1
|
Weber DK, Reddy UV, Robia SL, Veglia G. Pathological mutations in the phospholamban cytoplasmic region affect its topology and dynamics modulating the extent of SERCA inhibition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184370. [PMID: 38986894 PMCID: PMC11457527 DOI: 10.1016/j.bbamem.2024.184370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Phospholamban (PLN) is a 52 amino acid regulin that allosterically modulates the activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in the heart muscle. In its unphosphorylated form, PLN binds SERCA within its transmembrane (TM) domains, approximately 20 Å away from the Ca2+ binding site, reducing SERCA's apparent Ca2+ affinity (pKCa) and decreasing cardiac contractility. During the enzymatic cycle, the inhibitory TM domain of PLN remains anchored to SERCA, whereas its cytoplasmic region transiently binds the ATPase's headpiece. Phosphorylation of PLN at Ser16 by protein kinase A increases the affinity of its cytoplasmic domain to SERCA, weakening the TM interactions with the ATPase, reversing its inhibitory function, and augmenting muscle contractility. How the structural changes caused by pathological mutations in the PLN cytoplasmic region are transmitted to its inhibitory TM domain is still unclear. Using solid-state NMR spectroscopy and activity assays, we analyzed the structural and functional effects of a series of mutations and their phosphorylated forms located in the PLN cytoplasmic region and linked to dilated cardiomyopathy. We found that these missense mutations affect the overall topology and dynamics of PLN and ultimately modulate its inhibitory potency. Also, the changes in the TM tilt angle and cytoplasmic dynamics of PLN caused by these mutations correlate well with the extent of SERCA inhibition. Our study unveils new molecular determinants for designing variants of PLN that outcompete endogenous PLN to regulate SERCA in a tunable manner.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - U Venkateswara Reddy
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Armanious GP, Lemieux MJ, Espinoza-Fonseca LM, Young HS. Missense variants in phospholamban and cardiac myosin binding protein identified in patients with a family history and clinical diagnosis of dilated cardiomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119699. [PMID: 38387507 DOI: 10.1016/j.bbamcr.2024.119699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/07/2023] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
As the genetic landscape of cardiomyopathies continues to expand, the identification of missense variants in disease-associated genes frequently leads to a classification of variant of uncertain significance (VUS). For the proper reclassification of such variants, functional characterization is an important contributor to the proper assessment of pathogenic potential. Several missense variants in the calcium transport regulatory protein phospholamban have been associated with dilated cardiomyopathy. However, >40 missense variants in this transmembrane peptide are currently known and most remain classified as VUS with little clinical information. Similarly, missense variants in cardiac myosin binding protein have been associated with hypertrophic cardiomyopathy. However, hundreds of variants are known and many have low penetrance and are often found in control populations. Herein, we focused on novel missense variants in phospholamban, an Ala15-Thr variant found in a 4-year-old female and a Pro21-Thr variant found in a 60-year-old female, both with a family history and clinical diagnosis of dilated cardiomyopathy. The patients also harbored a Val896-Met variant in cardiac myosin binding protein. The phospholamban variants caused defects in the function, phosphorylation, and dephosphorylation of this calcium transport regulatory peptide, and we classified these variants as potentially pathogenic. The variant in cardiac myosin binding protein alters the structure of the protein. While this variant has been classified as benign, it has the potential to be a low-risk susceptibility variant because of the structural change in cardiac myosin binding protein. Our studies provide new biochemical evidence for missense variants previously classified as benign or VUS.
Collapse
Affiliation(s)
- Gareth P Armanious
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
3
|
Cruz-Cortés C, Velasco-Saavedra MA, Fernández-de Gortari E, Guerrero-Serna G, Aguayo-Ortiz R, Espinoza-Fonseca LM. A novel machine learning-based screening identifies statins as inhibitors of the calcium pump SERCA. J Biol Chem 2023; 299:104681. [PMID: 37030504 PMCID: PMC10193016 DOI: 10.1016/j.jbc.2023.104681] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
We report a novel small-molecule screening approach that combines data augmentation and machine learning to identify Food and Drug Administration (FDA)-approved drugs interacting with the calcium pump (Sarcoplasmic reticulum Ca2+-ATPase, SERCA) from skeletal (SERCA1a) and cardiac (SERCA2a) muscle. This approach uses information about small-molecule effectors to map and probe the chemical space of pharmacological targets, thus allowing to screen with high precision large databases of small molecules, including approved and investigational drugs. We chose SERCA because it plays a major role in the excitation-contraction-relaxation cycle in muscle and it represents a major target in both skeletal and cardiac muscle. The machine learning model predicted that SERCA1a and SERCA2a are pharmacological targets for seven statins, a group of FDA-approved 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors used in the clinic as lipid-lowering medications. We validated the machine learning predictions by using in vitro ATPase assays to show that several FDA-approved statins are partial inhibitors of SERCA1a and SERCA2a. Complementary atomistic simulations predict that these drugs bind to two different allosteric sites of the pump. Our findings suggest that SERCA-mediated Ca2+ transport may be targeted by some statins (e.g., atorvastatin), thus providing a molecular pathway to explain statin-associated toxicity reported in the literature. These studies show the applicability of data augmentation and machine learning-based screening as a general platform for the identification of off-target interactions and the applicability of this approach extends to drug discovery.
Collapse
Affiliation(s)
- Carlos Cruz-Cortés
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - M Andrés Velasco-Saavedra
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA; Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Guadalupe Guerrero-Serna
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - L Michel Espinoza-Fonseca
- Division of Cardiovascular Medicine, Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
4
|
Reddy UV, Weber DK, Wang S, Larsen EK, Gopinath T, De Simone A, Robia S, Veglia G. A kink in DWORF helical structure controls the activation of the sarcoplasmic reticulum Ca 2+-ATPase. Structure 2022; 30:360-370.e6. [PMID: 34875216 PMCID: PMC8897251 DOI: 10.1016/j.str.2021.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/14/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
SERCA is a P-type ATPase embedded in the sarcoplasmic reticulum and plays a central role in muscle relaxation. SERCA's function is regulated by single-pass membrane proteins called regulins. Unlike other regulins, dwarf open reading frame (DWORF) expressed in cardiac muscle has a unique activating effect. Here, we determine the structure and topology of DWORF in lipid bilayers using a combination of oriented sample solid-state NMR spectroscopy and replica-averaged orientationally restrained molecular dynamics. We found that DWORF's structural topology consists of a dynamic N-terminal domain, an amphipathic juxtamembrane helix that crosses the lipid groups at an angle of 64°, and a transmembrane C-terminal helix with an angle of 32°. A kink induced by Pro15, unique to DWORF, separates the two helical domains. A single Pro15Ala mutant significantly decreases the kink and eliminates DWORF's activating effect on SERCA. Overall, our findings directly link DWORF's structural topology to its activating effect on SERCA.
Collapse
Affiliation(s)
- U. Venkateswara Reddy
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel K. Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik K. Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK,Department of Pharmacy, University of Naples “Federico II”, Naples, 80131, Italy
| | - Seth Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Wang S, Gopinath T, Larsen EK, Weber DK, Walker C, Uddigiri VR, Mote KR, Sahoo SK, Periasamy M, Veglia G. Structural basis for sarcolipin's regulation of muscle thermogenesis by the sarcoplasmic reticulum Ca 2+-ATPase. SCIENCE ADVANCES 2021; 7:eabi7154. [PMID: 34826239 PMCID: PMC8626070 DOI: 10.1126/sciadv.abi7154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/06/2021] [Indexed: 06/10/2023]
Abstract
The sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA) plays a central role in muscle contractility and nonshivering thermogenesis. SERCA is regulated by sarcolipin (SLN), a single-pass membrane protein that uncouples Ca2+ transport from ATP hydrolysis, promoting futile enzymatic cycles and heat generation. The molecular determinants for regulating heat release by the SERCA/SLN complex are unclear. Using thermocalorimetry, chemical cross-linking, and solid-state NMR spectroscopy in oriented phospholipid bicelles, we show that SERCA’s functional uncoupling and heat release rate are dictated by specific SERCA/SLN intramembrane interactions, with the carboxyl-terminal residues anchoring SLN to the SR membrane in an inhibitory topology. Systematic deletion of the carboxyl terminus does not prevent the SERCA/SLN complex formation but reduces uncoupling in a graded manner. These studies emphasize the critical role of lipids in defining the active topology of SLN and modulating the heat release rate by the SERCA/SLN complex, with implications in fat metabolism and basal metabolic rate.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Erik K. Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel K. Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Venkateswara Reddy Uddigiri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kaustubh R. Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500046, India
| | - Sanjaya K. Sahoo
- Department of Physiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Muthu Periasamy
- Department of Physiology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Nothing Regular about the Regulins: Distinct Functional Properties of SERCA Transmembrane Peptide Regulatory Subunits. Int J Mol Sci 2021; 22:ijms22168891. [PMID: 34445594 PMCID: PMC8396278 DOI: 10.3390/ijms22168891] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
The sarco-endoplasmic reticulum calcium ATPase (SERCA) is responsible for maintaining calcium homeostasis in all eukaryotic cells by actively transporting calcium from the cytosol into the sarco-endoplasmic reticulum (SR/ER) lumen. Calcium is an important signaling ion, and the activity of SERCA is critical for a variety of cellular processes such as muscle contraction, neuronal activity, and energy metabolism. SERCA is regulated by several small transmembrane peptide subunits that are collectively known as the “regulins”. Phospholamban (PLN) and sarcolipin (SLN) are the original and most extensively studied members of the regulin family. PLN and SLN inhibit the calcium transport properties of SERCA and they are required for the proper functioning of cardiac and skeletal muscles, respectively. Myoregulin (MLN), dwarf open reading frame (DWORF), endoregulin (ELN), and another-regulin (ALN) are newly discovered tissue-specific regulators of SERCA. Herein, we compare the functional properties of the regulin family of SERCA transmembrane peptide subunits and consider their regulatory mechanisms in the context of the physiological and pathophysiological roles of these peptides. We present new functional data for human MLN, ELN, and ALN, demonstrating that they are inhibitors of SERCA with distinct functional consequences. Molecular modeling and molecular dynamics simulations of SERCA in complex with the transmembrane domains of MLN and ALN provide insights into how differential binding to the so-called inhibitory groove of SERCA—formed by transmembrane helices M2, M6, and M9—can result in distinct functional outcomes.
