electron transfer from QA to QB in the protein environment. HQA-QB is significantly larger in PbRC than in PSII. In superexchange electron tunneling, the electron transfer via unoccupied molecular orbitals of the nonheme Fe complex (QA → Fe → QB) is pronounced in PbRC, whereas the electron transfer via occupied molecular orbitals (Fe → QB followed by QA → Fe) is pronounced in PSII. The significantly large HQA-QB is caused by a water molecule that donates the H-bond to the ligand Glu-M234 in PbRC. The corresponding water molecule is absent in PSII due to the existence of D1-Tyr246. HQA-QB increases in response to the Ser-L223···QB H-bond formation caused by an extension of the H-bond network, which facilitates charge delocalization over the QB site. This explains the observed discrepancy in the QA-to-QB electron transfer between PbRC and PSII, despite their structural similarity.
Collapse
Affiliation(s)
- Yu Sugo
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
| | - Hiroyuki Tamura
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo153-8904, Japan
| |
Collapse
|
3
|
Sugo Y, Saito K, Ishikita H. Conformational Changes and H-Bond Rearrangements during Quinone Release in Photosystem II. Biochemistry 2022; 61:1836-1843. [PMID: 35914244 PMCID: PMC9454826 DOI: 10.1021/acs.biochem.2c00324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In photosystem II (PSII) and photosynthetic reaction centers from purple bacteria (PbRC), the electron released from the electronically excited chlorophyll is transferred to the terminal electron acceptor quinone, QB. QB accepts two electrons and two protons before leaving the protein. We investigated the molecular mechanism of quinone exchange in PSII, conducting molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations. MD simulations suggest that the release of QB leads to the transformation of the short helix (D1-Phe260 to D1-Ser264), which is adjacent to the stromal helix de (D1-Asn247 to D1-Ile259), into a loop and to the formation of a water-intake channel. Water molecules enter the QB binding pocket via the channel and form an H-bond network. QM/MM calculations indicate that the H-bond network serves as a proton-transfer pathway for the reprotonation of D1-His215, the proton donor during QBH-/QBH2 conversion. Together with the absence of the corresponding short helix but the presence of Glu-L212 in PbRC, it seems likely that the two type-II reaction centers undergo quinone exchange via different mechanisms.
Collapse
Affiliation(s)
- Yu Sugo
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
4
|
Wei RJ, Zhang Y, Mao J, Kaur D, Khaniya U, Gunner MR. Comparison of proton transfer paths to the Q A and Q B sites of the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2022; 152:153-165. [PMID: 35344134 DOI: 10.1007/s11120-022-00906-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The photosynthetic bacterial reaction centers from purple non-sulfur bacteria use light energy to drive the transfer of electrons from cytochrome c to ubiquinone. Ubiquinone bound in the QA site cycles between quinone, QA, and anionic semiquinone, QA·-, being reduced once and never binding protons. In the QB site, ubiquinone is reduced twice by QA·-, binds two protons and is released into the membrane as the quinol, QH2. The network of hydrogen bonds formed in a molecular dynamics trajectory was drawn to investigate proton transfer pathways from the cytoplasm to each quinone binding site. QA is isolated with no path for protons to enter from the surface. In contrast, there is a complex and tangled network requiring residues and waters that can bring protons to QB. There are three entries from clusters of surface residues centered around HisH126, GluH224, and HisH68. The network is in good agreement with earlier studies, Mutation of key nodes in the network, such as SerL223, were previously shown to slow proton delivery. Mutational studies had also shown that double mutations of residues such as AspM17 and AspL210 along multiple paths in the network presented here slow the reaction, while single mutations do not. Likewise, mutation of both HisH126 and HisH128, which are at the entry to two paths reduce the rate of proton uptake.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Kanda T, Saito K, Ishikita H. Electron Acceptor-Donor Iron Sites in the Iron-Sulfur Cluster of Photosynthetic Electron-Transfer Pathways. J Phys Chem Lett 2021; 12:7431-7438. [PMID: 34338530 DOI: 10.1021/acs.jpclett.1c01896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In photosystem I, two electron-transfer pathways via quinones (A1A and A1B) are merged at the iron-sulfur Fe4S4 cluster FX into a single pathway toward the other two Fe4S4 clusters FA and FB. Using a quantum mechanical/molecular mechanical approach, we identify the redox-active Fe sites in the clusters. In FA and FB, the Fe site, which does not belong to the CxxCxxCxxxCP motif, serves as an electron acceptor/donor. FX has two independent electron acceptor Fe sites for A- and B-branch electron transfers, depending on the Asp-B575 protonation state, which causes the A1A-to-FX electron transfer to be uphill and the A1B-to-FX electron transfer to be downhill. The two asymmetric electron-transfer pathways from A1 to FX and the separation of the electron acceptor and donor Fe sites are likely associated with the specific role of FX in merging the two electron transfer pathways into the single pathway.
Collapse
Affiliation(s)
- Tomoki Kanda
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
6
|
Mechanism of the formation of proton transfer pathways in photosynthetic reaction centers. Proc Natl Acad Sci U S A 2021; 118:2103203118. [PMID: 34301911 PMCID: PMC8325351 DOI: 10.1073/pnas.2103203118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The crystal structures of photosynthetic reaction centers from purple bacteria (PbRCs) and photosystem II show large structural similarity. However, the proposed mechanisms of proton transfer toward the terminal electron acceptor quinone (QB) are not consistent. In particular, not His-L190, which is an H-bond partner of QB, but rather Glu-L212, which is ∼6 Å away from QB, was assumed to be the direct proton donor for QB. We demonstrate that the H-bond between His-L190 and QB is a low-barrier H-bond, which facilitates proton transfer from singly protonated His-L190 to QB. Furthermore, Glu-L212 is not a direct H-bond donor for QB. However, it facilitates proton transfer toward deprotonated His-L190 via water molecules after QBH2 forms and leaves the PbRC. In photosynthetic reaction centers from purple bacteria (PbRCs) from Rhodobacter sphaeroides, the secondary quinone QB accepts two electrons and two protons via electron-coupled proton transfer (PT). Here, we identify PT pathways that proceed toward the QB binding site, using a quantum mechanical/molecular mechanical approach. As the first electron is transferred to QB, the formation of the Grotthuss-like pre-PT H-bond network is observed along Asp-L213, Ser-L223, and the distal QB carbonyl O site. As the second electron is transferred, the formation of a low-barrier H-bond is observed between His-L190 at Fe and the proximal QB carbonyl O site, which facilitates the second PT. As QBH2 leaves PbRC, a chain of water molecules connects protonated Glu-L212 and deprotonated His-L190 forms, which serves as a pathway for the His-L190 reprotonation. The findings of the second pathway, which does not involve Glu-L212, and the third pathway, which proceeds from Glu-L212 to His-L190, provide a mechanism for PT commonly used among PbRCs.
