1
|
Phulera S, Dickson CJ, Schwalen CJ, Khoshouei M, Cassell SJ, Sun Y, Condos T, Whicher J, Weihofen WA. Scorpion α-toxin LqhαIT specifically interacts with a glycan at the pore domain of voltage-gated sodium channels. Structure 2024; 32:1611-1620.e4. [PMID: 39181123 DOI: 10.1016/j.str.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/13/2024] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
Voltage-gated sodium (Nav) channels sense membrane potential and drive cellular electrical activity. The deathstalker scorpion α-toxin LqhαIT exerts a strong action potential prolonging effect on Nav channels. To elucidate the mechanism of action of LqhαIT, we determined a 3.9 Å cryoelectron microscopy (cryo-EM) structure of LqhαIT in complex with the Nav channel from Periplaneta americana (NavPas). We found that LqhαIT binds to voltage sensor domain 4 and traps it in an "S4 down" conformation. The functionally essential C-terminal epitope of LqhαIT forms an extensive interface with the glycan scaffold linked to Asn330 of NavPas that augments a small protein-protein interface between NavPas and LqhαIT. A combination of molecular dynamics simulations, structural comparisons, and prior mutagenesis experiments demonstrates the functional importance of this toxin-glycan interaction. These findings establish a structural basis for the specificity achieved by scorpion α-toxins and reveal the conserved glycan as an essential component of the toxin-binding epitope.
Collapse
Affiliation(s)
- Swastik Phulera
- Discovery Sciences, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Callum J Dickson
- Global Discovery Chemistry, Novartis Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Christopher J Schwalen
- Global Discovery Chemistry, Novartis Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Maryam Khoshouei
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Samantha J Cassell
- Discovery Sciences, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Yishan Sun
- Neuroscience, Novartis Biomedical Research, 22 Windsor St, Cambridge, MA 02139, USA
| | - Tara Condos
- Discovery Sciences, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jonathan Whicher
- Discovery Sciences, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Wilhelm A Weihofen
- Discovery Sciences, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Tibery DV, Nunes JAA, da Mata DO, Menezes LFS, de Souza ACB, Fernandes-Pedrosa MDF, Treptow W, Schwartz EF. Unveiling Tst3, a Multi-Target Gating Modifier Scorpion α Toxin from Tityus stigmurus Venom of Northeast Brazil: Evaluation and Comparison with Well-Studied Ts3 Toxin of Tityus serrulatus. Toxins (Basel) 2024; 16:257. [PMID: 38922152 PMCID: PMC11209618 DOI: 10.3390/toxins16060257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024] Open
Abstract
Studies on the interaction sites of peptide toxins and ion channels typically involve site-directed mutations in toxins. However, natural mutant toxins exist among them, offering insights into how the evolutionary process has conserved crucial sequences for activities and molecular target selection. In this study, we present a comparative investigation using electrophysiological approaches and computational analysis between two alpha toxins from evolutionarily close scorpion species of the genus Tityus, namely, Tst3 and Ts3 from T. stigmurus and T. serrulatus, respectively. These toxins exhibit three natural substitutions near the C-terminal region, which is directly involved in the interaction between alpha toxins and Nav channels. Additionally, we characterized the activity of the Tst3 toxin on Nav1.1-Nav1.7 channels. The three natural changes between the toxins did not alter sensitivity to Nav1.4, maintaining similar intensities regarding their ability to alter opening probabilities, delay fast inactivation, and induce persistent currents. Computational analysis demonstrated a preference for the down conformation of VSD4 and a shift in the conformational equilibrium towards this state. This illustrates that the sequence of these toxins retained the necessary information, even with alterations in the interaction site region. Through electrophysiological and computational analyses, screening of the Tst3 toxin on sodium isoform revealed its classification as a classic α-NaTx with a broad spectrum of activity. It effectively delays fast inactivation across all tested isoforms. Structural analysis of molecular energetics at the interface of the VSD4-Tst3 complex further confirmed this effect.
Collapse
Affiliation(s)
- Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - João Antonio Alves Nunes
- Laboratório de Biologia Teórica e Computacional (LBTC), Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (J.A.A.N.); (W.T.)
| | - Daniel Oliveira da Mata
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Adolfo Carlos Barros de Souza
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59012-570, Rio Grande do Norte, Brazil;
| | - Werner Treptow
- Laboratório de Biologia Teórica e Computacional (LBTC), Departamento de Biologia Celular, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (J.A.A.N.); (W.T.)
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília (UnB), Brasília 70910-900, Distrito Federal, Brazil; (D.V.T.); (D.O.d.M.); (L.F.S.M.); (A.C.B.d.S.)
| |
Collapse
|
3
|
Hmaidi R, Ksouri A, Benabderrazek R, Antonietti V, Sonnet P, Gautier M, Bouhaouala-Zahar B, Ouadid-Ahidouch H. The Pharmacological and Structural Basis of the AahII–NaV1.5 Interaction and Modulation by the Anti-AahII Nb10 Nanobody. Front Pharmacol 2022; 13:821181. [PMID: 35295326 PMCID: PMC8918821 DOI: 10.3389/fphar.2022.821181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Scorpion α-toxins are neurotoxins that target the fast inactivation mechanism of voltage-gated sodium (NaV) channels leading to several neuro- and cardiotoxic effects in mammals. The toxin AahII is the most active α-toxin from the North African scorpion Androctonus australis Hector that slows the fast inactivation of NaV channels. To fight scorpion envenomation, an anti-AahII nanobody named NbAahII10 (Nb10) was developed. The efficiency of this nanobody has been evaluated in vivo on mice, but its mechanism of action at the cellular level remains unknown. Here we have shown that AahII toxin slows the fast inactivation of the adult cardiac NaV1.5 channels, expressed in HEK293 cells, in a dose-dependent manner, while current amplitude was not affected. The inactivation of NaV1.5 is slower by a factor of 4, 7, and 35 in the presence of [AahII] at 75, 150, and 300 nM, respectively. The washout partially reversed the toxin effect on inactivation from 8.3 ± 0.9 ms to 5.2 ± 1.2 ms at 75 nM. We have also demonstrated that the highly neutralizing Nb10 can fully reverse the effect of AahII toxin on the channel inactivation kinetics even at the 1:1 M ratio. However, the 1:0.5 M ratio is not able to neutralize completely the AahII effect. Therefore, the application of Nb10 promotes a partial abolishment of AahII action. Bioinformatic analysis and prediction of NaV1.5-driven docking with AahII show that Ala39 and Arg62 of AahII play a crucial role to establish a stable interaction through H-bound interactions with Gln1615 and Lys1616 (S3–S4 extracellular loop) and Asp1553 (S1–S2 loop) from the voltage-sensing domain IV (VSD4) of NaV1.5, respectively. From this, we notice that AahII shares the same contact surface with Nb10. This strongly suggests that Nb10 dynamically replaces AahII toxin from its binding site on the NaV1.5 channel. At the physiopathological level, Nb10 completely neutralized the enhancement of breast cancer cell invasion induced by AahII. In summary, for the first time, we made an electrophysiological and structural characterization of the neutralization potent of Nb10 against the α-scorpion toxin AahII in a cellular model overexpressing NaV1.5 channels.