Collapse
|
7
|
Weber DK, Reddy UV, Wang S, Larsen EK, Gopinath T, Gustavsson MB, Cornea RL, Thomas DD, De Simone A, Veglia G. Structural basis for allosteric control of the SERCA-Phospholamban membrane complex by Ca 2+ and phosphorylation. eLife 2021; 10:e66226. [PMID: 33978571 PMCID: PMC8184213 DOI: 10.7554/elife.66226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/10/2021] [Indexed: 01/26/2023] Open
Abstract
Phospholamban (PLN) is a mini-membrane protein that directly controls the cardiac Ca2+-transport response to β-adrenergic stimulation, thus modulating cardiac output during the fight-or-flight response. In the sarcoplasmic reticulum membrane, PLN binds to the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), keeping this enzyme's function within a narrow physiological window. PLN phosphorylation by cAMP-dependent protein kinase A or increase in Ca2+ concentration reverses the inhibitory effects through an unknown mechanism. Using oriented-sample solid-state NMR spectroscopy and replica-averaged NMR-restrained structural refinement, we reveal that phosphorylation of PLN's cytoplasmic regulatory domain signals the disruption of several inhibitory contacts at the transmembrane binding interface of the SERCA-PLN complex that are propagated to the enzyme's active site, augmenting Ca2+ transport. Our findings address long-standing questions about SERCA regulation, epitomizing a signal transduction mechanism operated by posttranslationally modified bitopic membrane proteins.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - U Venkateswara Reddy
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Erik K Larsen
- Department of Chemistry, University of MinnesotaMinneapolisUnited States
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Martin B Gustavsson
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- Department of Pharmacy, University of Naples 'Federico II'NaplesItaly
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
8
|
Alford RF, Smolin N, Young HS, Gray JJ, Robia SL. Protein docking and steered molecular dynamics suggest alternative phospholamban-binding sites on the SERCA calcium transporter. J Biol Chem 2020; 295:11262-11274. [PMID: 32554805 DOI: 10.1074/jbc.ra120.012948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/16/2020] [Indexed: 01/27/2023] Open
Abstract
The transport activity of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) in cardiac myocytes is modulated by an inhibitory interaction with a transmembrane peptide, phospholamban (PLB). Previous biochemical studies have revealed that PLB interacts with a specific inhibitory site on SERCA, and low-resolution structural evidence suggests that PLB interacts with distinct alternative sites on SERCA. High-resolution details of the structural determinants of SERCA regulation have been elusive because of the dynamic nature of the regulatory complex. In this study, we used computational approaches to develop a structural model of SERCA-PLB interactions to gain a mechanistic understanding of PLB-mediated SERCA transport regulation. We combined steered molecular dynamics and membrane protein-protein docking experiments to achieve both a global search and all-atom force calculations to determine the relative affinities of PLB for candidate sites on SERCA. We modeled the binding of PLB to several SERCA conformations, representing different enzymatic states sampled during the calcium transport catalytic cycle. The results of the steered molecular dynamics and docking experiments indicated that the canonical PLB-binding site (comprising transmembrane helices M2, M4, and M9) is the preferred site. This preference was even more stringent for a superinhibitory PLB variant. Interestingly, PLB-binding specificity became more ambivalent for other SERCA conformers. These results provide evidence for polymorphic PLB interactions with novel sites on M3 and with the outside of the SERCA helix M9. Our findings are compatible with previous physical measurements that suggest that PLB interacts with multiple binding sites, conferring dynamic responsiveness to changing physiological conditions.
Collapse
Affiliation(s)
- Rebecca F Alford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nikolai Smolin
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
9
|
Fernández-de Gortari E, Aguayo-Ortiz R, Autry JM, Michel Espinoza-Fonseca L. A hallmark of phospholamban functional divergence is located in the N-terminal phosphorylation domain. Comput Struct Biotechnol J 2020; 18:705-713. [PMID: 32257054 PMCID: PMC7114604 DOI: 10.1016/j.csbj.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 01/12/2023] Open
Abstract
Sarcoplasmic reticulum Ca2+ pump (SERCA) is a critical component of the Ca2+ transport machinery in myocytes. There is clear evidence for regulation of SERCA activity by PLB, whose activity is modulated by phosphorylation of its N-terminal domain (residues 1–25), but there is less clear evidence for the role of this domain in PLB’s functional divergence. It is widely accepted that only sarcolipin (SLN), a protein that shares substantial homology with PLB, uncouples SERCA Ca2+ transport from ATP hydrolysis by inducing a structural change of its energy-transduction domain; yet, experimental evidence shows that the transmembrane domain of PLB (residues 26–52, PLB26–52) partially uncouples SERCA in vitro. These apparently conflicting mechanisms suggest that PLB’s uncoupling activity is encoded in its transmembrane domain, and that it is controlled by the N-terminal phosphorylation domain. To test this hypothesis, we performed molecular dynamics simulations (MDS) of the binary complex between PLB26–52 and SERCA. Comparison between PLB26–52 and wild-type PLB (PLBWT) showed no significant changes in the stability and orientation of the transmembrane helix, indicating that PLB26–52 forms a native-like complex with SERCA. MDS showed that PLB26–52 produces key intermolecular contacts and structural changes required for inhibition, in agreement with studies showing that PLB26–52 inhibits SERCA. However, deletion of the N-terminal phosphorylation domain facilitates an order-to-disorder shift in the energy-transduction domain associated with uncoupling of SERCA, albeit weaker than that induced by SLN. This mechanistic evidence reveals that the N-terminal phosphorylation domain of PLB is a primary contributor to the functional divergence among homologous SERCA regulators.
Collapse
Affiliation(s)
- Eli Fernández-de Gortari
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Biophysical Technology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Larsen EK, Weber DK, Wang S, Gopinath T, Blackwell DJ, Dalton MP, Robia SL, Gao J, Veglia G. Intrinsically disordered HAX-1 regulates Ca 2+ cycling by interacting with lipid membranes and the phospholamban cytoplasmic region. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183034. [PMID: 31400305 PMCID: PMC6899184 DOI: 10.1016/j.bbamem.2019.183034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 01/14/2023]
Abstract
Hematopoietic-substrate-1 associated protein X-1 (HAX-1) is a 279 amino acid protein expressed ubiquitously. In cardiac muscle, HAX-1 was found to modulate the sarcoendoplasmic reticulum calcium ATPase (SERCA) by shifting its apparent Ca2+ affinity (pCa). It has been hypothesized that HAX-1 binds phospholamban (PLN), enhancing its inhibitory function on SERCA. HAX-1 effects are reversed by cAMP-dependent protein kinase A that phosphorylates PLN at Ser16. To date, the molecular mechanisms for HAX-1 regulation of the SERCA/PLN complex are still unknown. Using enzymatic, in cell assays, circular dichroism, and NMR spectroscopy, we found that in the absence of a binding partner HAX-1 is essentially disordered and adopts a partial secondary structure upon interaction with lipid membranes. Also, HAX-1 interacts with the cytoplasmic region of monomeric and pentameric PLN as detected by NMR and in cell FRET assays, respectively. We propose that the regulation of the SERCA/PLN complex by HAX-1 is mediated by its interactions with lipid membranes, adding another layer of control in Ca2+ homeostatic balance in the heart muscle.