Collapse
|
7
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
8
|
Maróti P. Chemical rescue of H + delivery in proton transfer mutants of reaction center of photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:317-324. [PMID: 30707884 DOI: 10.1016/j.bbabio.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 01/25/2019] [Indexed: 11/27/2022]
Abstract
In the native and most mutant reaction centers of bacterial photosynthesis, the electron transfer is coupled to proton transfer and is rate limiting for the second reduction of QB- → QBH2. In the presence of divalent metal ions (e.g. Cd2+) or in some ("proton transfer") mutants (L210DN/M17DN or L213DN), the proton delivery to QB- is made rate limiting and the properties of the proton pathway can be directly examined. We found that small weak acids and buffers in large concentrations (up to 1 M) were able to rescue the severely impaired proton transfer capability differently depending on the location of the defects: lesions at the protein surface (proton gate H126H/H128H + Cd2+), beneath the surface (M17DN + Cd2+, L210DN/M17DN) or deep inside the protein (L213DN) could be completely, partially or to very small extent recovered, respectively. Small zwitterionic acids (azide/hydrazoic acid) and buffers (tricine) proved to be highly effective rescuers consistent with their enhanced binding affinity and access to any of the proton acceptors (including QB- itself) in the pathway. As a consequence, back titration of the protons at L212Glu could be observed as a pH-dependence of the rate constant of the charge recombination in the presence of azide or formate. Model calculations support the collective influence of the acid cluster on the change of the protonation states upon extension of the cluster with the bound small acid. In proton transfer mutants, the rescuing agents decreased the free energy of activation together with their enthalpic and entropic components. This is in agreement with the hypothesis that they function as protein-penetrating protonophores delivering protons into the chain and select dominating paths out of many alternate routes. We estimate that the proton delivery will be accelerated in one pathway out of 100-200 alternate pathways. The implications for design of the chemical recovery of impaired intra-protein proton transfer pathways in proton transfer mutants are discussed.
Collapse
Affiliation(s)
- Péter Maróti
- Institute of Medical Physics, University of Szeged, Hungary.
| |
Collapse
|
9
|
Batebi H, Dragelj J, Imhof P. Role of AP-endonuclease (Ape1) active site residues in stabilization of the reactant enzyme-DNA complex. Proteins 2018; 86:439-453. [PMID: 29344998 DOI: 10.1002/prot.25460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 11/11/2022]
Abstract
Apurinic/apyrimidinic endonuclease 1 (Ape1) is an important metal-dependent enzyme in the base excision repair mechanism, responsible for the backbone cleavage of abasic DNA through a phosphate hydrolysis reaction. Molecular dynamics simulations of Ape1 complexed to its substrate DNA performed for models containing 1 or 2 Mg2+ -ions as cofactor located at different positions show a complex with 1 metal ion bound on the leaving group site of the scissile phosphate to be the most likely reaction-competent conformation. Active-site residue His309 is found to be protonated based on pKa calculations and the higher conformational stability of the Ape1-DNA substrate complex compared to scenarios with neutral His309. Simulations of the D210N mutant further support the prevalence of protonated His309 and strongly suggest Asp210 as the general base for proton acceptance by a nucleophilic water molecule.
Collapse
Affiliation(s)
- Hossein Batebi
- Department of Physics, Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Jovan Dragelj
- Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Fabeckstrasse 36A, Berlin, 14195, Germany
| | - Petra Imhof
- Department of Physics, Institute of Theoretical Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| |
Collapse
|
10
|
Hynninen PH, Mesilaakso M. Synthesis and characterization of chlorophyll a enol derivatives: Chlorophyll a tert-butyldimethylsilyl-enol ether and 131-deoxo-131, 132-didehydro-chlorophyll a. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using the sterically hindered base, 1,8-diazabicyclo[5.4.0]undec-7-ene, for enolization and tert-butyldimethylsilyl-trifluoromethanesulfonate for silylation, chlorophyll (Chl) [Formula: see text] produced after 15 min at 0 [Formula: see text]C in deaerated pyridine solution under argon, after work-up and chromatographic purification on a sucrose column, tert-butyldimethylsilyl-enol ether of Chl [Formula: see text] in a yield of 77%. The 131-deoxo-131,132-didehydro-chlorophyll [Formula: see text], was obtained in a yield of 23% through a reaction sequence, where Chl [Formula: see text] was first reduced with sodium borohydride to 13[Formula: see text]-hydroxy-Chl [Formula: see text], which via demetalation yielded 13[Formula: see text]-hydroxypheophytin [Formula: see text]. In the presence of the sterically hindered base, 1,8-bis(dimethylamino)naphthalene, trifluoroacetylimidazole dehydrated 13[Formula: see text]-hydroxypheophytin [Formula: see text] to 131-deoxo-131,132-didehydro-pheophytin [Formula: see text], which after metalation yielded 131-deoxo-131,132-didehydro-Chl [Formula: see text]. Using 1,8-bis(dimethylamino)naphthalene and trifluoroacetylimidazole, the straight conversion of 13[Formula: see text]-hydroxy-Chl [Formula: see text] to 131-deoxo-131,132-didehydro-Chl [Formula: see text] was found unsuccessful. The major products were characterized by electronic absorption spectra (UV-vis) and practically completely assigned 1H and [Formula: see text]C NMR spectra. Some intermediates of the syntheses were also characterized by ESI-TOF mass spectra. Compared with Chl [Formula: see text], the macrocyclic ring-current in the synthesized Chl [Formula: see text] enol derivatives was found weakened by the expansion of the [Formula: see text]-system to include the isocyclic ring E. Nevertheless, these enol derivatives were still considered to be diamagnetic and aromatic. The possibility of the functional role of the enol derivatives of chlorophyll in photosynthesis is discussed.