Collapse
Affiliation(s)
- Riadh Hmaidi
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
| | - Ayoub Ksouri
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rahma Benabderrazek
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Viviane Antonietti
- Infectious Agents, Resistance and Chemotherapy UR 4294, UFR of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Pascal Sonnet
- Infectious Agents, Resistance and Chemotherapy UR 4294, UFR of Pharmacy, University of Picardie Jules Verne, Amiens, France
| | - Mathieu Gautier
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| | - Balkiss Bouhaouala-Zahar
- Laboratory of Biomolecules, Venoms, and Theranostic Applications, Institut Pasteur Tunis, University of Tunis El Manar, Tunis, Tunisia
- Medical School of Tunis, University of Tunis El Manar, Tunis, Tunisia
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology UR 4667, UFR of Sciences, University of Picardie Jules Verne, Amiens, France
- *Correspondence: Mathieu Gautier, ; Balkiss Bouhaouala-Zahar, ; Halima Ouadid-Ahidouch,
| |
Collapse
|
4
|
Zhu L, Gao B, Yuan S, Zhu S. Scorpion Toxins: Positive Selection at a Distal Site Modulates Functional Evolution at a Bioactive Site. Mol Biol Evol 2019; 36:365-375. [PMID: 30566652 PMCID: PMC6367975 DOI: 10.1093/molbev/msy223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The bioactive sites of proteins are those that directly interact with their targets. In many immunity- and predation-related proteins, they frequently experience positive selection for dealing with the changes of their targets from competitors. However, some sites that are far away from the interface between proteins and their targets are also identified to evolve under positive selection. Here, we explore the evolutionary implication of such a site in scorpion α-type toxins affecting sodium (Na+) channels (abbreviated as α-ScNaTxs) using a combination of experimental and computational approaches. We found that despite no direct involvement in interaction with Na+ channels, mutations at this site by different types of amino acids led to toxicity change on both rats and insects in three α-ScNaTxs, accompanying differential effects on their structures. Molecular dynamics simulations indicated that the mutations changed the conformational dynamics of the positively selected bioactive site-containing functional regions by allosteric communication, suggesting a potential evolutionary correlation between these bioactive sites and the distant nonbioactive site. Our results reveal for the first time the cause of fast evolution at nonbioactive sites of scorpion neurotoxins, which is presumably to adapt to the change of their bioactive sites through coevolution to maintain an active conformation for channel binding. This might aid rational design of scorpion Na+ channel toxins with improved phyletic selectivity via modification of a distant nonbioactive site.
Collapse
Affiliation(s)
- Limei Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Shouli Yuan
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| |
Collapse
|
5
|
Clairfeuille T, Cloake A, Infield DT, Llongueras JP, Arthur CP, Li ZR, Jian Y, Martin-Eauclaire MF, Bougis PE, Ciferri C, Ahern CA, Bosmans F, Hackos DH, Rohou A, Payandeh J. Structural basis of α-scorpion toxin action on Na v channels. Science 2019; 363:science.aav8573. [PMID: 30733386 DOI: 10.1126/science.aav8573] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/28/2019] [Indexed: 01/25/2023]
Abstract
Fast inactivation of voltage-gated sodium (Nav) channels is essential for electrical signaling, but its mechanism remains poorly understood. Here we determined the structures of a eukaryotic Nav channel alone and in complex with a lethal α-scorpion toxin, AaH2, by electron microscopy, both at 3.5-angstrom resolution. AaH2 wedges into voltage-sensing domain IV (VSD4) to impede fast activation by trapping a deactivated state in which gating charge interactions bridge to the acidic intracellular carboxyl-terminal domain. In the absence of AaH2, the S4 helix of VSD4 undergoes a ~13-angstrom translation to unlatch the intracellular fast-inactivation gating machinery. Highlighting the polypharmacology of α-scorpion toxins, AaH2 also targets an unanticipated receptor site on VSD1 and a pore glycan adjacent to VSD4. Overall, this work provides key insights into fast inactivation, electromechanical coupling, and pathogenic mutations in Nav channels.
Collapse
Affiliation(s)
- Thomas Clairfeuille
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Alexander Cloake
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.,Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | - José P Llongueras
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Zhong Rong Li
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, USA
| | - Yuwen Jian
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA
| | | | - Pierre E Bougis
- Aix Marseille Université, CNRS, LNC, UMR 7291, 13003 Marseille, France
| | - Claudio Ciferri
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA.
| | - Frank Bosmans
- Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium.
| | - David H Hackos
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, USA.
| | - Alexis Rohou
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
6
|
The role of the arginine residue in site RC for the analgesic activity of the recombinant Chinese scorpion Buthus martensii Karsch, BmK AGP-SYPU1. Comput Biol Chem 2018; 74:247-252. [PMID: 29665474 DOI: 10.1016/j.compbiolchem.2018.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/03/2018] [Accepted: 04/08/2018] [Indexed: 01/05/2023]
Abstract
Scorpion venom is composed of a large number of bioactive peptides which display important pharmacological activities. In this study we have carried out a study of the functional role of the arginine residue at position 58 in the site RC comprising the reverse turn (8-12) and C-terminal residues 58-64. A polymerase chain reaction was used to substitute this arginine residue with a single amino acid such as alanine, glycine and lysine. The mutants were expressed in soluble form in E. coli, and purified by affinity chromatography. After target peptide purity identification, the recombinant peptides underwent a circular dichroism analysis and a study of their analgesic activity in mice. The results indicated that a single residue modification can affect the pharmacological activity. Our efforts establish a sound basis for further study of the structure-function determinants of the analgesic effect.