Collapse
Affiliation(s)
- Erik K Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Michael P Dalton
- Department of Physiology, Loyola University, Maywood, IL 60153, USA
| | - Seth L Robia
- Department of Physiology, Loyola University, Maywood, IL 60153, USA
| | - Jiali Gao
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; School of Chemical Biology and Technology, Beijing University Graduate School, Shenzhen 518055, China
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
11
|
Glaves JP, Primeau JO, Gorski PA, Espinoza-Fonseca LM, Lemieux MJ, Young HS. Interaction of a Sarcolipin Pentamer and Monomer with the Sarcoplasmic Reticulum Calcium Pump, SERCA. Biophys J 2019; 118:518-531. [PMID: 31858977 DOI: 10.1016/j.bpj.2019.11.3385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022] Open
Abstract
The sequential rise and fall of cytosolic calcium underlies the contraction-relaxation cycle of muscle cells. Whereas contraction is initiated by the release of calcium from the sarcoplasmic reticulum, muscle relaxation involves the active transport of calcium back into the sarcoplasmic reticulum. This reuptake of calcium is catalyzed by the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA), which plays a lead role in muscle contractility. The activity of SERCA is regulated by small membrane protein subunits, the most well-known being phospholamban (PLN) and sarcolipin (SLN). SLN physically interacts with SERCA and differentially regulates contractility in skeletal and atrial muscle. SLN has also been implicated in skeletal muscle thermogenesis. Despite these important roles, the structural mechanisms by which SLN modulates SERCA-dependent contractility and thermogenesis remain unclear. Here, we functionally characterized wild-type SLN and a pair of mutants, Asn4-Ala and Thr5-Ala, which yielded gain-of-function behavior comparable to what has been found for PLN. Next, we analyzed two-dimensional crystals of SERCA in the presence of wild-type SLN by electron cryomicroscopy. The fundamental units of the crystals are antiparallel dimer ribbons of SERCA, known for decades as an assembly of calcium-free SERCA molecules induced by the addition of decavanadate. A projection map of the SERCA-SLN complex was determined to a resolution of 8.5 Å, which allowed the direct visualization of an SLN pentamer. The SLN pentamer was found to interact with transmembrane segment M3 of SERCA, although the interaction appeared to be indirect and mediated by an additional density consistent with an SLN monomer. This SERCA-SLN complex correlated with the ability of SLN to decrease the maximal activity of SERCA, which is distinct from the ability of PLN to increase the maximal activity of SLN. Protein-protein docking and molecular dynamics simulations provided models for the SLN pentamer and the novel interaction between SERCA and an SLN monomer.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph O Primeau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Przemek A Gorski
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
12
|
Weber DK, Bader T, Larsen EK, Wang S, Gopinath T, Distefano M, Veglia G. Cysteine-ethylation of tissue-extracted membrane proteins as a tool to detect conformational states by solid-state NMR spectroscopy. Methods Enzymol 2019; 621:281-304. [PMID: 31128784 DOI: 10.1016/bs.mie.2019.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Solid-state NMR (ssNMR) is an ideal tool to study structure and dynamics of membrane proteins in their native lipid environment. In principle, ssNMR has no size limitations. However, this feature is rarely exploited as large membrane proteins display severe resonance overlap. In addition, dismal yields from recombinant bacterial expression systems limit severely spectroscopic characterization of membrane proteins. For very large mammalian membrane proteins, extraction from the original organism remains the most viable approach. In this case, NMR-observable nuclei must be introduced post-translationally, but the approaches developed so far are rather scarce. Here, we detail the synthesis and engineering of a reactive 13C-ethylmethanethiosulfonate (13C-EMTS) reagent for the post-translational alkylation of cysteine sidechains of a 110kDa sarcoplasmic reticulum Ca2+-ATPase (SERCA) extracted from rabbit skeletal muscle tissue. When reconstituted into liposomes, it is possible to resolve the resonances of the engineered ethyl groups by magic-angle spinning (MAS) 2D [13C,13C]-DARR experiments. Notably, the ethyl-group modification does not perturb the function of SERCA, yielding well-resolved 13C-13C fingerprints that are used to image its structural states in the catalytic cycle and filtering out overwhelming naturally-abundant 13C nuclei signals arising from the enzyme and lipids. We anticipate that this approach will be used together with 19F NMR to monitor conformational transitions of enzymes and proteins that are difficult to express recombinantly.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Taysir Bader
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Erik K Larsen
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Mark Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
13
|
Glaves JP, Primeau JO, Espinoza-Fonseca LM, Lemieux MJ, Young HS. The Phospholamban Pentamer Alters Function of the Sarcoplasmic Reticulum Calcium Pump SERCA. Biophys J 2019; 116:633-647. [PMID: 30712785 DOI: 10.1016/j.bpj.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 01/11/2019] [Indexed: 11/17/2022] Open
Abstract
The interaction of phospholamban (PLN) with the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump is a major regulatory axis in cardiac muscle contractility. The prevailing model involves reversible inhibition of SERCA by monomeric PLN and storage of PLN as an inactive pentamer. However, this paradigm has been challenged by studies demonstrating that PLN remains associated with SERCA and that the PLN pentamer is required for the regulation of cardiac contractility. We have previously used two-dimensional (2D) crystallization and electron microscopy to study the interaction between SERCA and PLN. To further understand this interaction, we compared small helical crystals and large 2D crystals of SERCA in the absence and presence of PLN. In both crystal forms, SERCA molecules are organized into identical antiparallel dimer ribbons. The dimer ribbons pack together with distinct crystal contacts in the helical versus large 2D crystals, which allow PLN differential access to potential sites of interaction with SERCA. Nonetheless, we show that a PLN oligomer interacts with SERCA in a similar manner in both crystal forms. In the 2D crystals, a PLN pentamer interacts with transmembrane segments M3 of SERCA and participates in a crystal contact that bridges neighboring SERCA dimer ribbons. In the helical crystals, an oligomeric form of PLN also interacts with M3 of SERCA, though the PLN oligomer straddles a SERCA-SERCA crystal contact. We conclude that the pentameric form of PLN interacts with M3 of SERCA and that it plays a distinct structural and functional role in SERCA regulation. The interaction of the pentamer places the cytoplasmic domains of PLN at the membrane surface proximal to the calcium entry funnel of SERCA. This interaction may cause localized perturbation of the membrane bilayer as a mechanism for increasing the turnover rate of SERCA.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph O Primeau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
14
|
Raguimova ON, Smolin N, Bovo E, Bhayani S, Autry JM, Zima AV, Robia SL. Redistribution of SERCA calcium pump conformers during intracellular calcium signaling. J Biol Chem 2018; 293:10843-10856. [PMID: 29764938 PMCID: PMC6052202 DOI: 10.1074/jbc.ra118.002472] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/01/2018] [Indexed: 11/06/2022] Open
Abstract
The conformational changes of a calcium transport ATPase were investigated with molecular dynamics (MD) simulations as well as fluorescence resonance energy transfer (FRET) measurements to determine the significance of a discrete structural element for regulation of the conformational dynamics of the transport cycle. Previous MD simulations indicated that a loop in the cytosolic domain of the SERCA calcium transporter facilitates an open-to-closed structural transition. To investigate the significance of this structural element, we performed additional MD simulations and new biophysical measurements of SERCA structure and function. Rationally designed in silico mutations of three acidic residues of the loop decreased SERCA domain-domain contacts and increased domain-domain separation distances. Principal component analysis of MD simulations suggested decreased sampling of compact conformations upon N-loop mutagenesis. Deficits in headpiece structural dynamics were also detected by measuring intramolecular FRET of a Cer-YFP-SERCA construct (2-color SERCA). Compared with WT, the mutated 2-color SERCA shows a partial FRET response to calcium, whereas retaining full responsiveness to the inhibitor thapsigargin. Functional measurements showed that the mutated transporter still hydrolyzes ATP and transports calcium, but that maximal enzyme activity is reduced while maintaining similar calcium affinity. In live cells, calcium elevations resulted in concomitant FRET changes as the population of WT 2-color SERCA molecules redistributed among intermediates of the transport cycle. Our results provide novel insights on how the population of SERCA pumps responds to dynamic changes in intracellular calcium.
Collapse
Affiliation(s)
- Olga N Raguimova
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Nikolai Smolin
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Elisa Bovo
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Siddharth Bhayani
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Joseph M Autry
- the Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Aleksey V Zima
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| | - Seth L Robia
- From the Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois 60153 and
| |
Collapse
|
15
|
Abstract
The calcium pump (a.k.a. Ca2+-ATPase or SERCA) is a membrane transport protein ubiquitously found in the endoplasmic reticulum (ER) of all eukaryotic cells. As a calcium transporter, SERCA maintains the low cytosolic calcium level that enables a vast array of signaling pathways and physiological processes (e.g. synaptic transmission, muscle contraction, fertilization). In muscle cells, SERCA promotes relaxation by pumping calcium ions from the cytosol into the lumen of the sarcoplasmic reticulum (SR), the main storage compartment for intracellular calcium. X-ray crystallographic studies have provided an extensive understanding of the intermediate states that SERCA populates as it progresses through the calcium transport cycle. Historically, SERCA is also known to be regulated by small transmembrane peptides, phospholamban (PLN) and sarcolipin (SLN). PLN is expressed in cardiac muscle, whereas SLN predominates in skeletal and atrial muscle. These two regulatory subunits play critical roles in cardiac contractility. While our understanding of these regulatory mechanisms are still developing, SERCA and PLN are one of the best understood examples of peptide-transporter regulatory interactions. Nonetheless, SERCA appeared to have only two regulatory subunits, while the related sodium pump (a.k.a. Na+, K+-ATPase) has at least nine small transmembrane peptides that provide tissue specific regulation. The last few years have seen a renaissance in our understanding of SERCA regulatory subunits. First, structures of the SERCA-SLN and SERCA-PLN complexes revealed molecular details of their interactions. Second, an array of micropeptides concealed within long non-coding RNAs have been identified as new SERCA regulators. This chapter will describe our current understanding of SERCA structure, function, and regulation.
Collapse
|
16
|
Blackwell DJ, Zak TJ, Robia SL. Cardiac Calcium ATPase Dimerization Measured by Cross-Linking and Fluorescence Energy Transfer. Biophys J 2017; 111:1192-1202. [PMID: 27653478 DOI: 10.1016/j.bpj.2016.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022] Open
Abstract
The cardiac sarco/endoplasmic reticulum calcium ATPase (SERCA) establishes the intracellular calcium gradient across the sarcoplasmic reticulum membrane. It has been proposed that SERCA forms homooligomers that increase the catalytic rate of calcium transport. We investigated SERCA dimerization in rabbit left ventricular myocytes using a photoactivatable cross-linker. Western blotting of cross-linked SERCA revealed higher-molecular-weight species consistent with SERCA oligomerization. Fluorescence resonance energy transfer measurements in cells transiently transfected with fluorescently labeled SERCA2a revealed that SERCA readily forms homodimers. These dimers formed in the absence or presence of the SERCA regulatory partner, phospholamban (PLB) and were unaltered by PLB phosphorylation or changes in calcium or ATP. Fluorescence lifetime data are compatible with a model in which PLB interacts with a SERCA homodimer in a stoichiometry of 1:2. Together, these results suggest that SERCA forms constitutive homodimers in live cells and that dimer formation is not modulated by SERCA conformational poise, PLB binding, or PLB phosphorylation.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois
| | - Taylor J Zak
- Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois
| | - Seth L Robia
- Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois.
| |
Collapse
|
17
|
Fischer MJM, Soller KJ, Sauer SK, Kalucka J, Veglia G, Reeh PW. Formalin evokes calcium transients from the endoplasmatic reticulum. PLoS One 2015; 10:e0123762. [PMID: 25875358 PMCID: PMC4398422 DOI: 10.1371/journal.pone.0123762] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022] Open
Abstract
The formalin test is the most widely used behavioral screening test for analgesic compounds. The cellular mechanism of action of formaldehyde, inducing a typically biphasic pain-related behavior in rodents is addressed in this study. The chemoreceptor channel TRPA1 was suggested as primary transducer, but the high concentrations used in the formalin test elicit a similar response in TRPA1 wildtype and knockout animals. Here we show that formaldehyde evokes a dose-dependent calcium release from intracellular stores in mouse sensory neurons and primary keratinocytes as well as in non-neuronal cell lines, and independent of TRPA1. The source of calcium is the endoplasmatic reticulum and inhibition of the sarco/endoplasmic reticulum calcium-ATPase has a major contribution. This TRPA1-independent mechanism may underlie formaldehyde-induced pan-neuronal excitation and subsequent inflammation.