Collapse
Affiliation(s)
- Paavo H. Hynninen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), FI-00014 Helsinki, Finland
| | - Markku Mesilaakso
- Finnish Institute for Verification of the Chemical Weapons Convention, University of Helsinki, P.O. Box 55 (A.I. Virtasen Aukio 1), FI-00014 Helsinki, Finland
| |
Collapse
|
11
|
Electrostatics of the photosynthetic bacterial reaction center. Protonation of Glu L 212 and Asp L 213 — A new method of calculation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015. [DOI: 10.1016/j.bbabio.2015.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Amin M, Vogt L, Szejgis W, Vassiliev S, Brudvig GW, Bruce D, Gunner MR. Proton-Coupled Electron Transfer During the S-State Transitions of the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2015; 119:7366-77. [PMID: 25575266 DOI: 10.1021/jp510948e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The oxygen-evolving complex (OEC) of photosystem II (PSII) is a unique Mn4O5Ca cluster that catalyzes water oxidation via four photoactivated electron transfer steps. As the protein influence on the redox and protonation chemistry of the OEC remains an open question, we present a classical valence model of the OEC that allows the redox state of each Mn and the protonation state of bridging μ-oxos and terminal waters to remain in equilibrium with the PSII protein throughout the redox cycle. We find that the last bridging oxygen loses its proton during the transition from S0 to S1. Two possible S2 states are found depending on the OEC geometry: S2 has Mn4(IV) with a proton lost from a terminal water (W1) trapped by the nearby D1-D61 if O5 is closer to Mn4, or Mn1(IV), with partial deprotonation of D1-H337 and D1-E329 if O5 is closer to Mn1. In S3, the OEC is Mn4(IV) with W2 deprotonated. The estimated OEC Em's range from +0.7 to +1.3 V, enabling oxidation by P680(+), the primary electron donor in PSII. In chloride-depleted PSII, the proton release increases during the S1 to S2 transition, leaving the OEC unable to properly advance through the water-splitting cycle.
Collapse
Affiliation(s)
- Muhamed Amin
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| | - Leslie Vogt
- ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Witold Szejgis
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| | - Serguei Vassiliev
- §Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catherines, ON LS2 3A1, Canada
| | - Gary W Brudvig
- ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Doug Bruce
- §Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catherines, ON LS2 3A1, Canada
| | - M R Gunner
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
13
|
Gerencsér L, Boros B, Derrien V, Hanson DK, Wraight CA, Sebban P, Maróti P. Stigmatellin probes the electrostatic potential in the QB site of the photosynthetic reaction center. Biophys J 2015; 108:379-94. [PMID: 25606686 DOI: 10.1016/j.bpj.2014.11.3463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/13/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022] Open
Abstract
The electrostatic potential in the secondary quinone (QB) binding site of the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides determines the rate and free energy change (driving force) of electron transfer to QB. It is controlled by the ionization states of residues in a strongly interacting cluster around the QB site. Reduction of the QB induces change of the ionization states of residues and binding of protons from the bulk. Stigmatellin, an inhibitor of the mitochondrial and photosynthetic respiratory chain, has been proven to be a unique voltage probe of the QB binding pocket. It binds to the QB site with high affinity, and the pK value of its phenolic group monitors the local electrostatic potential with high sensitivity. Investigations with different types of detergent as a model system of isolated RC revealed that the pK of stigmatellin was controlled overwhelmingly by electrostatic and slightly by hydrophobic interactions. Measurements showed a high pK value (>11) of stigmatellin in the QB pocket of the dark-state wild-type RC, indicating substantial negative potential. When the local electrostatics of the QB site was modulated by a single mutation, L213Asp → Ala, or double mutations, L213Asp-L212Glu → Ala-Ala (AA), the pK of stigmatellin dropped to 7.5 and 7.4, respectively, which corresponds to a >210 mV increase in the electrostatic potential relative to the wild-type RC. This significant pK drop (ΔpK > 3.5) decreased dramatically to (ΔpK > 0.75) in the RC of the compensatory mutant (AA+M44Asn → AA+M44Asp). Our results indicate that the L213Asp is the most important actor in the control of the electrostatic potential in the QB site of the dark-state wild-type RC, in good accordance with conclusions of former studies using theoretical calculations or light-induced charge recombination assay.
Collapse
Affiliation(s)
- László Gerencsér
- Department of Biophysics, University of Szeged, Szeged, Hungary; Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Bogáta Boros
- Department of Biophysics, University of Szeged, Szeged, Hungary
| | - Valerie Derrien
- Laboratoire de Chimie Physique, University of Paris-Sud, Orsay, France
| | - Deborah K Hanson
- Biosciences Divisions, Argonne National Laboratory, Argonne, Illinois
| | - Colin A Wraight
- Department of Biochemistry and Center for Biophysics and Computational Biology, University of Illinois, Urbana, Illinois
| | - Pierre Sebban
- Laboratoire de Chimie Physique, University of Paris-Sud, Orsay, France
| | - Péter Maróti
- Department of Biophysics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
14
|
Salazar R, Vidal J, Martínez-Cifuentes M, Araya-Maturana R, Ramírez-Rodríguez O. Electrochemical characterization of hydroquinone derivatives with different substituents in acetonitrile. NEW J CHEM 2015. [DOI: 10.1039/c4nj01657b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of carbonyl groups in the ortho position with respect to a hydroxyl group on the electrochemical oxidation of hydroquinones in acetonitrile is studied.
Collapse
Affiliation(s)
- Ricardo Salazar
- Department of Environmental Sciences
- Faculty of Chemistry and Biology
- University of Santiago de Chile
- USACh
- Santiago
| | - Jorge Vidal
- Department of Environmental Sciences
- Faculty of Chemistry and Biology
- University of Santiago de Chile
- USACh
- Santiago
| | | | - Ramiro Araya-Maturana
- Department of Organic and Physical Chemistry
- Faculty of Chemical and Pharmaceutical Sciences
- University of Chile
- Santiago 1
- Chile
| | - Oney Ramírez-Rodríguez
- Department of Organic and Physical Chemistry
- Faculty of Chemical and Pharmaceutical Sciences
- University of Chile
- Santiago 1
- Chile
| |
Collapse
|
15
|
Müh F, Zouni A. The nonheme iron in photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:295-314. [PMID: 24077892 DOI: 10.1007/s11120-013-9926-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/17/2013] [Indexed: 06/02/2023]
Abstract
Photosystem II (PSII), the light-driven water:plastoquinone (PQ) oxidoreductase of oxygenic photosynthesis, contains a nonheme iron (NHI) at its electron acceptor side. The NHI is situated between the two PQs QA and QB that serve as one-electron transmitter and substrate of the reductase part of PSII, respectively. Among the ligands of the NHI is a (bi)carbonate originating from CO2, the substrate of the dark reactions of oxygenic photosynthesis. Based on recent advances in the crystallography of PSII, we review the structure of the NHI in PSII and discuss ideas concerning its function and the role of bicarbonate along with a comparison to the reaction center of purple bacteria and other enzymes containing a mononuclear NHI site.