Collapse
|
7
|
Kuldyushev NA, Berkut AA, Peigneur S, Tytgat J, Grishin EV, Vassilevski AA. Design of sodium channel ligands with defined selectivity - a case study in scorpion alpha-toxins. FEBS Lett 2017; 591:3414-3420. [DOI: 10.1002/1873-3468.12839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Nikita A. Kuldyushev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
- Moscow Institute of Physics and Technology (State University); Russia
| | - Antonina A. Berkut
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
- Moscow Institute of Physics and Technology (State University); Russia
| | - Steve Peigneur
- Toxicology and Pharmacology; University of Leuven; Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology; University of Leuven; Belgium
| | - Eugene V. Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
| | - Alexander A. Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry; Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
8
|
Martin-Eauclaire MF, Salvatierra J, Bosmans F, Bougis PE. The scorpion toxin Bot IX is a potent member of the α-like family and has a unique N-terminal sequence extension. FEBS Lett 2016; 590:3221-32. [DOI: 10.1002/1873-3468.12357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
| | - Juan Salvatierra
- Department of Physiology; School of Medicine; Johns Hopkins University; Baltimore MD USA
| | - Frank Bosmans
- Department of Physiology; School of Medicine; Johns Hopkins University; Baltimore MD USA
- Solomon H. Snyder Department of Neuroscience; School of Medicine; Johns Hopkins University; Baltimore MD USA
| | - Pierre E. Bougis
- Aix Marseille Université; CNRS; CRN2M; UMR7286; PFRN-CAPM; Marseille France
| |
Collapse
|
9
|
Zhu L, Peigneur S, Gao B, Zhang S, Tytgat J, Zhu S. Target-Driven Positive Selection at Hot Spots of Scorpion Toxins Uncovers Their Potential in Design of Insecticides. Mol Biol Evol 2016; 33:1907-20. [PMID: 27189560 DOI: 10.1093/molbev/msw065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Positive selection sites (PSSs), a class of amino acid sites with an excess of nonsynonymous to synonymous substitutions, are indicators of adaptive molecular evolution and have been detected in many protein families involved in a diversity of biological processes by statistical approaches. However, few studies are conducted to evaluate their functional significance and the driving force behind the evolution (i.e., agent of selection). Scorpion α-toxins are a class of multigene family of peptide neurotoxins affecting voltage-gated Na(+ )(Nav) channels, whose members exhibit differential potency and preference for insect and mammalian Nav channels. In this study, we undertook a systematical molecular dissection of nearly all the PSSs newly characterized in the Mesobuthus α-toxin family and a two-residue insertion ((19)AlaPhe(20)) located within a positively selected loop via mutational analysis of α-like MeuNaTxα-5, one member affecting both insect and mammalian Nav channels. This allows to identify hot-spot residues on its functional face involved in interaction with the receptor site of Nav channels, which comprises two PSSs (Ile(40) and Leu(41)) and the small insertion, both located on two spatially separated functional loops. Mutations at these hot-spots resulted in a remarkably decreased anti-mammalian activity in MeuNaTxα-5 with partially impaired or enhanced insecticide activity, suggesting the potential of PSSs in designing promising candidate insecticides from scorpion α-like toxins. Based on an experiment-guided toxin-channel complex model and high evolutionary variability in the receptor site of predators and prey of scorpions, we provide new evidence for target-driven adaptive evolution of scorpion toxins to deal with their targets' diversity.
Collapse
Affiliation(s)
- Limei Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Steve Peigneur
- Laboratory of Toxicology, University of Leuven, Leuven, Belgium
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shangfei Zhang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jan Tytgat
- Laboratory of Toxicology, University of Leuven, Leuven, Belgium
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Abstract
It is long known that peptide neurotoxins derived from a diversity of venomous animals evolve by positive selection following gene duplication, yet a force that drives their adaptive evolution remains a mystery. By using maximum-likelihood models of codon substitution, we analyzed molecular adaptation in scorpion sodium channel toxins from a specific species and found ten positively selected sites, six of which are located at the core-domain of scorpion α-toxins, a region known to interact with two adjacent loops in the voltage-sensor domain (DIV) of sodium channels, as validated by our newly constructed computational model of toxin-channel complex. Despite the lack of positive selection signals in these two loops, they accumulated extensive sequence variations by relaxed purifying selection in prey and predators of scorpions. The evolutionary variability in the toxin-bound regions of sodium channels indicates that accelerated substitutions in the multigene family of scorpion toxins is a consequence of dealing with the target diversity. This work presents an example of atypical co-evolution between animal toxins and their molecular targets, in which toxins suffered from more prominent selective pressure from the channels of their competitors. Our discovery helps explain the evolutionary rationality of gene duplication of toxins in a specific venomous species.
Collapse
|
11
|
Pucca MB, Peigneur S, Cologna CT, Cerni FA, Zoccal KF, Bordon KDCF, Faccioli LH, Tytgat J, Arantes EC. Electrophysiological characterization of the first Tityus serrulatus alpha-like toxin, Ts5: Evidence of a pro-inflammatory toxin on macrophages. Biochimie 2015; 115:8-16. [PMID: 25906692 DOI: 10.1016/j.biochi.2015.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022]
Abstract
Tityus serrulatus (Ts) venom is composed of mainly neurotoxins specific for voltage-gated K(+) and Na(+) channels, which are expressed in many cells such as macrophages. Macrophages are the first line of defense invasion and they participate in the inflammatory response of Ts envenoming. However, little is known about the effect of Ts toxins on macrophage activation. This study investigated the effect of Ts5 toxin on different sodium channels as well as its role on the macrophage immunomodulation. The electrophysiological assays showed that Ts5 inhibits the rapid inactivation of the mammalian sodium channels Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6 and Nav1.7. Interestingly, Ts5 also inhibits the inactivation of the insect Drosophila melanogaster sodium channel (DmNav1), and it is therefore classified as the first Ts α-like toxin. The immunological experiments on macrophages reveal that Ts5 is a pro-inflammatory toxin inducing the cytokine production of tumor necrosis factor (TNF)-α and interleukin (IL)-6. On the basis of recent literature, our study also stresses a possible mechanism responsible for venom-associated molecular patterns (VAMPs) internalization and macrophage activation and moreover we suggest two main pathways of VAMPs signaling: direct and indirect. This work provides useful insights for a better understanding of the involvement of VAMPs in macrophage modulation.
Collapse
Affiliation(s)
- Manuela B Pucca
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Camila T Cologna
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Felipe A Cerni
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karina F Zoccal
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karla de C F Bordon
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucia H Faccioli
- Department of Clinical Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Eliane C Arantes
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
12
|
Xu L, Li T, Liu H, Yang F, Liang S, Cao Z, Li W, Wu Y. Functional characterization of two novel scorpion sodium channel toxins from Lychas mucronatus. Toxicon 2014; 90:318-25. [DOI: 10.1016/j.toxicon.2014.08.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/11/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
13
|
Characterization of a novel BmαTX47 toxin modulating sodium channels: the crucial role of expression vectors in toxin pharmacological activity. Toxins (Basel) 2014; 6:816-29. [PMID: 24577584 PMCID: PMC3968363 DOI: 10.3390/toxins6030816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 12/30/2013] [Accepted: 01/20/2014] [Indexed: 12/19/2022] Open
Abstract
Long-chain scorpion toxins with four disulfide bridges exhibit various pharmacological features towards the different voltage-gated sodium channel subtypes. However, the toxin production still remains a huge challenge. Here, we reported the effects of different expression vectors on the pharmacological properties of a novel toxin BmαTX47 from the scorpion Buthus martensii Karsch. The recombinant BmαTX47 was obtained using the expression vector pET-14b and pET-28a, respectively. Pharmacological experiments showed that the recombinant BmαTX47 was a new α-scorpion toxin which could inhibit the fast inactivation of rNav1.2, mNav1.4 and hNav1.5 channels. Importantly, the different expression vectors were found to strongly affect BmαTX47 pharmacological activities while toxins were obtained by the same expression and purification procedures. When 10 µM recombinant BmαTX47 from the pET-28a vector was applied, the values of I5ms/Ipeak for rNav1.2, mNav1.4 and hNav1.5 channels were 44.12% ± 3.17%, 25.40% ± 4.89% and 65.34% ± 3.86%, respectively, which were better than those values of 11.33% ± 1.46%, 15.96% ± 1.87% and 5.24% ± 2.38% for rNav1.2, mNav1.4 and hNav1.5 channels delayed by 10 µM recombinant BmαTX47 from the pET-14b vector. The dose-response experiments further indicated the EC50 values of recombinant BmαTX47 from the pET-28a vector were 7262.9 ± 755.9 nM for rNav1.2 channel and 1005.8 ± 118.6 nM for hNav1.5 channel, respectively. Together, these findings highlighted the important role of expression vectors in scorpion toxin pharmacological properties, which would accelerate the understanding of the structure-function relationships of scorpion toxins and promote the potential application of toxins in the near future.