Collapse
Affiliation(s)
- Michael J. M. Fischer
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| | - Kailey J. Soller
- Department of Chemistry, University of Minnesota, Minneapolis, United States of America
| | - Susanne K. Sauer
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Joanna Kalucka
- VIB Vesalius Research Center, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States of America
| | - Peter W. Reeh
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Gorski PA, Trieber CA, Ashrafi G, Young HS. Regulation of the sarcoplasmic reticulum calcium pump by divergent phospholamban isoforms in zebrafish. J Biol Chem 2015; 290:6777-88. [PMID: 25593315 DOI: 10.1074/jbc.m114.585604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The sarcoplasmic reticulum calcium pump (SERCA) is regulated by the small integral membrane proteins phospholamban (PLN) and sarcolipin (SLN). These regulators have homologous transmembrane regions, yet they differ in their cytoplasmic and luminal domains. Although the sequences of PLN and SLN are practically invariant among mammals, they vary in fish. Zebrafish (zf) appear to harbor multiple PLN isoforms, one of which contains 18 sequence variations and a unique luminal extension. Characterization of this isoform (zfPLN) revealed that SERCA inhibition and reversal by phosphorylation were comparable with human PLN. To understand the sequence variations in zfPLN, chimeras were created by transferring the N terminus, linker, and C terminus of zfPLN onto human PLN. A chimera containing the N-terminal domain resulted in a mild loss of function, whereas a chimera containing the linker domain resulted in a gain of function. This latter effect was due to changes in basic residues in the linker region of PLN. Removing the unique luminal domain of zfPLN ((53)SFHGM) resulted in loss of function, whereas adding this domain to human PLN had a minimal effect on SERCA inhibition. We conclude that the luminal extension contributes to SERCA inhibition but only in the context of zfPLN. Although this domain is distinct from the SLN luminal tail, zfPLN appears to use a hybrid PLN-SLN inhibitory mechanism. Importantly, the different zebrafish PLN isoforms raise the interesting possibility that sarcoplasmic reticulum calcium handling and cardiac contractility may be regulated by the differential expression of PLN functional variants.
Collapse
Affiliation(s)
| | - Catharine A Trieber
- From the Department of Biochemistry and National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | - Howard S Young
- From the Department of Biochemistry and National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
19
|
Vostrikov VV, Soller KJ, Ha KN, Gopinath T, Veglia G. Effects of naturally occurring arginine 14 deletion on phospholamban conformational dynamics and membrane interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:315-22. [PMID: 25251363 DOI: 10.1016/j.bbamem.2014.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 01/10/2023]
Abstract
Phospholamban (PLN) is a single-pass membrane protein that regulates the sarco(endo)plasmic reticulum Ca²⁺-ATPase (SERCA). Phosphorylation of PLN at Ser16 reverses its inhibitory function under β-adrenergic stimulation, augmenting Ca²⁺ uptake in the sarcoplasmic reticulum and muscle contractility. PLN exists in two conformations; a T state, where the cytoplasmic domain is helical and adsorbed on the membrane surface, and an R state, where the cytoplasmic domain is unfolded and membrane detached. Previous studies have shown that the PLN conformational equilibrium is crucial to SERCA regulation. Here, we used a combination of solution and solid-state NMR to compare the structural topology and conformational dynamics of monomeric PLN (PLN(AFA)) with that of the PLN(R14del), a naturally occurring deletion mutant that is linked to the progression of dilated cardiomyopathy. We found that the behavior of the inhibitory transmembrane domain of PLN(R14del) is similar to that of the native sequence. Conversely, the conformational dynamics of R14del both in micelles and lipid membranes are enhanced. We conclude that the deletion of Arg14 in the cytoplasmic region weakens the interactions with the membrane and shifts the conformational equilibrium of PLN toward the disordered R state. This conformational transition is correlated with the loss-of-function character of this mutant and is corroborated by SERCA's activity assays. These findings support our hypothesis that SERCA function is fine-tuned by PLN conformational dynamics and begin to explain the aberrant regulation of SERCA by the R14del mutant.
Collapse
Affiliation(s)
- Vitaly V Vostrikov
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kailey J Soller
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kim N Ha
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry and Biochemistry, St. Catherine University, St. Paul, MN 55105, USA
| | - T Gopinath
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
20
|
Hughes E, Middleton DA. Comparison of the structure and function of phospholamban and the arginine-14 deficient mutant associated with dilated cardiomyopathy. PLoS One 2014; 9:e106746. [PMID: 25225809 PMCID: PMC4165587 DOI: 10.1371/journal.pone.0106746] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/01/2014] [Indexed: 12/20/2022] Open
Abstract
Phospholamban (PLB) is a pentameric protein that plays an important role in regulating cardiac contractility via a reversible inhibitory association with the sarcoplasmic reticulum Ca2+ATPase (SERCA), the enzyme responsible for maintaining correct calcium homeostasis. Here we study the functional and biophysical characteristics of a PLB mutant associated with human dilated cardiomyopathy (DCM), with a deletion of arginine at position 14 (PLBR14Δ). In agreement with recent findings, we find that PLBR14Δ has a reduced inhibitory effect on SERCA compared to wild type PLB (PLBWT) when reconstituted into lipid membranes. The mutation also leads to a large reduction in the protein kinase A-catalysed phosphorylation of Ser-16 in the cytoplasmic domain of PLBR14Δ. Measurements on SERCA co-reconstituted with an equimolar mixture of PLBWT and PLBR14Δ (representing the lethal heterozygous state associated with DCM) indicates that the loss-of-function mutation has a dominant effect on PLBWT functionality and phosphorylation capacity, suggesting that mixed PLBWT/PLBR14Δ pentamers are formed that have characteristics typical of the mutant protein. Structural and biophysical analysis of PLBR14Δ indicates that the mutation perturbs slightly the helical structure of the PLB cytoplasmic domain and reduces its affinity for the phospholipid bilayer surface, thereby altering the orientation of the cytoplasmic domain relative to the wild-type protein. These results indicate that the structure and function consequences of the R14 deletion have profound effects on the regulation of SERCA which may contribute to the aetiology of DCM.
Collapse
Affiliation(s)
- Eleri Hughes
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom
| | - David A Middleton
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
21
|
Ablorh NAD, Dong X, James ZM, Xiong Q, Zhang J, Thomas DD, Karim CB. Synthetic phosphopeptides enable quantitation of the content and function of the four phosphorylation states of phospholamban in cardiac muscle. J Biol Chem 2014; 289:29397-405. [PMID: 25190804 DOI: 10.1074/jbc.m114.556621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have studied the differential effects of phospholamban (PLB) phosphorylation states on the activity of the sarcoplasmic reticulum Ca-ATPase (SERCA). It has been shown that unphosphorylated PLB (U-PLB) inhibits SERCA and that phosphorylation of PLB at Ser-16 or Thr-17 relieves this inhibition in cardiac sarcoplasmic reticulum. However, the levels of the four phosphorylation states of PLB (U-PLB, P16-PLB, P17-PLB, and doubly phosphorylated 2P-PLB) have not been measured quantitatively in cardiac tissue, and their functional effects on SERCA have not been determined directly. We have solved both problems through the chemical synthesis of all four PLB species. We first used the synthetic PLB as standards for a quantitative immunoblot assay, to determine the concentrations of all four PLB phosphorylation states in pig cardiac tissue, with and without left ventricular hypertrophy (LVH) induced by aortic banding. In both LVH and sham hearts, all phosphorylation states were significantly populated, but LVH hearts showed a significant decrease in U-PLB, with a corresponding increase in the ratio of total phosphorylated PLB to U-PLB. To determine directly the functional effects of each PLB species, we co-reconstituted each of the synthetic peptides in phospholipid membranes with SERCA and measured calcium-dependent ATPase activity. SERCA inhibition was maximally relieved by P16-PLB (the most highly populated PLB state in cardiac tissue homogenates), followed by 2P-PLB, then P17-PLB. These results show that each PLB phosphorylation state uniquely alters Ca(2+) homeostasis, with important implications for cardiac health, disease, and therapy.
Collapse
Affiliation(s)
| | - Xiaoqiong Dong
- From the Departments of Biochemistry, Molecular Biology and Biophysics and
| | - Zachary M James
- From the Departments of Biochemistry, Molecular Biology and Biophysics and
| | - Qiang Xiong
- Medicine, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jianyi Zhang
- Medicine, University of Minnesota, Minneapolis, Minnesota 55455
| | - David D Thomas
- From the Departments of Biochemistry, Molecular Biology and Biophysics and
| | - Christine B Karim
- From the Departments of Biochemistry, Molecular Biology and Biophysics and
| |
Collapse
|
22
|
Dong X, Thomas DD. Time-resolved FRET reveals the structural mechanism of SERCA-PLB regulation. Biochem Biophys Res Commun 2014; 449:196-201. [PMID: 24813991 DOI: 10.1016/j.bbrc.2014.04.166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/28/2014] [Indexed: 01/16/2023]
Abstract
We have used time-resolved fluorescence resonance energy transfer (TR-FRET) to characterize the interaction between phospholamban (PLB) and the sarcoplasmic reticulum (SR) Ca-ATPase (SERCA) under conditions that relieve SERCA inhibition. Unphosphorylated PLB inhibits SERCA in cardiac SR, but inhibition is relieved by either micromolar Ca(2+) or PLB phosphorylation. In both cases, it has been proposed that inhibition is relieved by dissociation of the complex. To test this hypothesis, we attached fluorophores to the cytoplasmic domains of SERCA and PLB, and reconstituted them functionally in lipid bilayers. TR-FRET, which permitted simultaneous measurement of SERCA-PLB binding and structure, was measured as a function of PLB phosphorylation and [Ca(2+)]. In all cases, two structural states of the SERCA-PLB complex were resolved, probably corresponding to the previously described T and R structural states of the PLB cytoplasmic domain. Phosphorylation of PLB at S16 completely relieved inhibition, partially dissociated the SERCA-PLB complex, and shifted the T/R equilibrium within the bound complex toward the R state. Since the PLB concentration in cardiac SR is at least 10 times that in our FRET measurements, we calculate that most of SERCA contains bound phosphorylated PLB in cardiac SR, even after complete phosphorylation. 4 μM Ca(2+) completely relieved inhibition but did not induce a detectable change in SERCA-PLB binding or cytoplasmic domain structure, suggesting a mechanism involving structural changes in SERCA's transmembrane domain. We conclude that Ca(2+) and PLB phosphorylation relieve SERCA-PLB inhibition by distinct mechanisms, but both are achieved primarily by structural changes within the SERCA-PLB complex, not by dissociation of that complex.