Collapse
|
16
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
17
|
Balraj C, Satheshkumar A, Ganesh K, Elango KP. Spectral and theoretical studies on the molecular complexes of azacyclonol with new π-acceptors, alkoxysubstituted 1,4-benzoquinones. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.09.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Lakhno VD. Dynamical theory of primary processes of charge separation in the photosynthetic reaction center. J Biol Phys 2013; 31:145-59. [PMID: 23345889 DOI: 10.1007/s10867-005-5109-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A dynamical theory has been developed for primary separation of charges in the course of photosynthesis. The theory deals with both hopping and superexchange transfer mechanisms. Dynamics of electron transfer from dimeric bacteriochlorophyll to quinone has been calculated. The results obtained agree with experimental data and provide a unified explanation of both the hierarchy of the transfer time in the photosynthetic reaction center and the phenomenon of coherent oscillations accompanying the transfer process.
Collapse
Affiliation(s)
- Victor D Lakhno
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, Pushchino, Moscow Region 142290 Russia
| |
Collapse
|
19
|
Saito K, Kandori H, Ishikita H. Factors that differentiate the H-bond strengths of water near the Schiff bases in bacteriorhodopsin and Anabaena sensory rhodopsin. J Biol Chem 2012; 287:34009-18. [PMID: 22865888 DOI: 10.1074/jbc.m112.388348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriorhodopsin (BR) functions as a light-driven proton pump, whereas Anabaena sensory rhodopsin (ASR) is believed to function as a photosensor despite the high similarity in their protein sequences. In Fourier transform infrared (FTIR) spectroscopic studies, the lowest O-D stretch for D(2)O was observed at ∼2200 cm(-1) in BR but was significantly higher in ASR (>2500 cm(-1)), which was previously attributed to a water molecule near the Schiff base (W402) that is H-bonded to Asp-85 in BR and Asp-75 in ASR. We investigated the factors that differentiate the lowest O-D stretches of W402 in BR and ASR. Quantum mechanical/molecular mechanical calculations reproduced the H-bond geometries of the crystal structures, and the calculated O-D stretching frequencies were corroborated by the FTIR band assignments. The potential energy profiles indicate that the smaller O-D stretching frequency in BR originates from the significantly higher pK(a)(Asp-85) in BR relative to the pK(a)(Asp-75) in ASR, which were calculated to be 1.5 and -5.1, respectively. The difference is mostly due to the influences of Ala-53, Arg-82, Glu-194-Glu-204, and Asp-212 on pK(a)(Asp-85) in BR and the corresponding residues Ser-47, Arg-72, Ser-188-Asp-198, and Pro-206 on pK(a)(Asp-75) in ASR. Because these residues participate in proton transfer pathways in BR but not in ASR, the presence of a strongly H-bonded water molecule near the Schiff base ultimately results from the proton-pumping activity in BR.
Collapse
Affiliation(s)
- Keisuke Saito
- 202 Building E, Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
20
|
Madeo J, Mihajlovic M, Lazaridis T, Gunner MR. Slow dissociation of a charged ligand: analysis of the primary quinone Q(A) site of photosynthetic bacterial reaction centers. J Am Chem Soc 2011; 133:17375-85. [PMID: 21863833 PMCID: PMC3202297 DOI: 10.1021/ja205811f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 12/14/2022]
Abstract
Reaction centers (RCs) are integral membrane proteins that undergo a series of electron transfer reactions during the process of photosynthesis. In the Q(A) site of RCs from Rhodobacter sphaeroides, ubiquinone-10 is reduced, by a single electron transfer, to its semiquinone. The neutral quinone and anionic semiquinone have similar affinities, which is required for correct in situ reaction thermodynamics. A previous study showed that despite similar affinities, anionic quinones associate and dissociate from the Q(A) site at rates ≈10(4) times slower than neutral quinones indicating that anionic quinones encounter larger binding barriers (Madeo, J.; Gunner, M. R. Modeling binding kinetics at the Q(A) site in bacterial reaction centers. Biochemistry 2005, 44, 10994-11004). The present study investigates these barriers computationally, using steered molecular dynamics (SMD) to model the unbinding of neutral ground state ubiquinone (UQ) and its reduced anionic semiquinone (SQ(-)) from the Q(A) site. In agreement with experiment, the SMD unbinding barrier for SQ(-) is larger than for UQ. Multi Conformational Continuum Electrostatics (MCCE), used here to calculate the binding energy, shows that SQ(-) and UQ have comparable affinities. In the Q(A) site, there are stronger binding interactions for SQ(-) compared to UQ, especially electrostatic attraction to a bound non-heme Fe(2+). These interactions compensate for the higher SQ(-) desolvation penalty, allowing both redox states to have similar affinities. These additional interactions also increase the dissociation barrier for SQ(-) relative to UQ. Thus, the slower SQ(-) dissociation rate is a direct physical consequence of the additional binding interactions required to achieve a Q(A) site affinity similar to that of UQ. By a similar mechanism, the slower association rate is caused by stronger interactions between SQ(-) and the polar solvent. Thus, stronger interactions for both the unbound and bound states of charged and highly polar ligands can slow their binding kinetics without a conformational gate. Implications of this for other systems are discussed.