Collapse
|
14
|
Chugunov AO, Koromyslova AD, Berkut AA, Peigneur S, Tytgat J, Polyansky AA, Pentkovsky VM, Vassilevski AA, Grishin EV, Efremov RG. Modular organization of α-toxins from scorpion venom mirrors domain structure of their targets, sodium channels. J Biol Chem 2013; 288:19014-27. [PMID: 23637230 DOI: 10.1074/jbc.m112.431650] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To gain success in the evolutionary "arms race," venomous animals such as scorpions produce diverse neurotoxins selected to hit targets in the nervous system of prey. Scorpion α-toxins affect insect and/or mammalian voltage-gated sodium channels (Na(v)s) and thereby modify the excitability of muscle and nerve cells. Although more than 100 α-toxins are known and a number of them have been studied into detail, the molecular mechanism of their interaction with Na(v)s is still poorly understood. Here, we employ extensive molecular dynamics simulations and spatial mapping of hydrophobic/hydrophilic properties distributed over the molecular surface of α-toxins. It is revealed that despite the small size and relatively rigid structure, these toxins possess modular organization from structural, functional, and evolutionary perspectives. The more conserved and rigid "core module" is supplemented with the "specificity module" (SM) that is comparatively flexible and variable and determines the taxon (mammal versus insect) specificity of α-toxin activity. We further show that SMs in mammal toxins are more flexible and hydrophilic than in insect toxins. Concomitant sequence-based analysis of the extracellular loops of Na(v)s suggests that α-toxins recognize the channels using both modules. We propose that the core module binds to the voltage-sensing domain IV, whereas the more versatile SM interacts with the pore domain in repeat I of Na(v)s. These findings corroborate and expand the hypothesis on different functional epitopes of toxins that has been reported previously. In effect, we propose that the modular structure in toxins evolved to match the domain architecture of Na(v)s.
Collapse
Affiliation(s)
- Anton O Chugunov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Durek T, Vetter I, Wang CIA, Motin L, Knapp O, Adams DJ, Lewis RJ, Alewood PF. Chemical engineering and structural and pharmacological characterization of the α-scorpion toxin OD1. ACS Chem Biol 2013; 8:1215-22. [PMID: 23527544 DOI: 10.1021/cb400012k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scorpion α-toxins are invaluable pharmacological tools for studying voltage-gated sodium channels, but few structure-function studies have been undertaken due to their challenging synthesis. To address this deficiency, we report a chemical engineering strategy based upon native chemical ligation. The chemical synthesis of α-toxin OD1 was achieved by chemical ligation of three unprotected peptide segments. A high resolution X-ray structure (1.8 Å) of synthetic OD1 showed the typical βαββ α-toxin fold and revealed important conformational differences in the pharmacophore region when compared with other α-toxin structures. Pharmacological analysis of synthetic OD1 revealed potent α-toxin activity (inhibition of fast inactivation) at Nav1.7, as well as Nav1.4 and Nav1.6. In addition, OD1 also produced potent β-toxin activity at Nav1.4 and Nav1.6 (shift of channel activation in the hyperpolarizing direction), indicating that OD1 might interact at more than one site with Nav1.4 and Nav1.6. Investigation of nine OD1 mutants revealed that three residues in the reverse turn contributed significantly to selectivity, with the triple OD1 mutant (D9K, D10P, K11H) being 40-fold more selective for Nav1.7 over Nav1.6, while OD1 K11V was 5-fold more selective for Nav1.6 than Nav1.7. This switch in selectivity highlights the importance of the reverse turn for engineering α-toxins with altered selectivity at Nav subtypes.
Collapse
Affiliation(s)
- Thomas Durek
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Irina Vetter
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Ching-I Anderson Wang
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Leonid Motin
- Health Innovations
Research
Institute, RMIT University, Victoria, Australia
3083
| | - Oliver Knapp
- Health Innovations
Research
Institute, RMIT University, Victoria, Australia
3083
| | - David J. Adams
- Health Innovations
Research
Institute, RMIT University, Victoria, Australia
3083
| | - Richard J. Lewis
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| | - Paul F. Alewood
- Division of
Chemistry and Structural
Biology, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
4072
| |
Collapse
|
16
|
The role of glycine residues at the C-terminal peptide segment in antinociceptive activity: a molecular dynamics simulation. J Mol Model 2012. [PMID: 23179767 DOI: 10.1007/s00894-012-1666-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Elucidating structural determinants in the functional regions of toxins can provide useful knowledge for designing novel analgesic peptides. Glycine residues at the C-terminal region of the neurotoxin BmK AGP-SYPU2 from the scorpion Buthus martensii Karsch (BmK) have been shown to be crucial to its analgesic activity. However, there has been no research on the structure-function relationship between the C-terminal segment of this toxin and its analgesic activity. To address this issue, we performed three MD simulations: one on the native structure and the other two on mutants of that structure. Results of these calculations suggest that the existence of glycine residues at the C-terminal segment stabilizes the protruding topology of the NC domain, which is considered an important determinant of the analgesic activity of BmK AGP-SYPU2.