Collapse
Affiliation(s)
- Xiaoqiong Dong
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
23
|
Jing M, Verardi R, Veglia G, Bowser MT. Development of a Sensitive Assay for SERCA Activity Using FRET Detection of ADP. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2014; 6:1468-1474. [PMID: 24729794 PMCID: PMC3982649 DOI: 10.1039/c3ay41808a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Various isoforms of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) regulate Ca2+ homeostatic balance in both the heart (SERCA2a) and skeletal muscle (SERCA1a). Ca2+ plays a key role in these tissues as an intracellular signal that controls contractility. Due to its key role in the contractility cycle, SERCA is emerging as a promising pharmacological target to modulate heart muscle function. SERCA function is regulated by its endogenous inhibitor phospholamban (PLN). Upon binding, PLN decreases SERCA's apparent affinity for Ca2+. Therefore the interaction between PLN and SERCA has an important role in determining both physiological and pathological conditions. Quantifying the inhibitory potency of PLN is of great importance in understanding the pathophysiology of heart muscle. Traditionally, SERCA activity assays have been performed using a PK/LDH-coupled enzyme reaction, which suffers from limited sensitivity. We have developed a new SERCA activity assay based on the direct detection of the product ADP via time resolved FRET (TR-FRET). Under optimized conditions, our assay reduced the amount of SERCA required to perform the assay 1,000-fold. Inter-day reproducibility was shown to be excellent for SERCA preparations in either detergent (C12E8) or reconstituted lipids. The inhibitory effect of PLN on SERCA measured under the low-concentration conditions of our assay allowed us to more accurately investigate the binding between PLN and SERCA. Significant inhibitory effects of PLN were observed even at mid-nanomolar concentrations significantly lower than previous Kd estimates for the SERCA-PLN complex.
Collapse
Affiliation(s)
- Meng Jing
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Raffaello Verardi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Gianluigi Veglia
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 ; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael T Bowser
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
24
|
Protein-protein interactions in calcium transport regulation probed by saturation transfer electron paramagnetic resonance. Biophys J 2013; 103:1370-8. [PMID: 22995510 DOI: 10.1016/j.bpj.2012.08.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 01/05/2023] Open
Abstract
We have used electron paramagnetic resonance (EPR) to probe the homo- and heterooligomeric interactions of reconstituted sarcoplasmic reticulum Ca-ATPase (SERCA) and its regulator phospholamban (PLB). SERCA is responsible for restoring calcium to the sarcoplasmic reticulum to allow muscle relaxation, whereas PLB inhibits cardiac SERCA unless phosphorylated at Ser(16). To determine whether changes in protein association play essential roles in regulation, we detected the microsecond rotational diffusion of both proteins using saturation transfer EPR. Peptide synthesis was used to create a fully functional and monomeric PLB mutant with a spin label rigidly coupled to the backbone of the transmembrane helix, while SERCA was reacted with a Cys-specific spin label. Saturation transfer EPR revealed that sufficiently high lipid/protein ratios minimized self-association for both proteins. Under these dilute conditions, labeled PLB was substantially immobilized after co-reconstitution with unlabeled SERCA, reflecting their association to form the regulatory complex. Ser(16) phosphorylation slightly increased this immobilization. Complementary measurements with labeled SERCA showed no change in mobility after co-reconstitution with unlabeled PLB, regardless of its phosphorylation state. We conclude that phosphorylating monomeric PLB can relieve SERCA inhibition without changes in the oligomeric states of these proteins, indicating a structural rearrangement within the heterodimeric regulatory complex.
Collapse
|
25
|
Gorski PA, Glaves JP, Vangheluwe P, Young HS. Sarco(endo)plasmic reticulum calcium ATPase (SERCA) inhibition by sarcolipin is encoded in its luminal tail. J Biol Chem 2013; 288:8456-8467. [PMID: 23362265 DOI: 10.1074/jbc.m112.446161] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is regulated in a tissue-dependent manner via interaction with the short integral membrane proteins phospholamban (PLN) and sarcolipin (SLN). Although defects in SERCA activity are known to cause heart failure, the regulatory mechanisms imposed by PLN and SLN could have clinical implications for both heart and skeletal muscle diseases. PLN and SLN have significant sequence homology in their transmembrane regions, suggesting a similar mode of binding to SERCA. However, unlike PLN, SLN has a conserved C-terminal luminal tail composed of five amino acids ((27)RSYQY), which may contribute to a distinct SERCA regulatory mechanism. We have functionally characterized alanine mutants of the C-terminal tail of SLN using co-reconstituted proteoliposomes of SERCA and SLN. We found that Arg(27) and Tyr(31) are essential for SLN function. We also tested the effect of a truncated variant of SLN (Arg(27)stop) and extended chimeras of PLN with the five luminal residues of SLN added to its C terminus. The Arg(27)stop form of SLN resulted in loss of function, whereas the PLN chimeras resulted in superinhibition with characteristics of both PLN and SLN. Based on our results, we propose that the C-terminal tail of SLN is a distinct, essential domain in the regulation of SERCA and that the functional properties of the SLN tail can be transferred to PLN.
Collapse
Affiliation(s)
- Przemek A Gorski
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta T6G 2M9, Canada
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, B3000 Leuven, Belgium
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta T6G 2M9, Canada.
| |
Collapse
|
26
|
Tuning the structural coupling between the transmembrane and cytoplasmic domains of phospholamban to control sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) function. J Muscle Res Cell Motil 2012; 33:485-92. [PMID: 22971924 DOI: 10.1007/s10974-012-9319-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/18/2012] [Indexed: 12/15/2022]
Abstract
Phospholamban (PLN) is the endogenous inhibitor of the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), the integral membrane enzyme responsible for 70 % of the removal of Ca(2+) from the cytosol, inducing cardiac muscle relaxation in humans. Dysfunctions in SERCA:PLN interactions have been implicated as having a critical role in cardiac disease, and targeting Ca(2+) transport has been demonstrated to be a promising avenue in treating conditions of heart failure. Here, we designed a series of new mutants able to tune SERCA function, targeting the loop sequence that connects the transmembrane and cytoplasmic helices of PLN. We found that a variable degree of loss of inhibition mutants is attainable by engineering glycine mutations along PLN's loop domain. Remarkably, a double glycine mutation results in a complete loss-of-function mutant, fully mimicking the phosphorylated state of PLN. Using nuclear magnetic resonance spectroscopy, we rationalized the effects of these mutations in terms of entropic control on PLN function, whose inhibitory function can be modulated by increasing its conformational dynamics. However, if PLN mutations go past a threshold set by the phosphorylated state, they break the structural coupling between the transmembrane and cytoplasmic domains, resulting in a species that behaves as the inhibitory transmembrane domain alone. These studies provide new potential candidates for gene therapy to reverse the effects of heart failure.
Collapse
|
27
|
Li J, James ZM, Dong X, Karim CB, Thomas DD. Structural and functional dynamics of an integral membrane protein complex modulated by lipid headgroup charge. J Mol Biol 2012; 418:379-89. [PMID: 22381409 DOI: 10.1016/j.jmb.2012.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/01/2012] [Accepted: 02/06/2012] [Indexed: 11/28/2022]
Abstract
We have used membrane surface charge to modulate the structural dynamics of an integral membrane protein, phospholamban (PLB), and thereby its functional inhibition of the sarcoplasmic reticulum Ca-ATPase (SERCA). It was previously shown by electron paramagnetic resonance, in vesicles of neutral lipids, that the PLB cytoplasmic domain is in equilibrium between an ordered T state and a dynamically disordered R state and that phosphorylation of PLB increases the R state and relieves SERCA inhibition, suggesting that R is less inhibitory. Here, we sought to control the T/R equilibrium by an alternative means-varying the lipid headgroup charge, thus perturbing the electrostatic interaction of PLB's cationic cytoplasmic domain with the membrane surface. We resolved the T and R states not only by electron paramagnetic resonance in the absence of SERCA but also by time-resolved fluorescence resonance energy transfer from SERCA to PLB, thus probing directly the SERCA-PLB complex. Compared to neutral lipids, anionic lipids increased both the T population and SERCA inhibition, while cationic lipids had the opposite effects. In contrast to conventional models, decreased inhibition was not accompanied by decreased binding. We conclude that PLB binds to SERCA in two distinct structural states of the cytoplasmic domain: an inhibitory T state that interacts strongly with the membrane surface and a less inhibitory R state that interacts more strongly with the anionic SERCA cytoplasmic domain. Modulating membrane surface charge provides an effective way of investigating the correlation between structural dynamics and function of integral membrane proteins.
Collapse
Affiliation(s)
- Ji Li
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street Southeast, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
28
|
Gustavsson M, Traaseth NJ, Veglia G. Activating and deactivating roles of lipid bilayers on the Ca(2+)-ATPase/phospholamban complex. Biochemistry 2011; 50:10367-74. [PMID: 21992175 DOI: 10.1021/bi200759y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The physicochemical properties of the lipid bilayer shape the structure and topology of membrane proteins and regulate their biological function. Here, we investigated the functional effects of various lipid bilayer compositions on the sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA) in the presence and absence of its endogenous regulator, phospholamban (PLN). In the cardiac muscle, SERCA hydrolyzes one ATP molecule to translocate two Ca(2+) ions into the SR membrane per enzymatic cycle. Unphosphorylated PLN reduces SERCA's affinity for Ca(2+) and affects the enzymatic turnover. We varied bilayer thickness, headgroup, and fluidity and found that both the maximal velocity (V(max)) of the enzyme and its apparent affinity for Ca(2+) (K(Ca)) are strongly affected. Our results show that (a) SERCA's V(max) has a biphasic dependence on bilayer thickness, reaching maximum activity with 22-carbon lipid chain length, (b) phosphatidylethanolamine (PE) and phosphatidylserine (PS) increase Ca(2+) affinity, and (c) monounsaturated lipids afford higher SERCA V(max) and Ca(2+) affinity than diunsaturated lipids. The presence of PLN removes the activating effect of PE and shifts SERCA's activity profile, with a maximal activity reached in bilayers with 20-carbon lipid chain length. Our results in synthetic lipid systems compare well with those carried out in native SR lipids. Importantly, we found that specific membrane compositions closely reproduce PLN effects (V(max) and K(Ca)) found in living cells, reconciling an ongoing controversy regarding the regulatory role of PLN on SERCA function. Taken with the physiological changes occurring in the SR membrane composition, these studies underscore a possible allosteric role of the lipid bilayers on the SERCA/PLN complex.