Collapse
Affiliation(s)
- Jennifer Madeo
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Maja Mihajlovic
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Themis Lazaridis
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - M. R. Gunner
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| |
Collapse
|
21
|
Müh F, Glöckner C, Hellmich J, Zouni A. Light-induced quinone reduction in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:44-65. [PMID: 21679684 DOI: 10.1016/j.bbabio.2011.05.021] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
Abstract
The photosystem II core complex is the water:plastoquinone oxidoreductase of oxygenic photosynthesis situated in the thylakoid membrane of cyanobacteria, algae and plants. It catalyzes the light-induced transfer of electrons from water to plastoquinone accompanied by the net transport of protons from the cytoplasm (stroma) to the lumen, the production of molecular oxygen and the release of plastoquinol into the membrane phase. In this review, we outline our present knowledge about the "acceptor side" of the photosystem II core complex covering the reaction center with focus on the primary (Q(A)) and secondary (Q(B)) quinones situated around the non-heme iron with bound (bi)carbonate and a comparison with the reaction center of purple bacteria. Related topics addressed are quinone diffusion channels for plastoquinone/plastoquinol exchange, the newly discovered third quinone Q(C), the relevance of lipids, the interactions of quinones with the still enigmatic cytochrome b559 and the role of Q(A) in photoinhibition and photoprotection mechanisms. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Frank Müh
- Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | | | | | | |
Collapse
|
22
|
Gamiz-Hernandez AP, Kieseritzky G, Ishikita H, Knapp EW. Rubredoxin Function: Redox Behavior from Electrostatics. J Chem Theory Comput 2011; 7:742-52. [DOI: 10.1021/ct100476h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Patricia Gamiz-Hernandez
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Fabeckstrasse 36a, D-14195, Berlin, Germany
| | - Gernot Kieseritzky
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Fabeckstrasse 36a, D-14195, Berlin, Germany
| | - Hiroshi Ishikita
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, 202 Building E, Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - E. W. Knapp
- Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Fabeckstrasse 36a, D-14195, Berlin, Germany
| |
Collapse
|
23
|
Acid/base and hydrogen bonding effects on the proton-coupled electron transfer of quinones and hydroquinones in acetonitrile: Mechanistic investigation by voltammetry, 1H NMR and computation. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.06.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
|
25
|
Song Y, Mao J, Gunner MR. MCCE2: improving protein pKa calculations with extensive side chain rotamer sampling. J Comput Chem 2009; 30:2231-47. [PMID: 19274707 PMCID: PMC2735604 DOI: 10.1002/jcc.21222] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multiconformation continuum electrostatics (MCCE) explores different conformational degrees of freedom in Monte Carlo calculations of protein residue and ligand pK(a)s. Explicit changes in side chain conformations throughout a titration create a position dependent, heterogeneous dielectric response giving a more accurate picture of coupled ionization and position changes. The MCCE2 methods for choosing a group of input heavy atom and proton positions are described. The pK(a)s calculated with different isosteric conformers, heavy atom rotamers and proton positions, with different degrees of optimization are tested against a curated group of 305 experimental pK(a)s in 33 proteins. QUICK calculations, with rotation around Asn and Gln termini, sampling His tautomers and torsion minimum hydroxyls yield an RMSD of 1.34 with 84% of the errors being <1.5 pH units. FULL calculations adding heavy atom rotamers and side chain optimization yield an RMSD of 0.90 with 90% of the errors <1.5 pH unit. Good results are also found for pK(a)s in the membrane protein bacteriorhodopsin. The inclusion of extra side chain positions distorts the dielectric boundary and also biases the calculated pK(a)s by creating more neutral than ionized conformers. Methods for correcting these errors are introduced. Calculations are compared with multiple X-ray and NMR derived structures in 36 soluble proteins. Calculations with X-ray structures give significantly better pK(a)s. Results with the default protein dielectric constant of 4 are as good as those using a value of 8. The MCCE2 program can be downloaded from http://www.sci.ccny.cuny.edu/~mcce.
Collapse
Affiliation(s)
- Yifan Song
- Department of Physics, J-419 City College of New York, 138th Street, Convent Avenue, New York, New York 10031, USA
| | | | | |
Collapse
|
26
|
Kaneko Y, Hayashi S, Ohmine I. Proton-Transfer Reactions in Reaction Center of Photosynthetic Bacteria Rhodobacter sphaeroides. J Phys Chem B 2009; 113:8993-9003. [DOI: 10.1021/jp9008898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu Kaneko
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan, and Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraku-machi 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan, and Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraku-machi 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| | - Iwao Ohmine
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan, Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan, and Fukui Institute for Fundamental Chemistry, Kyoto University, Nishihiraku-machi 34-4, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
27
|
Wraight CA, Gunner MR. The Acceptor Quinones of Purple Photosynthetic Bacteria — Structure and Spectroscopy. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_20] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Gunner MR, Madeo J, Zhu Z. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers. J Bioenerg Biomembr 2008; 40:509-19. [PMID: 18979192 DOI: 10.1007/s10863-008-9179-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/31/2008] [Indexed: 11/29/2022]
Abstract
Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc(1) oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the Q(A) and Q(B) sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary Q(A) site ubiquinone is reduced only to the anionic semiquinone (Q(*-)) while in the secondary Q(B) site the product is the doubly reduced, doubly protonated quinol (QH(2)). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q(*-) while destabilizing Q(=) relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department, The City College of New York, New York, NY 10031, USA.
| | | | | |
Collapse
|
29
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
30
|
Ishikita H, Galstyan A, Knapp EW. Redox potential of the non-heme iron complex in bacterial photosynthetic reaction center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1300-9. [DOI: 10.1016/j.bbabio.2007.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/12/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
|
31
|
Ishikita H. Modulation of the protein environment in the hydrophilic pore of the ammonia transporter protein AmtB upon GlnK protein binding. FEBS Lett 2007; 581:4293-7. [PMID: 17707821 DOI: 10.1016/j.febslet.2007.07.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 11/29/2022]
Abstract
The conduction of ammonia/ammonium (NH3/NH4(+)) through the channel protein AmtB is inhibited by the binding of the signal transduction protein GlnK. In the AmtB-GlnK binding interface, there exists an NH3/NH4(+) binding site--Am6. The calculated pK(a) values at the Am6 sites in both the AmtB-GlnK complex and isolated AmtB implies the dominance of an uncharged NH3 state. The GlnK protein binding causes a significant downshift in the Am6 pK(a) value of the AmtB. However, this downshift is perfectly compensated by the reorientation of the protein backbone (carbonyl group of Cys312 from the AmtB part) upon AmtB-GlnK complex formation.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
32
|
Yuasa J, Yamada S, Fukuzumi S. Direct EPR Detection of a Hydrogen-Bonded Complex between a Semiquinone Radical Anion and a Protonated Amino Acid, and Electron Transfer Driven by Hydrogen Bonding. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700157] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Yuasa J, Yamada S, Fukuzumi S. Direct EPR Detection of a Hydrogen-Bonded Complex between a Semiquinone Radical Anion and a Protonated Amino Acid, and Electron Transfer Driven by Hydrogen Bonding. Angew Chem Int Ed Engl 2007; 46:3553-5. [PMID: 17397016 DOI: 10.1002/anie.200700157] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Junpei Yuasa
- Department of Material and Life Science, Graduate School of Engineering, Osaka University and SORST (JST), Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
34
|