Collapse
|
17
|
Gurevitz M. Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon 2012; 60:502-11. [DOI: 10.1016/j.toxicon.2012.03.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/22/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
18
|
Arginine Residues in the C-terminal and their Relationship with the Analgesic Activity of the Toxin from the Chinese Scorpion Buthus martensii Karsch (BmK AGP-SYPU1). Appl Biochem Biotechnol 2012; 168:247-55. [DOI: 10.1007/s12010-012-9768-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
|
19
|
Karimi Z, Falsafi-Zadeh S, Galehdari H, Jalali A. Homology modeling and molecular dynamics simulation of odonthubuthus doriae (Od1) scorpion toxin in comparison to the BmK M1. Bioinformation 2012; 8:474-8. [PMID: 22715302 PMCID: PMC3374358 DOI: 10.6026/97320630008474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 05/15/2012] [Indexed: 11/23/2022] Open
Abstract
All of the α-subgroups share similarity in their sequence and structure but different in the toxicity to various voltage-gated sodium channels (VGSCs). We modeled the first 3D structural model of the Od1 based on BmK M1 using homology modeling. The reliability of model for more investigation and compare to BmK M1 has been examined and confirmed. Then the model structure is further refined by energy minimization and molecular dynamics methods. The purpose of this modeling and simulation is comparison toxicity of two mentioned toxins by investigation structural feature of functional regions including core domain, 5-turn and C-terminal which make NC domain. In the one hand, it is intriguing that Od1 in comparison to BmK M1 shows same solvent accessible surface area (SASA) in 5-turn region but a little more exposed and feasibility (more SASA) in C-terminal region and key functional residues of C-terminal such as positive residues Arg58, lys62 and Arg (His)64. These data suggested that Od1 has similarity with BmK M1 but has more toxicity to sodium channel. In the other hand 5-turn proximity of C-terminal to 5-turn in BmK M1with cis peptide bond is less than Od1 without cis peptide bond which is a confirmation with experimental data about BmK M1.A better understanding of the 3-D structure of Od1and comparison to BmK M1 will be helpful for more investigation of functional characters action of natural toxins with a specialized role for VGSCs.
Collapse
Affiliation(s)
- Zahra Karimi
- Bioinformatics Unit, Department of Genetics, Shahid Chamran University, Ahvaz, Iran
| | - Sajad Falsafi-Zadeh
- Bioinformatics Unit, Department of Genetics, Shahid Chamran University, Ahvaz, Iran
| | - Hamid Galehdari
- Department of Genetics, Shahid Chamran
University, Ahvaz, Iran
| | - Amir Jalali
- Department of Pharmacology and Toxicology, School of Pharmacy and Toxicology Research Center,
Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Lee CW, Bae C, Lee J, Ryu JH, Kim HH, Kohno T, Swartz KJ, Kim JI. Solution structure of kurtoxin: a gating modifier selective for Cav3 voltage-gated Ca(2+) channels. Biochemistry 2012; 51:1862-73. [PMID: 22329781 PMCID: PMC3295331 DOI: 10.1021/bi201633j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kurtoxin is a 63-amino acid polypeptide isolated from the venom of the South African scorpion Parabuthus transvaalicus. It is the first and only peptide ligand known to interact with Cav3 (T-type) voltage-gated Ca(2+) channels with high affinity and to modify the voltage-dependent gating of these channels. Here we describe the nuclear magnetic resonance (NMR) solution structure of kurtoxin determined using two- and three-dimensional NMR spectroscopy with dynamical simulated annealing calculations. The molecular structure of the toxin was highly similar to those of scorpion α-toxins and contained an α-helix, three β-strands, and several turns stabilized by four disulfide bonds. This so-called "cysteine-stabilized α-helix and β-sheet (CSαβ)" motif is found in a number of functionally varied small proteins. A detailed comparison of the backbone structure of kurtoxin with those of the scorpion α-toxins revealed that three regions [first long loop (Asp(8)-Ile(15)), β-hairpin loop (Gly(39)-Leu(42)), and C-terminal segment (Arg(57)-Ala(63))] in kurtoxin significantly differ from the corresponding regions in scorpion α-toxins, suggesting that these regions may be important for interacting with Cav3 (T-type) Ca(2+) channels. In addition, the surface profile of kurtoxin shows a larger and more focused electropositive patch along with a larger hydrophobic surface compared to those seen on scorpion α-toxins. These distinct surface properties of kurtoxin could explain its binding to Cav3 (T-type) voltage-gated Ca(2+) channels.
Collapse
Affiliation(s)
- Chul Won Lee
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Dai H, Yin S, Li T, Cao Z, Ji Y, Wu Y, Li W. Recombinant expression, purification, and characterization of scorpion toxin BmαTX14. Protein Expr Purif 2012; 82:325-31. [PMID: 22343065 DOI: 10.1016/j.pep.2012.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 12/19/2022]
Abstract
Long-chain and cysteine-rich scorpion toxins exhibit various pharmacological profiles for different voltage-gated sodium channel subtypes. However, the exploration of toxin structure-function relationships has progressed slowly due to the difficulty of obtaining synthetic or recombinant peptides. We now report that we have established an effective expression and purification approach for the novel scorpion toxin BmαTX14. BmαTX14 was over-expressed as inclusion bodies in Escherichia coli. The insoluble pellet was successfully transformed into active peptide by using a refolding procedure. One-step purification by reverse-phase HPLC was sufficient to generate chromatographically pure peptide. The yield of recombinant toxin reached 4mg from 1L LB medium. The pharmacological data further showed that BmαTX14 selectively inhibited the fast inactivation of mNa(v)1.4 (EC(50)=82.3±15.7nM) rather than that of rNa(v)1.2 (EC(50)>30μM), which indicates that BmαTX14 is a new α-like toxin. This work enables further structural, functional, and pharmacological studies of BmαTX14 and similar toxins.
Collapse
Affiliation(s)
- Hui Dai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Kozminsky-Atias A, Zilberberg N. Molding the business end of neurotoxins by diversifying evolution. FASEB J 2011; 26:576-86. [PMID: 22009937 DOI: 10.1096/fj.11-187179] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A diverse range of organisms utilize neurotoxins that target specific ion channels and modulate their activity. Typically, toxins are clustered into several multigene families, providing an organism with the upper hand in the never-ending predator-prey arms race. Several gene families, including those encoding certain neurotoxins, have been subject to diversifying selection forces, resulting in rapid gene evolution. Here we sought a spatial pattern in the distribution of both diversifying and purifying selection forces common to neurotoxin gene families. Utilizing the mechanistic empirical combination model, we analyzed various toxin families from different phyla affecting various receptors and relying on diverse modes of action. Through this approach, we were able to detect clear correlations between the pharmacological surface of a toxin and rapidly evolving domains, rich in positively selected residues. On the other hand, patches of negatively selected residues were restricted to the nontoxic face of the molecule and most likely help in stabilizing the tertiary structure of the toxin. We thus propose a mutual evolutionary strategy of venomous animals in which adaptive molecular evolution is directed toward the toxin active surface. Furthermore, we propose that the binding domains of unstudied toxins could be readily predicted using evolutionary considerations.