Collapse
Affiliation(s)
- Martin Gustavsson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
29
|
Gustavsson M, Traaseth NJ, Veglia G. Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:146-53. [PMID: 21839724 DOI: 10.1016/j.bbamem.2011.07.040] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 10/18/2022]
Abstract
In this paper, we analyzed the ground and excited states of phospholamban (PLN), a membrane protein that regulates sarcoplasmic reticulum calcium ATPase (SERCA), in different membrane mimetic environments. Previously, we proposed that the conformational equilibria of PLN are central to SERCA regulation. Here, we show that these equilibria detected in micelles and bicelles are also present in native sarcoplasmic reticulum lipid membranes as probed by MAS solid-state NMR. Importantly, we found that the kinetics of conformational exchange and the extent of ground and excited states in detergent micelles and lipid bilayers are different, revealing a possible role of the membrane composition on the allosteric regulation of SERCA. Since the extent of excited states is directly correlated to SERCA inhibition, these findings open up the exciting possibility that calcium transport in the heart can be controlled by the lipid bilayer composition. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Martin Gustavsson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
30
|
Functional and physical competition between phospholamban and its mutants provides insight into the molecular mechanism of gene therapy for heart failure. Biochem Biophys Res Commun 2011; 408:388-92. [PMID: 21510919 DOI: 10.1016/j.bbrc.2011.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 04/05/2011] [Indexed: 11/20/2022]
Abstract
We have used functional co-reconstitution of purified sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA) with phospholamban (PLB), its inhibitor in the heart, to test the hypothesis that loss-of-function (LOF) PLB mutants (PLB(M)) can compete with wild-type PLB (PLB(W)) to relieve SERCA inhibition. Co-reconstitution at varying PLB-to-SERCA ratios was conducted using synthetic PLB(W), gain-of-function mutant I40A, or LOF mutants S16E (phosphorylation mimic) or L31A. Inhibitory potency was defined as the fractional increase in K(Ca), measured from the Ca(2+)-dependence of ATPase activity. At saturating PLB, the inhibitory potency of I40A was about three times that of PLB(W), while the potency of each of the LOF PLB(M) was about one third that of PLB(W). However, there was no significant variation in the apparent SERCA affinity for these four PLB variants. When SERCA was co-reconstituted with mixtures of PLB(W) and LOF PLB(M), inhibitory potency was reduced relative to that of PLB(W) alone. Furthermore, FRET between donor-labeled SERCA and acceptor-labeled PLB(W) was decreased by both (unlabeled) LOF PLB(M). These results show that LOF PLB(M) can compete both physically and functionally with PLB(W), provide a rational explanation for the partial success of S16E-based gene therapy in animal models of heart failure, and establish a powerful platform for designing and testing more effective PLB(M) targeted for gene therapy of heart failure in humans.
Collapse
|
31
|
Gustavsson M, Traaseth NJ, Karim CB, Lockamy EL, Thomas DD, Veglia G. Lipid-mediated folding/unfolding of phospholamban as a regulatory mechanism for the sarcoplasmic reticulum Ca2+-ATPase. J Mol Biol 2011; 408:755-65. [PMID: 21419777 DOI: 10.1016/j.jmb.2011.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/10/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022]
Abstract
The integral membrane protein complex between phospholamban (PLN) and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) regulates cardiac contractility. In the unphosphorylated form, PLN binds SERCA and inhibits Ca(2+) flux. Upon phosphorylation of PLN at Ser16, the inhibitory effect is reversed. Although structural details on both proteins are emerging from X-ray crystallography, cryo-electron microscopy, and NMR studies, the molecular mechanisms of their interactions and regulatory process are still lacking. It has been speculated that SERCA regulation depends on PLN structural transitions (order to disorder, i.e., folding/unfolding). Here, we investigated PLN conformational changes upon chemical unfolding by a combination of electron paramagnetic resonance and NMR spectroscopies, revealing that the conformational transitions involve mostly the cytoplasmic regions, with two concomitant phenomena: (1) membrane binding and folding of the amphipathic domain Ia and (2) folding/unfolding of the juxtamembrane domain Ib of PLN. Analysis of phosphorylated and unphosphorylated PLN with two phosphomimetic mutants of PLN (S16E and S16D) shows that the population of an unfolded state in domains Ia and Ib (T' state) is linearly correlated to the extent of SERCA inhibition measured by activity assays. Inhibition of SERCA is carried out by the folded ground state (T state) of the protein (PLN), while the relief of inhibition involves promotion of PLN to excited conformational states (Ser16 phosphorylated PLN). We propose that PLN population shifts (folding/unfolding) are a key regulatory mechanism for SERCA.
Collapse
Affiliation(s)
- Martin Gustavsson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
32
|
Lethal Arg9Cys phospholamban mutation hinders Ca2+-ATPase regulation and phosphorylation by protein kinase A. Proc Natl Acad Sci U S A 2011; 108:2735-40. [PMID: 21282613 DOI: 10.1073/pnas.1013987108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulatory interaction of phospholamban (PLN) with Ca(2+)-ATPase controls the uptake of calcium into the sarcoplasmic reticulum, modulating heart muscle contractility. A missense mutation in PLN cytoplasmic domain (R9C) triggers dilated cardiomyopathy in humans, leading to premature death. Using a combination of biochemical and biophysical techniques both in vitro and in live cells, we show that the R9C mutation increases the stability of the PLN pentameric assembly via disulfide bridge formation, preventing its binding to Ca(2+)-ATPase as well as phosphorylation by protein kinase A. These effects are enhanced under oxidizing conditions, suggesting that oxidative stress may exacerbate the cardiotoxic effects of the PLN(R9C) mutant. These results reveal a regulatory role of the PLN pentamer in calcium homeostasis, going beyond the previously hypothesized role of passive storage for active monomers.
Collapse
|
33
|
Glaves JP, Trieber CA, Ceholski DK, Stokes DL, Young HS. Phosphorylation and mutation of phospholamban alter physical interactions with the sarcoplasmic reticulum calcium pump. J Mol Biol 2010; 405:707-23. [PMID: 21108950 DOI: 10.1016/j.jmb.2010.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/02/2010] [Accepted: 11/08/2010] [Indexed: 11/26/2022]
Abstract
Phospholamban physically interacts with the sarcoplasmic reticulum calcium pump (SERCA) and regulates contractility of the heart in response to adrenergic stimuli. We studied this interaction using electron microscopy of 2D crystals of SERCA in complex with phospholamban. In earlier studies, phospholamban oligomers were found interspersed between SERCA dimer ribbons and a 3D model was constructed to show interactions with SERCA. In this study, we examined the oligomeric state of phospholamban and the effects of phosphorylation and mutation of phospholamban on the interaction with SERCA in the 2D crystals. On the basis of projection maps from negatively stained and frozen-hydrated crystals, phosphorylation of Ser16 selectively disordered the cytoplasmic domain of wild type phospholamban. This was not the case for a pentameric gain-of-function mutant (Lys27Ala), which retained inhibitory activity and remained ordered in the phosphorylated state. A partial loss-of-function mutation that altered the charge state of phospholamban (Arg14Ala) retained an ordered state, while a complete loss-of-function mutation (Asn34Ala) was also disordered. The functional state of phospholamban was correlated with an order-to-disorder transition of the phospholamban cytoplasmic domain in the 2D co-crystals. Furthermore, co-crystals of the gain-of-function mutant (Lys27Ala) facilitated data collection from frozen-hydrated crystals. An improved projection map was calculated to a resolution of 8 Å, which supports the pentamer as the oligomeric state of phospholamban in the crystals. The 2D co-crystals with SERCA require a functional pentameric form of phospholamban, which physically interacts with SERCA at an accessory site distinct from that used by the phospholamban monomer for the inhibitory association.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
34
|
Heparin-derived oligosaccharides interact with the phospholamban cytoplasmic domain and stimulate SERCA function. Biochem Biophys Res Commun 2010; 401:370-5. [DOI: 10.1016/j.bbrc.2010.09.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 09/14/2010] [Indexed: 11/21/2022]
|
35
|
Akin BL, Chen Z, Jones LR. Superinhibitory phospholamban mutants compete with Ca2+ for binding to SERCA2a by stabilizing a unique nucleotide-dependent conformational state. J Biol Chem 2010; 285:28540-52. [PMID: 20622261 DOI: 10.1074/jbc.m110.151779] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three cross-linkable phospholamban (PLB) mutants of increasing inhibitory strength (N30C-PLB < N27A,N30C,L37A-PLB (PLB3) < N27A,N30C,L37A,V49G-PLB (PLB4)) were used to determine whether PLB decreases the Ca(2+) affinity of SERCA2a by competing for Ca(2+) binding. The functional effects of N30C-PLB, PLB3, and PLB4 on Ca(2+)-ATPase activity and E1 approximately P formation were correlated with their binding interactions with SERCA2a measured by chemical cross-linking. Successively higher Ca(2+) concentrations were required to both activate the enzyme co-expressed with N30C-PLB, PLB3, and PLB4 and to dissociate N30C-PLB, PLB3, and PLB4 from SERCA2a, suggesting competition between PLB and Ca(2+) for binding to SERCA2a. This was confirmed with the Ca(2+) pump mutant, D351A, which is catalytically inactive but retains strong Ca(2+) binding. Increasingly higher Ca(2+) concentrations were also required to dissociate N30C-PLB, PLB3, and PLB4 from D351A, demonstrating directly that PLB antagonizes Ca(2+) binding. Finally, the specific conformation of E2 (Ca(2+)-free state of SERCA2a) that binds PLB was investigated using the Ca(2+)-pump inhibitors thapsigargin and vanadate. Cross-linking assays conducted in the absence of Ca(2+) showed that PLB bound preferentially to E2 with bound nucleotide, forming a remarkably stable complex that is highly resistant to both thapsigargin and vanadate. In the presence of ATP, N30C-PLB had an affinity for SERCA2a approaching that of vanadate (micromolar), whereas PLB3 and PLB4 had much higher affinities, severalfold greater than even thapsigargin (nanomolar or higher). We conclude that PLB decreases Ca(2+) binding to SERCA2a by stabilizing a unique E2.ATP state that is unable to bind thapsigargin or vanadate.