Ishikita H, Knapp EW. Protonation States of Ammonia/Ammonium in the Hydrophobic Pore of Ammonia Transporter Protein AmtB. J Am Chem Soc 2007; 129:1210-5. [PMID: 17263403 DOI: 10.1021/ja066208n] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of the ammonia transport (Amt) protein AmtB at 1.4 Angstrom resolution revealed four ammonia/ammonium (NH(3)/NH(4)(+)) binding sites along the approximately 20 Angstrom narrow pore. It is an open question whether the bound NH(3)/NH(4)(+) are neutral (NH(3)) or cationic (NH(4)(+)). On the basis of the AmtB crystal structure, we calculated the pK(a) of these four NH(3)/NH(4)(+) by solving the Poisson-Boltzmann equation. Except for one NH(3)/NH(4)(+) binding site (Am1) at the entry point of the Amt pore, binding sites are occupied by NH(3) due to lack of energy contributions from solvation, eliminating an existence of charged form NH(4)(+) and, inevitably, its potential cation-pi interaction. The only two titratable residues in the pore, His168 and His318, are in the neutral charge state. The NH(4)(+) charge state at the Am1 site is stabilized by Ser219 functioning as an H-bond acceptor. However, when involving explicit crystal water nearby, the NH(3) charge state is stabilized by the reorientation of Ser219-OH group. This H-bond donor Ser219 significantly decreases the pK(a) of NH(3)/ NH(4)(+) at the Am1 site to approximately 1. The flip/flop H-bond of Ser219 may play a dual role first in binding and subsequently in deprotonating NH(4)(+), which is a prerequisite to conduct NH(3) through the Amt pore across the membrane.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
35
|
Nabedryk E, Paddock ML, Okamura MY, Breton J. Monitoring the pH Dependence of IR Carboxylic Acid Signals upon QB- Formation in the Glu-L212 → Asp/Asp-L213 → Glu Swap Mutant Reaction Center from Rhodobacter sphaeroides. Biochemistry 2007; 46:1176-82. [PMID: 17260947 DOI: 10.1021/bi0619627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (QB) site. Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations in the 1770-1700 cm-1 spectral range that are sensitive to 1H/2H isotopic exchange. With respect to the native RC, a novel protonation pattern for carboxylic acids upon QB photoreduction has been identified in the Glu-L212 --> Asp/Asp-L213 --> Glu mutant RC using light-induced FTIR difference spectroscopy (Nabedryk, E., Breton, J., Okamura, M. Y., and Paddock, M. L. (2004) Biochemistry 43, 7236-7243). These carboxylic acids are structurally close and have been implicated in proton transfer to reduced QB. In this work, we extend previous studies by measuring the pH dependence of the QB-/QB FTIR difference spectra of the mutant in 1H2O and 2H2O. Large pH dependent changes were observed in the 1770-1700 cm-1 spectral range between pH 8 and pH 4. The IR fingerprints of the protonating carboxylic acids upon QB- formation were obtained from the calculated double-difference spectra 1H2O minus 2H2O. These IR fingerprints are specific for each pH, indicative of the contribution of different titrating groups. In particular, the 1752 cm-1 signal indicates that Glu-L213 protonates upon QB- formation at pH >or= 5, whereas the 1746 cm-1 signal indicates protonation of Asp-L212 even at pH 4. An unidentified carboxylic acid absorbing at approximately 1765 cm-1 could be the proton donor between pH 8 and 5. The observation that in the swap mutant there are several uniquely behaving carboxylic acids shows that electrostatic interactions occurring between them are sufficiently modified from the native RC to reveal their IR signatures.
Collapse
Affiliation(s)
- Eliane Nabedryk
- Service de Bioénergetique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
36
|
Free Energy Calculations: Approximate Methods for Biological Macromolecules. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/978-3-540-38448-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Gunner MR, Mao J, Song Y, Kim J. Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:942-68. [PMID: 16905113 PMCID: PMC2760439 DOI: 10.1016/j.bbabio.2006.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/15/2022]
Abstract
A protein structure should provide the information needed to understand its observed properties. Significant progress has been made in developing accurate calculations of acid/base and oxidation/reduction reactions in proteins. Current methods and their strengths and weaknesses are discussed. The distribution and calculated ionization states in a survey of proteins is described, showing that a significant minority of acidic and basic residues are buried in the protein and that most of these remain ionized. The electrochemistry of heme and quinones are considered. Proton transfers in bacteriorhodopsin and coupled electron and proton transfers in photosynthetic reaction centers, 5-coordinate heme binding proteins and cytochrome c oxidase are highlighted as systems where calculations have provided insight into the reaction mechanism.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
38
|
Ishikita H, Knapp EW. Induced conformational changes upon Cd2+ binding at photosynthetic reaction centers. Proc Natl Acad Sci U S A 2005; 102:16215-20. [PMID: 16254054 PMCID: PMC1283420 DOI: 10.1073/pnas.0503826102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cd(2+) binding at the bacterial photosynthetic reaction center (bRC) from Rhodobacter sphaeroides is known to inhibit proton transfer (PT) from bulk solvent to the secondary quinone Q(B). To elucidate this mechanism, we calculated the pK(a) for residues along the water channels connecting Q(B) with the stromal side based on the crystal structures of WT-bRC and Cd(2+)-bound bRC. Upon Cd(2+) binding, we observed the release of two protons from His-H126/128 at the Cd(2+) binding site and significant pK(a) shifts for residues along the PT pathways. Remarkably, Asp-L213 near Q(B), which is proposed to play a significant role in PT, resulted in a decrease in pK(a) upon Cd(2+) binding. The direct electrostatic influence of the Cd(2+)-positive charge on these pK(a) shifts was small. Instead, conformational changes of amino acid side chains induced electrostatically by Cd(2+) binding were the main mechanism for these pK(a) shifts. The long-range electrostatic influence over approximately 12 A between Cd(2+) and Asp-L213 is likely to originate from a set of Cd(2+)-induced successive reorientations of side chains (Asp-H124, His-H126, His-H128, Asp-H170, Glu-H173, Asp-M17, and Asp-L210), which propagate along the PT pathways as a "domino" effect.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry and Biochemistry, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|
39
|
Ishikita H, Knapp EW. Control of Quinone Redox Potentials in Photosystem II: Electron Transfer and Photoprotection. J Am Chem Soc 2005; 127:14714-20. [PMID: 16231925 DOI: 10.1021/ja052567r] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In O(2)-evolving complex Photosystem II (PSII), an unimpeded transfer of electrons from the primary quinone (Q(A)) to the secondary quinone (Q(B)) is essential for the efficiency of photosynthesis. Recent PSII crystal structures revealed the protein environment of the Q(A/B) binding sites. We calculated the plastoquinone (Q(A/B)) redox potentials (E(m)) for one-electron reduction with a full account of the PSII protein environment. We found two different H-bond patterns involving Q(A) and D2-Thr217, resulting in an upshift of E(m)(Q(A)) by 100 mV if the H bond between Q(A) and Thr is present. The formation of this H bond to Q(A) may be the origin of a photoprotection mechanism, which is under debate. At the Q(B) side, the formation of a H bond between D2-Ser264 and Q(B) depends on the protonation state of D1-His252. Q(B) adopts the high-potential form if the H bond to Ser is present. Conservation of this residue and H-bond pattern for Q(B) sites among bacterial photosynthetic reaction centers (bRC) and PSII strongly indicates their essential requirement for electron transfer function.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry and Biochemistry, Crystallography, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|
40
|
Madeo J, Gunner MR. Modeling binding kinetics at the Q(A) site in bacterial reaction centers. Biochemistry 2005; 44:10994-1004. [PMID: 16101283 PMCID: PMC2727067 DOI: 10.1021/bi050544j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial reaction centers (RCs) catalyze a series of electron-transfer reactions reducing a neutral quinone to a bound, anionic semiquinone. The dissociation constants and association rates of 13 tailless neutral and anionic benzo- and naphthoquinones for the Q(A) site were measured and compared. The K(d) values for these quinones range from 0.08 to 90 microM. For the eight neutral quinones, including duroquinone (DQ) and 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UQ(0)), the quinone concentration and solvent viscosity dependence of the association rate indicate a second-order rate-determining step. The association rate constants (k(on)) range from 10(5) to 10(7) M(-)(1) s(-)(1). Association and dissociation rate constants were determined at pH values above the hydroxyl pK(a) for five hydroxyl naphthoquinones. These negatively charged compounds are competitive inhibitors for the Q(A) site. While the neutral quinones reach equilibrium in milliseconds, anionic hydroxyl quinones with similar K(d) values take minutes to bind or dissociate. These slow rates are independent of ionic strength, solvent viscosity, and quinone concentration, indicating a first-order rate-limiting step. The anionic semiquinone, formed by forward electron transfer at the Q(A) site, also dissociates slowly. It is not possible to measure the association rate of the unstable semiquinone. However, as the protein creates kinetic barriers for binding and releasing anionic hydroxyl quinones without greatly increasing the affinity relative to neutral quinones, it is suggested that the Q(A) site may do the same for anionic semiquinone. Thus, the slow semiquinone dissociation may not indicate significant thermodynamic stabilization of the reduced species in the Q(A) site.