Collapse
Affiliation(s)
- Adi Kozminsky-Atias
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
23
|
Zhu S, Peigneur S, Gao B, Lu X, Cao C, Tytgat J. Evolutionary diversification of Mesobuthus α-scorpion toxins affecting sodium channels. Mol Cell Proteomics 2011; 11:M111.012054. [PMID: 21969612 DOI: 10.1074/mcp.m111.012054] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Scorpion toxins constitute a family of peptide modulators that induce a prolongation of the action potential of excitable cells by inhibiting voltage-gated sodium channel inactivation. Although they all adopt a conserved structural scaffold, the potency and phylogentic preference of these toxins largely vary, which render them an intriguing model for studying evolutionary diversification among family members. Here, we report molecular characterization of a new multigene family of α-toxins comprising 13 members (named MeuNaTxα-1 to MeuNaTxα-13) from the scorpion Mesobuthus eupeus. Of them, five native toxins (MeuNaTxα-1 to -5) were purified to homogeneity from the venom and the solution structure of MeuNaTxα-5 was solved by nuclear magnetic resonance. A systematic functional evaluation of MeuNaTxα-1, -2, -4, and -5 was conducted by two-electrode voltage-clamp recordings on seven cloned mammalian voltage-gated sodium channels (Na(v)1.2 to Na(v)1.8) and the insect counterpart DmNa(v)1 expressed in Xenopus oocytes. Results show that all these four peptides slow inactivation of DmNa(v)1 and are inactive on Na(v)1.8 at micromolar concentrations. However, they exhibit differential specificity for the other six channel isoforms (Na(v)1.2 to Na(v)1.7), in which MeuNaTxα-4 shows no activity on these isoforms and thus represents the first Mesobuthus-derived insect-selective α-toxin identified so far with a half maximal effective concentration of 130 ± 2 nm on DmNa(v)1 and a half maximal lethal dose of about 200 pmol g(-1) on the insect Musca domestica; MeuNaTxα-2 only affects Na(v)1.4; MeuNaTxα-1 and MeuNaTxα-5 have a wider range of channel spectrum, the former active on Na(v)1.2, Na(v)1.3, Na(v)1.6, and Na(v)1.7, whereas the latter acting on Na(v)1.3-Na(v)1.7. Remarkably, MeuNaTxα-4 and MeuNaTxα-5 are two nearly identical peptides differing by only one point mutation at site 50 (A50V) but exhibit rather different channel subtype selectivity, highlighting a switch role of this site in altering the target specificity. By the maximum likelihood models of codon substitution, we detected nine positively selected sites (PSSs) that could be involved in functional diversification of Mesobuthus α-toxins. The PSSs include site 50 and other seven sites located in functional surfaces of α-toxins. This work represents the first thorough investigation of evolutionary diversification of α-toxins derived from a specific scorpion lineage from the perspectives of sequence, structure, function, and evolution.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China.
| | - Steve Peigneur
- Laboratory of Toxicology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| | - Bin Gao
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Xiuxiu Lu
- State Key Laboratory of Bio-organic and Natural Product Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chunyang Cao
- State Key Laboratory of Bio-organic and Natural Product Chemistry Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jan Tytgat
- Laboratory of Toxicology, University of Leuven, O&N 2, Herestraat 49, P.O. Box 922, 3000 Leuven, Belgium
| |
Collapse
|
24
|
Wang Y, Hao Z, Shao J, Song Y, Li C, Li C, Zhao Y, Liu Y, Wei T, Wu C, Zhang J. The role of Ser54 in the antinociceptive activity of BmK9, a neurotoxin from the scorpion Buthus martensii Karsch. Toxicon 2011; 58:527-32. [PMID: 21906612 DOI: 10.1016/j.toxicon.2011.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/20/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
Residue 54 has been shown to be important for bioactivity in several toxins. However, its role in the antinociceptive activity of toxins has not been evaluated yet. In this study, site-directed mutagenesis and mouse acetic acid writhing test were used to investigate the role of Ser54 in the antinociceptive activity of BmK9 neurotoxin from the Buthus martensii Karsch scorpion. Detailed mutagenesis analysis revealed that substitution of Ser54 by various polar amino acids produced no significant change in the antinociceptive activity, while all substitutions of nonpolar amino acid for Ser54 led to a significant loss of antinociceptive activity. Following the conformational analysis, it was suggested that Ser54 in BmK9 plays a functional role in the antinociceptive activity, the residue exerts its effect by means of a side-chain hydrogen bond.
Collapse
Affiliation(s)
- Yueqiu Wang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, PO Box 17, 103. Wenhua Road, Shenhe District, Shenyang, Liaoning Province 110016, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang R, Cui Y, Zhang X, Yang Z, Zhao Y, Song Y, Wu C, Zhang J. Soluble expression, purification and the role of C-terminal glycine residues in scorpion toxin BmK AGP-SYPU2. BMB Rep 2011; 43:801-6. [PMID: 21189156 DOI: 10.5483/bmbrep.2010.43.12.801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The existence of glycine residues in long-chain scorpion toxins has been well documented. However, their role as analgesics has not been evaluated. To address this issue, we investigated the functional role of glycines in the C-terminal end of Chinese-scorpion toxin from Buthus martensii Karsch (BmK AGP-SYPU2) using site-directed mutagenesis and analgesic activity assays. Recombinant BmK AGP-SYPU2 and its mutants were efficiently expressed in E. coli and purified to homogeneity using immobilized metal ion affinity chromatography (IMAC) and cation exchange chromatography. The mouse-twisting test was used to detect the analgesic activity of BmK AGP-SYPU2 and its mutants. As a result, we identified glycines at the C-terminal end that, when altered, significantly affected analgesic activity. Also, Mut6566 was significantly decreased compared to BmK AGP-SYPU2. These data indicate that the glycines at the C-terminal end are important for the analgesic activity of BmK AGP-SYPU2.
Collapse
Affiliation(s)
- Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cui Y, Song YB, Ma L, Liu YF, Li GD, Wu CF, Zhang JH. Site-directed mutagenesis of the toxin from the Chinese scorpion Buthus martensii Karsch (BmKAS): insight into sites related to analgesic activity. Arch Pharm Res 2010; 33:1633-9. [PMID: 21052938 DOI: 10.1007/s12272-010-1012-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 03/26/2010] [Accepted: 05/13/2010] [Indexed: 11/24/2022]
Abstract
This study utilized the E. coli expression system to investigate the role of amino acid residues in toxin from the Chinese scorpion--Buthus martensii Karsch (BmKAS). To evaluate the extent to which residues of the toxin core contribute to its analgesic activity, ten mutants of BmKAS were obtained by PCR. Using site-directed mutagenesis, all of these residues were substituted with different amino acids. This study represents a thorough mapping and elucidation of the epitopes that form the molecular basis of the toxin's analgesic activity. Our results showed large mutant-dependent differences that emphasize the important roles of the studied residues.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Cui Y, Guo GL, Ma L, Hu N, Song YB, Liu YF, Wu CF, Zhang JH. Structure and function relationship of toxin from Chinese scorpion Buthus martensii Karsch (BmKAGAP): gaining insight into related sites of analgesic activity. Peptides 2010; 31:995-1000. [PMID: 20307602 DOI: 10.1016/j.peptides.2010.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
Abstract
In this study, an effective Escherichia coli expression system was used to study the role of residues in the antitumor-analgesic peptide from Chinese scorpion Buthus martensii Karsch (BmKAGAP). To evaluate the extent to which residues of the toxin core contribute to its analgesic activity, nine mutants of BmKAGAP were obtained by PCR. Using site-directed mutagenesis, all of these residues were individually substituted by one amino acid. These were then subjected to a circular dichroism analysis, and an analgesic activity assay in mice. This study represents a thorough mapping and elucidation of the epitopes that underlie the molecular basis of the analgesic activity. The three-dimensional structure of BmKAGAP was established by homology modeling. Our results revealed large mutant-dependent differences that indicated important roles for the studied residues. With our ongoing efforts for establishing the structure and analgesic activity relationship of BmKAGAP, we have succeeded in pinpointing which residues are important for the analgesic activity.