Collapse
Affiliation(s)
- Brandy L Akin
- Krannert Institute of Cardiology and the Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
36
|
Trieber CA, Afara M, Young HS. Effects of phospholamban transmembrane mutants on the calcium affinity, maximal activity, and cooperativity of the sarcoplasmic reticulum calcium pump. Biochemistry 2009; 48:9287-96. [PMID: 19708671 DOI: 10.1021/bi900852m] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of the SERCA calcium pump by phospholamban (PLB) is largely due to interactions between their respective transmembrane domains. In spite of numerous mutagenesis and kinetic studies, we still do not have a clear mechanistic picture of how PLB influences the calcium transport cycle of SERCA. Herein, we have created alanine mutants for each residue in the transmembrane domain of PLB, we have co-reconstituted these mutants with SERCA into proteoliposomes, and we have performed kinetic simulations of the calcium-dependent ATPase activity isotherms. The PLB transmembrane mutants had a variable effect on the calcium affinity, maximal activity, and cooperativity of SERCA, such that a range of values was observed. Kinetic simulations using a well-established reaction scheme for SERCA then allowed us to correlate the effects on SERCA activity with changes in the reaction scheme rate constants. Only three steps in the reaction scheme were affected by the presence of PLB, namely, binding of the first calcium ion, a subsequent conformational change in SERCA, and binding of the second calcium ion. The ability of wild-type and mutant forms of PLB to alter the apparent calcium affinity of SERCA correlated with a decreased rate of binding of the second calcium ion. In addition, the ability of wild-type and mutant forms of PLB to alter the maximal activity of SERCA correlated with a change in the forward rate constant for the slow conformational change in SERCA following binding of the first calcium ion.
Collapse
Affiliation(s)
- Catharine A Trieber
- Department of Biochemistry and National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
37
|
Hermanson D, Addo SN, Bajer AA, Marchant JS, Das SGK, Srinivasan B, Al-Mousa F, Michelangeli F, Thomas DD, Lebien TW, Xing C. Dual mechanisms of sHA 14-1 in inducing cell death through endoplasmic reticulum and mitochondria. Mol Pharmacol 2009; 76:667-78. [PMID: 19561125 DOI: 10.1124/mol.109.055830] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HA 14-1 is a small-molecule Bcl-2 antagonist that promotes apoptosis in malignant cells, but its mechanism of action is not well defined. We recently reported that HA 14-1 has a half-life of only 15 min in vitro, which led us to develop a stable analog of HA 14-1 (sHA 14-1). The current study characterizes its mode of action. Because of the antiapoptotic function of Bcl-2 family proteins on the endoplasmic reticulum (ER) and mitochondria, the effect of sHA 14-1 on both organelles was evaluated. sHA 14-1 induced ER calcium release in human leukemic cells within 1 min, followed by induction of the ER stress-inducible transcription factor ATF4. Similar kinetics and stronger intensity of ER calcium release were induced by the sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin, accompanied by similar kinetics and intensity of ATF4 induction. sHA 14-1 directly inhibited SERCA enzymatic activity but had no effect on the inositol triphosphate receptor. Evaluation of the mitochondrial pathway showed that sHA 14-1 triggered a loss of mitochondrial transmembrane potential (Delta psi m) and weak caspase-9 activation, whereas thapsigargin had no effect. (R)-4-(3-Dimethylamino-1-phenylsulfanylmethyl-propylamino)-N-{4-[4-(4'-chloro-biphenyl-2-ylmethyl)-piperazin-1-yl]-benzoyl}-3-nitrobenzenesulfonamide (ABT-737), a well established small-molecule Bcl-2 antagonist, rapidly induced loss of Delta psi m and caspase-9 activation but had no effect on the ER. The pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone had some protective effect on sHA 14-1-induced cell death. These collective results suggest a unique dual targeting mechanism of sHA 14-1 on the apoptotic resistance machinery of tumor cells that includes antiapoptotic Bcl-2 family proteins and SERCA proteins.
Collapse
Affiliation(s)
- David Hermanson
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Afara MR, Trieber CA, Ceholski DK, Young HS. Peptide inhibitors use two related mechanisms to alter the apparent calcium affinity of the sarcoplasmic reticulum calcium pump. Biochemistry 2008; 47:9522-30. [PMID: 18702513 DOI: 10.1021/bi800880q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The primary sequence of phospholamban (PLB) has provided a template for the rational design of peptide inhibitors of the sarcoplasmic reticulum calcium ATPase (SERCA). In the transmembrane domain of PLB, there are few polar residues and only one is essential (Asn (34)). Using synthetic peptides, we have previously investigated the role of Asn (34) in the context of simple hydrophobic transmembrane peptides. Herein we propose that the role of Asn in SERCA inhibition is position-sensitive and dependent upon the distribution of hydrophobic residues. To test this hypothesis, we synthesized a series of transmembrane peptides based on a 24 amino acid polyalanine sequence having either an alternating Leu-Ala sequence (Leu 12) or Leu residues at the native positions found in PLB (Leu 9). Asn-containing Leu 9 and Leu 12 peptides were synthesized with a single Asn residue located either one amino acid (N+/-1) or one turn of the helix (N+/-4) in either direction from its native position. Co-reconstitution of these peptides with SERCA into proteoliposomes revealed effects on the apparent calcium affinity and cooperativity of SERCA that correlated with the positions of the Asn and Leu residues. The most inhibitory peptides increased the cooperativity of SERCA as indicated by the Hill coefficients, suggesting that calcium-dependent reversibility is an inherent part of the inhibitory mechanism. Kinetic simulations combined with molecular modeling of the interaction between the peptides and SERCA reveal two related mechanisms of inhibition. Peptides that resemble PLB use the same inhibitory mechanism, whereas peptides that are more divergent from PLB alter an additional step in the calcium transport cycle.
Collapse
Affiliation(s)
- Michael R Afara
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | |
Collapse
|
39
|
Winters DL, Autry JM, Svensson B, Thomas DD. Interdomain fluorescence resonance energy transfer in SERCA probed by cyan-fluorescent protein fused to the actuator domain. Biochemistry 2008; 47:4246-56. [PMID: 18338856 DOI: 10.1021/bi702089j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have used a biosynthetically incorporated fluorescent probe to monitor domain movements involved in ion transport by the sarcoendoplasmic reticulum Ca-ATPase (SERCA) from rabbit fast-twitch skeletal muscle. X-ray crystal structures suggest that the nucleotide-binding (N) and actuator (A) domains of SERCA move apart by several nanometers upon Ca binding. To test this hypothesis, cDNA constructs were created to fuse cyan-fluorescent protein (CFP) to the N terminus of SERCA (A domain). This CFP-SERCA fluorescent fusion protein retained activity when expressed in Sf21 insect cells using the baculovirus system. Fluorescence resonance energy transfer (FRET) was used to monitor the A-N interdomain distance for CFP-SERCA selectively labeled with fluorescein isothiocyanate (FITC) at Lys 515 in the N domain. At low [Ca (2+)] (E2 biochemical state), the measured FRET efficiency between CFP (donor in A domain) and FITC (acceptor in N domain) was 0.34 +/- 0.03, indicating a mean distance of 61.6 +/- 2.0 A between probes on the two domains. An increase of [Ca (2+)] to 0.1 mM (E1-Ca biochemical state) decreased the FRET efficiency by 0.06 +/- 0.03, indicating an increase in the mean distance by 3.0 +/- 1.2 A. Quantitative molecular modeling of dual-labeled SERCA, including an accurate calculation of the orientation factor, shows that the FRET data observed in the absence of Ca is consistent with the E2 crystal structure, but the increase in distance (decrease in FRET) induced by Ca is much less than predicted by the E1 crystal structure. We conclude that the E1 crystal structure does not reflect the predominant structure of SERCA under physiological conditions in a functional membrane bilayer.
Collapse
Affiliation(s)
- Deborah L Winters
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
40
|
Ha KN, Traaseth NJ, Verardi R, Zamoon J, Cembran A, Karim CB, Thomas DD, Veglia G. Controlling the Inhibition of the Sarcoplasmic Ca2+-ATPase by Tuning Phospholamban Structural Dynamics. J Biol Chem 2007; 282:37205-14. [PMID: 17908690 DOI: 10.1074/jbc.m704056200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cardiac contraction and relaxation are regulated by conformational transitions of protein complexes that are responsible for calcium trafficking through cell membranes. Central to the muscle relaxation phase is a dynamic membrane protein complex formed by Ca2+-ATPase (SERCA) and phospholamban (PLN), which in humans is responsible for approximately 70% of the calcium re-uptake in the sarcoplasmic reticulum. Dysfunction in this regulatory mechanism causes severe pathophysiologies. In this report, we used a combination of nuclear magnetic resonance, electron paramagnetic resonance, and coupled enzyme assays to investigate how single mutations at position 21 of PLN affects its structural dynamics and, in turn, its interaction with SERCA. We found that it is possible to control the activity of SERCA by tuning PLN structural dynamics. Both increased rigidity and mobility of the PLN backbone cause a reduction of SERCA inhibition, affecting calcium transport. Although the more rigid, loss-of-function (LOF) mutants have lower binding affinities for SERCA, the more dynamic LOF mutants have binding affinities similar to that of PLN. Here, we demonstrate that it is possible to harness this knowledge to design new LOF mutants with activity similar to S16E (a mutant already used in gene therapy) for possible application in recombinant gene therapy. As proof of concept, we show a new mutant of PLN, P21G, with improved LOF characteristics in vitro.