Collapse
Affiliation(s)
- Jennifer Madeo
- Physics Department J-419 City College of New York 138th Street and Convent Avenue, New York, New York 10031
| | - M. R. Gunner
- Physics Department J-419 City College of New York 138th Street and Convent Avenue, New York, New York 10031
| |
Collapse
|
41
|
Mulkidjanian AY. Ubiquinol oxidation in the cytochrome bc1 complex: Reaction mechanism and prevention of short-circuiting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:5-34. [PMID: 16005845 DOI: 10.1016/j.bbabio.2005.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 12/01/2004] [Accepted: 03/22/2005] [Indexed: 11/26/2022]
Abstract
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, Max-von-Laue-Str. 3, D-60438 Frankfurt-am-Main, Germany.
| |
Collapse
|
42
|
Ishikita H, Loll B, Biesiadka J, Galstyan A, Saenger W, Knapp EW. Tuning electron transfer by ester-group of chlorophylls in bacterial photosynthetic reaction center. FEBS Lett 2005; 579:712-6. [PMID: 15670833 DOI: 10.1016/j.febslet.2004.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 12/20/2004] [Accepted: 12/20/2004] [Indexed: 11/22/2022]
Abstract
Accessory chlorophylls (B(A/B)) in bacterial photosynthetic reaction center play a key role in charge-separation. Although light-exposed and dark-adapted bRC crystal structures are virtually identical, the calculated B(A) redox potentials for one-electron reduction differ. This can be traced back to different orientations of the B(A) ester-group. This tuning ability of chlorophyll redox potentials modulates the electron transfer from SP* to B(A).
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry, Crystallography, Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Ishikita H, Knapp EW. Energetics of Proton Transfer Pathways in Reaction Centers from Rhodobacter sphaeroides. J Biol Chem 2005; 280:12446-50. [PMID: 15637063 DOI: 10.1074/jbc.m413531200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electron transfer between the primary and secondary quinones (Q(A), Q(B)) in the bacterial photosynthetic reaction center (bRC) is coupled with proton uptake at Q(B). The protons are conducted from the cytoplasmic side, probably with the participation of two water channels. Mutations of titratable residues like Asp-L213 to Asn (inhibited mutant) or the double mutant Glu-L212 to Ala/Asp-L213 to Ala inhibit these electron transfer-coupled proton uptake events. The inhibition of the proton transfer (PT) process in the single mutant can be restored by a second mutation of Arg-M233 to Cys or Arg-H177 to His (revertant mutant). These revertant mutants shed light on the location of the main proton transfer pathway of wild type bRC. In contrast to the wild type and inhibited mutant bRC, the revertant mutant bRC showed notable proton uptake at Glu-H173 upon formation of the Q(B)- state. In all of these mutants, the pK(a) of Asp-M17 decreased by 1.4-2.4 units with respect to the wild type bRC, whereas a significant pK(a) upshift of up to 5.8 units was observed at Glu-H122, Asp-H170, Glu-H173, and Glu-H230 in the revertant mutants. These residues belonging to the main PT pathway are arranged along water channel P1 localized mainly in subunit H. bRC possesses subunit H, which has no counterpart in photosystem II. Thus, bRC may possess alternative PT pathways involving water channels in subunit H, which becomes active in case the main PT pathway is blocked.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry, Free University of Berlin, Takustrasse 6, Berlin D-14195, Germany
| | | |
Collapse
|
44
|
Ishikita H, Knapp EW. Redox Potentials of Chlorophylls and β-Carotene in the Antenna Complexes of Photosystem II. J Am Chem Soc 2005; 127:1963-8. [PMID: 15701031 DOI: 10.1021/ja045058i] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electron transfer (ET) processes in reaction centers (RC) of photosystem II (PSII) are prerequisites of oxygen generation. They are promoted by energy transfer from antenna to RC. Here, we calculated the redox potentials of chlorophylla/beta-carotene (Chla/Car) in PSII CP43/CP47 antenna complexes, solving the linearized Poisson-Boltzmann (LPB) equation based on the PSII crystal structure. The majority of antenna Chla redox potentials for reduction/oxidation were lower than those of RC Chla. Hence, ET events with excess electrons remain localized in the RC. Simultaneously antenna Chla can serve as an efficient cation sink to rereduce RC Chla if normal PSII function is inhibited. Especially three antenna Chla (Chl-47, Chl-18, and Chl-12) and two Car bridging the space between Chl(Z(D1)) and cytochrome (cyt) b559 have the same level of oxidation redox potential. Together with Chl(Z(D2)) they form an electron hole transfer pathway and temporary storage device guiding from the oxidized P680(+.) Chla to the cyt b559. This path may play a photoprotective role as efficient electron hole quencher.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|
45
|
Okamoto K, Ohkubo K, Kadish KM, Fukuzumi S. Remarkable Accelerating Effects of Ammonium Cations on Electron-Transfer Reactions of Quinones by Hydrogen Bonding with Semiquinone Radical Anions. J Phys Chem A 2004. [DOI: 10.1021/jp046078+] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Schmidt am Busch M, Knapp EW. Accurate pKa Determination for a Heterogeneous Group of Organic Molecules. Chemphyschem 2004; 5:1513-22. [PMID: 15535550 DOI: 10.1002/cphc.200400171] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Single-molecule studies that allow to compute pKa values, proton affinities (gas-phase acidity/basicity) and the electrostatic energy of solvation have been performed for a heterogeneous set of 26 organic compounds. Quantum mechanical density functional theory (DFT) using the Becke-half&half and B3LYP functionals on optimized molecular geometries have been carried out to investigate the energetics of gas-phase protonation. The electrostatic contribution to the solvation energies of protonated and deprotonated compounds were calculated by solving the Poisson equation using atomic charges generated by fitting the electrostatic potential derived from the molecular wave functions in vacuum. The combination of gas-phase and electrostatic solvation energies by means of the thermodynamic cycle enabled us to compute pKa values for the 26 compounds, which cover six distinct chemical groups (carboxylic acids, benzoic acids, phenols, imides, pyridines and imidazoles). The computational procedure for determining pKa values is accurate and transferable with a root-mean-square deviation of 0.53 and 0.57 pKa units and a maximum error of 1.0 pKa and 1.3 pKa units for Becke-half&half and B3LYP DFT functionals, respectively.