Collapse
Affiliation(s)
- Yong Cui
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lampert A, O'Reilly AO, Reeh P, Leffler A. Sodium channelopathies and pain. Pflugers Arch 2010; 460:249-63. [PMID: 20101409 DOI: 10.1007/s00424-009-0779-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/13/2009] [Accepted: 12/18/2009] [Indexed: 12/19/2022]
Abstract
Chronic pain often represents a severe, debilitating condition. Up to 10% of the worldwide population are affected, and many patients are poorly responsive to current treatment strategies. Nociceptors detect noxious conditions to produce the sensation of pain, and this signal is conveyed to the CNS by means of action potentials. The fast upstroke of action potentials is mediated by voltage-gated sodium channels, of which nine pore-forming alpha-subunits (Nav1.1-1.9) have been identified. Heterogeneous functional properties and distinct expression patterns denote specialized functions of each subunit. The Nav1.7 and Nav1.8 subunits have emerged as key molecules involved in peripheral pain processing and in the development of an increased pain sensitivity associated with inflammation and tissue injury. Several mutations in the SCN9A gene encoding for Nav1.7 have been identified as important cellular substrates for different heritable pain syndromes. This review aims to cover recent progress on our understanding of how biophysical properties of mutant Nav1.7 translate into an aberrant electrogenesis of nociceptors. We also recapitulate the role of Nav1.8 for peripheral pain processing and of additional sodium channelopathies which have been linked to disorders with pain as a significant component.
Collapse
Affiliation(s)
- Angelika Lampert
- Department of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Universitätsstrasse 17, 91054, Erlangen, Germany.
| | | | | | | |
Collapse
|
29
|
Solution structure of BmKαTx11, a toxin from the venom of the Chinese scorpion Buthus martensii Karsch. Biochem Biophys Res Commun 2010; 391:627-33. [DOI: 10.1016/j.bbrc.2009.11.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/18/2009] [Indexed: 11/19/2022]
|
30
|
Weinberger H, Moran Y, Gordon D, Turkov M, Kahn R, Gurevitz M. Positions under Positive Selection--Key for Selectivity and Potency of Scorpion -Toxins. Mol Biol Evol 2009; 27:1025-34. [DOI: 10.1093/molbev/msp310] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Kahn R, Karbat I, Ilan N, Cohen L, Sokolov S, Catterall WA, Gordon D, Gurevitz M. Molecular requirements for recognition of brain voltage-gated sodium channels by scorpion alpha-toxins. J Biol Chem 2009; 284:20684-91. [PMID: 19509294 DOI: 10.1074/jbc.m109.021303] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scorpion alpha-toxin Lqh2 (from Leiurus quinquestriatus hebraeus) is active at various mammalian voltage-gated sodium channels (Na(v)s) and is inactive at insect Na(v)s. To resolve the molecular basis of this preference we used the following strategy: 1) Lqh2 was expressed in recombinant form and key residues important for activity at the rat brain channel rNa(v)1.2a were identified by mutagenesis. These residues form a bipartite functional surface made of a conserved "core domain" (residues of the loops connecting the secondary structure elements of the molecule core), and a variable "NC domain" (five-residue turn and the C-tail) as was reported for other scorpion alpha-toxins. 2) The functional role of the two domains was validated by their stepwise construction on the similar scaffold of the anti-insect toxin LqhalphaIT. Analysis of the activity of the intermediate constructs highlighted the critical role of Phe(15) of the core domain in toxin potency at rNa(v)1.2a, and has suggested that the shape of the NC-domain is important for toxin efficacy. 3) Based on these findings and by comparison with other scorpion alpha-toxins we were able to eliminate the activity of Lqh2 at rNa(v)1.4 (skeletal muscle), hNa(v)1.5 (cardiac), and rNa(v)1.6 channels, with no hindrance of its activity at Na(v)1.1-1.3. These results suggest that by employing a similar approach the design of further target-selective sodium channel modifiers is imminent.
Collapse
Affiliation(s)
- Roy Kahn
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat-Aviv 69978, Tel Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
32
|
De Lima ME, Figueiredo SG, Pimenta AMC, Santos DM, Borges MH, Cordeiro MN, Richardson M, Oliveira LC, Stankiewicz M, Pelhate M. Peptides of arachnid venoms with insecticidal activity targeting sodium channels. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:264-279. [PMID: 17218159 DOI: 10.1016/j.cbpc.2006.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 10/19/2006] [Accepted: 10/21/2006] [Indexed: 12/18/2022]
Abstract
Arachnids have a venom apparatus and secrete a complex chemical mixture of low molecular mass organic molecules, enzymes and polypeptide neurotoxins designed to paralyze or kill their prey. Most of these toxins are specific for membrane voltage-gated sodium channels, although some may also target calcium or potassium channels and other membrane receptors. Scorpions and spiders have provided the greatest number of the neurotoxins studied so far, for which, a good number of primary and 3D structures have been obtained. Structural features, comprising a folding that determines a similar spatial distribution of charged and hydrophobic side chains of specific amino acids, are strikingly common among the toxins from spider and scorpion venoms. Such similarities are, in turn, the key feature to target and bind these proteins to ionic channels. The search for new insecticidal compounds, as well as the study of their modes of action, constitutes a current approach to rationally design novel insecticides. This goal tends to be more relevant if the resistance to the conventional chemical products is considered. A promising alternative seems to be the biotechnological approach using toxin-expressing recombinant baculovirus. Spider and scorpion toxins having insecticidal activity are reviewed here considering their structures, toxicities and action mechanisms in sodium channels of excitable membranes.