Collapse
Affiliation(s)
- Kim N Ha
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Moncoq K, Trieber CA, Young HS. The molecular basis for cyclopiazonic acid inhibition of the sarcoplasmic reticulum calcium pump. J Biol Chem 2007; 282:9748-9757. [PMID: 17259168 DOI: 10.1074/jbc.m611653200] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sarcoplasmic reticulum Ca(2+)-ATPase is essential for calcium reuptake in the muscle contraction-relaxation cycle. Here we present structures of a calcium-free state with bound cyclopiazonic acid (CPA) and magnesium fluoride at 2.65 A resolution and a calcium-free state with bound CPA and ADP at 3.4A resolution. In both structures, CPA occupies the calcium access channel delimited by transmembrane segments M1-M4. Inhibition of Ca(2+)-ATPase is stabilized by a polar pocket that surrounds the tetramic acid of CPA and a hydrophobic platform that cradles the inhibitor. The calcium pump residues involved include Gln(56), Leu(61), Val(62), and Asn(101). We conclude that CPA inhibits the calcium pump by blocking the calcium access channel and immobilizing a subset of transmembrane helices. In the E2(CPA) structure, ADP is bound in a distinct orientation within the nucleotide binding pocket. The adenine ring is sandwiched between Arg(489) of the nucleotide-binding domain and Arg(678) of the phosphorylation domain. This mode of binding conforms to an adenine recognition motif commonly found in ATP-dependent proteins.
Collapse
Affiliation(s)
- Karine Moncoq
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Catharine A Trieber
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
42
|
Vangheluwe P, Sipido KR, Raeymaekers L, Wuytack F. New perspectives on the role of SERCA2's Ca2+ affinity in cardiac function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1216-28. [PMID: 17005265 DOI: 10.1016/j.bbamcr.2006.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 08/10/2006] [Indexed: 11/21/2022]
Abstract
Cardiomyocyte relaxation and contraction are tightly controlled by the activity of the cardiac sarco(endo)plasmic reticulum (SR) Ca2+ transport ATPase (SERCA2a). The SR Ca2+ -uptake activity not only determines the speed of Ca(2+) removal during relaxation, but also the SR Ca2+ content and therefore the amount of Ca2+ released for cardiomyocyte contraction. The Ca2+ affinity is the major determinant of the pump's activity in the physiological Ca2+ concentration range. In the heart, the affinity of the pump for Ca2+ needs to be controlled between narrow borders, since an imbalanced affinity may evoke hypertrophic cardiomyopathy. Several small proteins (phospholamban, sarcolipin) adjust the Ca2+ affinity of the pump to the physiological needs of the cardiomyocyte. It is generally accepted that a chronically reduced Ca2+ affinity of the pump contributes to depressed SR Ca2+ handling in heart failure. Moreover, a persistently lower Ca2+ affinity is sufficient to impair cardiomyocyte SR Ca2+ handling and contractility inducing dilated cardiomyopathy in mice and humans. Conversely, the expression of SERCA2a, a pump with a lower Ca2+ affinity than the housekeeping isoform SERCA2b, is crucial to maintain normal cardiac function and growth. Novel findings demonstrated that a chronically increased Ca2+ affinity also may trigger cardiac hypertrophy in mice and humans. In addition, recent studies suggest that some models of heart failure are marked by a higher affinity of the pump for Ca2+, and hence by improved cardiomyocyte relaxation and contraction. Depressed cardiomyocyte SR Ca2+ uptake activity may therefore not be a universal hallmark of heart failure.
Collapse
Affiliation(s)
- P Vangheluwe
- Laboratory of Physiology, University of Leuven, Herestraat 49, bus 802, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
43
|
Karim CB, Zhang Z, Howard EC, Torgersen KD, Thomas DD. Phosphorylation-dependent Conformational Switch in Spin-labeled Phospholamban Bound to SERCA. J Mol Biol 2006; 358:1032-40. [PMID: 16574147 DOI: 10.1016/j.jmb.2006.02.051] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 02/03/2006] [Accepted: 02/16/2006] [Indexed: 11/20/2022]
Abstract
We have used chemical synthesis, functional reconstitution, and electron paramagnetic resonance (EPR) to probe the functional dynamics of phospholamban (PLB), which regulates the Ca-ATPase (SERCA) in cardiac sarcoplasmic reticulum. The transmembrane domain of PLB inhibits SERCA at low [Ca(2+)], but the cytoplasmic domain relieves this inhibition upon Ser16 phosphorylation. Monomeric PLB was synthesized with Ala11 replaced by the 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) spin label, which reports peptide backbone dynamics directly. PLB was reconstituted into membranes in the presence or absence of SERCA. TOAC-PLB showed normal inhibitory function, which was reversed by phosphorylation at Ser16 or by micromolar [Ca(2+)]. EPR showed that the PLB cytoplasmic domain exhibits two resolved conformations, a tense T state that is ordered and a relaxed R state that is dynamically disordered and extended. PLB phosphorylation shifts this equilibrium toward the R state and makes it more dynamic (hyperextended). Phosphorylation strongly perturbs the dynamics of SERCA-bound PLB without dissociating the complex, while micromolar [Ca(2+)] has no effect on PLB dynamics. A lipid anchor synthetically attached to the N terminus of PLB permits Ca-dependent SERCA inhibition but prevents the phosphorylation-induced disordering and reversal of inhibition. We conclude that the relief of SERCA inhibition by PLB phosphorylation is due to an order-to-disorder transition in the cytoplasmic domain of PLB, which allows this domain to extend above the membrane surface and induce a structural change in the cytoplasmic domain of SERCA. This mechanism is distinct from the one that relieves PLB-dependent SERCA inhibition upon the addition of micromolar [Ca(2+)].
Collapse
Affiliation(s)
- Christine B Karim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
44
|
Zamoon J, Nitu F, Karim C, Thomas DD, Veglia G. Mapping the interaction surface of a membrane protein: unveiling the conformational switch of phospholamban in calcium pump regulation. Proc Natl Acad Sci U S A 2005; 102:4747-52. [PMID: 15781867 PMCID: PMC555693 DOI: 10.1073/pnas.0406039102] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Indexed: 11/18/2022] Open
Abstract
We have used magnetic resonance to map the interaction surface of an integral membrane protein for its regulatory target, an integral membrane enzyme. Phospholamban (PLN) regulates cardiac contractility via its modulation of sarco(endo)plasmic reticulum calcium ATPase (SERCA) activity. Impairment of this regulatory process causes heart failure. To map the molecular details of the PLN/SERCA interaction, we have functionally reconstituted SERCA with labeled PLN in dodecylphosphocholine micelles for high-resolution NMR spectroscopy and in both micelles and lipid bilayers for EPR spectroscopy. Differential perturbations in NMR linewidths and chemical shifts, measured as a function of position in the PLN sequence, provide a vivid picture of extensive SERCA contacts in both cytoplasmic and transmembrane domains of PLN and provide structural insight into previously reported functional mutagenesis data. NMR and EPR data show clear and complementary evidence for a dynamic (micros-to-ms) equilibrium between two conformational states in the cytoplasmic domain of PLN. These results support the hypothesis that SERCA attracts the cytoplasmic domain of PLN away from the lipid surface, shifting the preexisting equilibrium of PLN conformers toward a structure that is poised to interact with the regulatory target. EPR shows that this conformational switch behaves similarly in micelles and lipid membranes. Based on structural and dynamics data, we propose a model in which PLN undergoes allosteric activation upon encountering SERCA.
Collapse
Affiliation(s)
- J Zamoon
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
45
|
Karim CB, Kirby TL, Zhang Z, Nesmelov Y, Thomas DD. Phospholamban structural dynamics in lipid bilayers probed by a spin label rigidly coupled to the peptide backbone. Proc Natl Acad Sci U S A 2004; 101:14437-42. [PMID: 15448204 PMCID: PMC521948 DOI: 10.1073/pnas.0402801101] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used chemical synthesis and electron paramagnetic resonance to probe the structural dynamics of phospholamban (PLB) in lipid bilayers. Derivatives of monomeric PLB were synthesized, each of which contained a single spin-labeled 2,2,6,6,-Tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid amino acid, with the nitroxide-containing ring covalently and rigidly attached to the alpha-carbon, providing direct insight into the conformational dynamics of the peptide backbone. 2,2,6,6,-tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid was attached at positions 0, 11, and 24 in the cytoplasmic domain or at position 46 in the transmembrane domain. The electron paramagnetic resonance spectrum of the transmembrane domain site (position 46) indicates a single spectral component corresponding to strong immobilization of the probe, consistent with the presence of a stable and highly ordered transmembrane helix. In contrast, each of the three cytoplasmic domain probes has two clearly resolved spectral components (conformational states), one of which indicates nearly isotropic nanosecond dynamic disorder. For the probe at position 11, an N-terminal lipid anchor shifts the equilibrium toward the restricted component, whereas Mg(2+) shifts it in the opposite direction. Relaxation enhancement, due to Ni(2+) ions chelated to lipid head-groups, provides further information about the membrane topology of PLB, allowing us to confirm and refine a structural model based on previous NMR data. We conclude that the cytoplasmic domain of PLB is in a dynamic equilibrium between an ordered conformation, which is in direct contact with the membrane surface, and a dynamically disordered form, which is detached from the membrane and poised to interact with its regulatory target.
Collapse
Affiliation(s)
- Christine B Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
46
|
Lee AG. How phospholamban could affect the apparent affinity of Ca(2+)-ATPase for Ca(2+) in kinetic experiments. FEBS Lett 2003; 551:37-41. [PMID: 12965201 DOI: 10.1016/s0014-5793(03)00869-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Binding of phospholamban (PLN) to the Ca(2+)-ATPase of muscle sarcoplasmic reticulum results in a decrease in apparent affinity for Ca(2+) without affecting the true binding constant for Ca(2+) determined in equilibrium binding experiments. It is shown that this can be explained by a scheme in which the ATPase shows two modes of binding for PLN, one of high and one of low affinity; the proposed scheme is not dependent on the kinetic model assumed for the Ca(2+)-ATPase.
Collapse
Affiliation(s)
- Anthony G Lee
- School of Biological Sciences, University of Southampton, SO16 7PX Southampton, UK.
| |
Collapse
|