Collapse
Affiliation(s)
- Marcel Schmidt am Busch
- Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry, Free University of Berlin, Takustrasse 6, 14195 Berlin, Germany
| | | |
Collapse
|
47
|
Ishikita H, Knapp EW. Variation of Ser-L223 Hydrogen Bonding with the QB Redox State in Reaction Centers from Rhodobacter sphaeroides. J Am Chem Soc 2004; 126:8059-64. [PMID: 15212556 DOI: 10.1021/ja038092q] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ser-L223 is close to ubiquinone (Q(B)) in the B-branch of the bacterial photosynthetic reaction center (bRC) from Rhodobacter (Rb) sphaeroides. Therefore, the presence of a hydrogen bond (H bond) between the two was naturally proposed from the crystal structure. The hydrogen bonding pattern of Q(B) from the light-exposed structure was studied by generating hydrogen atom coordinates based on the CHARMM force field. In the Q(B) neutral charge state (Q(B)(0)), no H bond was found between the oxygen of the OH group from Ser-L223 and the carbonyl oxygen of Q(B) that is distal to the non-heme iron. In the reduced state (Q(B)(-)), however, Ser-L213 was found to form an H bond with Q(B) only when Asp-L213 is protonated by more than 0.75 H(+). This indicates the significance of the protonation of Asp-L213 in forming an H bond between Ser-L223 and Q(B). We found that the driving force to form the H bond between Ser-L223 and Q(B) is enhanced by the positively charged Arg-L217. The calculated Q(B) redox potentials with or without this H bond discriminated two ET rates, which are close to the faster and slower time phases observed in UV-Vis and FTIR studies. Together with the calculated redox potential of the quinones, this H-bond formation could play a key role in conformational gating for the ET process from Q(A) to Q(B).
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Institute of Chemistry, Department of Biology, Chemistry, and Pharmacy, Free University of Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | | |
Collapse
|
48
|
Nabedryk E, Breton J, Okamura MY, Paddock ML. Identification of a Novel Protonation Pattern for Carboxylic Acids upon QB Photoreduction in Rhodobacter sphaeroides Reaction Center Mutants at Asp-L213 and Glu-L212 Sites. Biochemistry 2004; 43:7236-43. [PMID: 15182169 DOI: 10.1021/bi049342y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the reaction center from the photosynthetic purple bacterium Rhodobacter sphaeroides, light energy is rapidly converted to chemical energy through coupled electron-proton transfer to a buried quinone molecule Q(B). Involved in the proton uptake steps are carboxylic acids, which have characteristic infrared vibrations that are observable using light-induced Fourier transform infrared (FTIR) difference spectroscopy. Upon formation, Q(B)(-) induces protonation of Glu-L212, located within 5 A of Q(B), resulting in a IR signal at 1728 cm(-1). However, no other IR signal is observed within the classic absorption range of protonated carboxylic acids (1770-1700 cm(-1)). In particular, no signal for Asp-L213 is found despite its juxtaposition to Q(B) and importance for proton uptake on the second electron-transfer step. In an attempt to uncover the reason behind this lack of signal, the microscopic electrostatic environment in the vicinity of Q(B) was modified by interchanging Asp and Glu at the L213 and L212 positions. The Q(B)(-)/Q(B) FTIR spectrum of the Asp-L212/Glu-L213 swap mutant in the 1770-1700 cm(-1) range shows several distinct new signals, which are sensitive to (1)H/(2)H isotopic exchange, indicating that the reduction of Q(B) results in the change of the protonation state of several carboxylic acids. The new bands at 1752 and 1747 cm(-1) were assigned to an increase of protonation in response to Q(B) reduction of Glu-L213 and Asp-L212, respectively, based on the effect of replacing them with their amine analogues. Since other carboxylic acid signals were observed, it is concluded that the swap mutations at L212 and L213 affect a cluster of carboxylic acids larger than the L212/L213 acid pair. Implications for the native reaction center are discussed.
Collapse
Affiliation(s)
- Eliane Nabedryk
- Service de Bioénergétique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
49
|
Ishikita H, Knapp EW. Redox potential of quinones in both electron transfer branches of photosystem I. J Biol Chem 2003; 278:52002-11. [PMID: 12972408 DOI: 10.1074/jbc.m306434200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The redox potentials of the two electron transfer (ET) active quinones in the central part of photosystem I (PSI) were determined by evaluating the electrostatic energies from the solution of the Poisson-Boltzmann equation based on the crystal structure. The calculated redox potentials are -531 mV for A1A and -686 mV for A1B. From these results we conclude the following. (i) Both branches are active with a much faster ET in the B-branch than in the A-branch. (ii) The measured lifetime of 200-290 ns of reduced quinones agrees with the estimate for the A-branch and corroborates with an uphill ET from this quinone to the iron-sulfur cluster as observed in recent kinetic measurements. (iii) The electron paramagnetic resonance spectroscopic data refer to the A-branch quinone where the corresponding ET is uphill in energy. The negative redox potential of A1 in PSI is primarily because of the influence from the negatively charged FX, in contrast to the positive shift on the quinone redox potential in bacterial reaction center and PSII that is attributed to the positively charged non-heme iron atom. The conserved residue Asp-B575 changes its protonation state after quinone reduction. The difference of 155 mV in the quinone redox potentials of the two branches were attributed to the conformation of the backbone with a large contribution from Ser-A692 and Ser-B672 and to the side chain of Asp-B575, whose protonation state couples differently with the formation of the quinone radicals.
Collapse
Affiliation(s)
- Hiroshi Ishikita
- Department of Biology, Chemistry, and Pharmacy, Institute of Chemistry, Free University of Berlin, Takustrasse 6, Berlin D-14195, Germany
| | | |
Collapse
|