Collapse
Affiliation(s)
- M E De Lima
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil.
| | - S G Figueiredo
- Centro de Ciências Fisiológicas, CBM - Universidade Federal do Espírito Santo, Vitória, ES, Brasil
| | - A M C Pimenta
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil
| | - D M Santos
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Núcleo de Biomoléculas - Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil
| | - M H Borges
- Lab. Venenos e Toxinas Animais, Universidade Federal de Minas Gerais, 31.270-901, Belo Horizonte, MG, Brasil; Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - M N Cordeiro
- Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - M Richardson
- Centro de Pesquisa Prof. Carlos R. Diniz, Fundação Ezequiel Dias, Belo Horizonte, MG, Brasil
| | - L C Oliveira
- Departamento de Farmácia Bioquímica - Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100-000, Diamantina, MG, Brasil
| | - M Stankiewicz
- Laboratory of Biophysics - Institute of General and Molecular Biology, N. Copernicus University, 87-100, Torun, Poland
| | - M Pelhate
- Lab. Récepteurs et Canaux Ioniques Membranaires, Université d'Angers, 49045, Angers, France
| |
Collapse
|
33
|
Karbat I, Kahn R, Cohen L, Ilan N, Gilles N, Corzo G, Froy O, Gur M, Albrecht G, Heinemann SH, Gordon D, Gurevitz M. The unique pharmacology of the scorpion α-like toxin Lqh3 is associated with its flexible C-tail. FEBS J 2007; 274:1918-31. [PMID: 17355257 DOI: 10.1111/j.1742-4658.2007.05737.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The affinity of scorpion alpha-toxins for various voltage-gated sodium channels (Na(v)s) differs considerably despite similar structures and activities. It has been proposed that key bioactive residues of the five-residue-turn (residues 8-12) and the C-tail form the NC domain, whose topology is dictated by a cis or trans peptide-bond conformation between residues 9 and 10, which correlates with the potency on insect or mammalian Na(v)s. We examined this hypothesis using Lqh3, an alpha-like toxin from Leiurus quinquestriatus hebraeus that is highly active in insects and mammalian brain. Lqh3 exhibits slower association kinetics to Na(v)s compared with other alpha-toxins and its binding to insect Na(v)s is pH-dependent. Mutagenesis of Lqh3 revealed a bi-partite bioactive surface, composed of the Core and NC domains, as found in other alpha-toxins. Yet, substitutions at the five-residue turn and stabilization of the 9-10 bond in the cis conformation did not affect the activity. However, substitution of hydrogen-bond donors/acceptors at the NC domain reduced the pH-dependency of toxin binding, while retaining its high potency at Drosophila Na(v)s expressed in Xenopus oocytes. Based on these results and the conformational flexibility and rearrangement of intramolecular hydrogen-bonds at the NC domain, evident from the known solution structure, we suggest that acidic pH or specific mutations at the NC domain favor toxin conformations with high affinity for the receptor by stabilizing the bound toxin-receptor complex. Moreover, the C-tail flexibility may account for the slower association rates and suggests a novel mechanism of dynamic conformer selection during toxin binding, enabling alpha-like toxins to affect a broad range of Na(v)s.
Collapse
Affiliation(s)
- Izhar Karbat
- Department of Plant Sciences, George S.Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gordon D, Karbat I, Ilan N, Cohen L, Kahn R, Gilles N, Dong K, Stühmer W, Tytgat J, Gurevitz M. The differential preference of scorpion α-toxins for insect or mammalian sodium channels: Implications for improved insect control. Toxicon 2007; 49:452-72. [PMID: 17215013 DOI: 10.1016/j.toxicon.2006.11.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/17/2006] [Indexed: 11/19/2022]
Abstract
Receptor site-3 on voltage-gated sodium channels is targeted by a variety of structurally distinct toxins from scorpions, sea anemones, and spiders whose typical action is the inhibition of sodium current inactivation. This site interacts allosterically with other topologically distinct receptors that bind alkaloids, lipophilic polyether toxins, pyrethroids, and site-4 scorpion toxins. These features suggest that design of insecticides with specificity for site-3 might be rewarding due to the positive cooperativity with other toxins or insecticidal agents. Yet, despite the central role of scorpion alpha-toxins in envenomation and their vast use in the study of channel functions, molecular details on site-3 are scarce. Scorpion alpha-toxins vary greatly in preference for sodium channels of insects and mammals, and some of them are highly active on insects. This implies that despite its commonality, receptor site-3 varies on insect vs. mammalian channels, and that elucidation of these differences could potentially be exploited for manipulation of toxin preference. This review provides current perspectives on (i) the classification of scorpion alpha-toxins, (ii) their mode of interaction with sodium channels and pharmacological divergence, (iii) molecular details on their bioactive surfaces and differences associated with preference for channel subtypes, as well as (iv) a summary of the present knowledge about elements involved in constituting receptor site-3. These details, combined with the variations in allosteric interactions between site-3 and the other receptor sites on insect and mammalian sodium channels, may be useful in new strategies of insect control and future design of anti-insect selective ligands.
Collapse
Affiliation(s)
- Dalia Gordon
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Taghdir M, Naderi-Manesh H. Adjusting force distributions in functional site of scorpion toxin BMK M1 by cooperative effect of disulfide bonds. Biochem Biophys Res Commun 2006; 351:1037-42. [PMID: 17097064 DOI: 10.1016/j.bbrc.2006.10.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Accepted: 10/27/2006] [Indexed: 11/21/2022]
Abstract
We decided to investigate the influence of the presence of disulfide bonds on the pattern of force distribution in the functional site of scorpion toxin BMK M1 in its functional state. Therefore, a series of short time molecular dynamics (MD) simulations were performed on this toxin in the native state and disulfide bond broken states. The comparison of disulfide bond broken states with the native state showed that the electrostatic potential energy of important functional residues in the reverse turn and C-terminal regions were modulated by the cooperative effect of all disulfide bonds in the molecule. Furthermore, our results revealed that disulfide bonds also play a cooperative role in modulating (1) the amplitude of the fluctuations of the functional segments and (2) the correlation of motions between important functional residue pairs in this toxin. Therefore, we can conclude that the disulfide bonds have cooperation to adjust the pattern of force distribution in the functional site of this toxin in its functional state.
Collapse
Affiliation(s)
- Majid Taghdir
- Department of Biophysics, Faculty of Science, Tarbiat Modarres University, P.O. Box 14115-175, Tehran, Iran
| | | |
Collapse
|
36
|
Moghaddam ME, Naderi-Manesh H. Role of disulfide bonds in modulating internal motions of proteins to tune their function: molecular dynamics simulation of scorpion toxin Lqh III. Proteins 2006; 63:188-96. [PMID: 16400645 DOI: 10.1002/prot.20850] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A series of 1-ns MD simulations were performed on the scorpion toxin Lqh III in native and disulfide bond broken states. The removal of disulfide bonds has caused hydrogen bond network alteration in the five-residue turn, the long loop, the alpha-helix, the loop connecting strands II and III, and the C-terminal region. In addition and more importantly, it has influenced the amplitude of the fluctuations of five-residue turn, loops, and C-terminal region with a minor effect on the fluctuations of the cysteines in the broken bond sites. These findings suggest that disulfide bonds are not the most important factors in rigidifying their own locations, while they have more important effects at a global scale. Furthermore, our results reveal that disulfide bonds have considerable influence on the functionally important essential modes of motions and the correlations between the motions of the binding site residues. Therefore, we can conclude that disulfide bonds have a crucial role in modulating the function via adjusting the dynamics of scorpion toxin molecules. Although this conclusion cannot be generalized to all peptides and proteins, it demonstrates the importance of more investigations on this aspect of disulfide bond efficacy.
Collapse
|
37
|
Tan PTJ, Ranganathan S, Brusic V. Deduction of functional peptide motifs in scorpion toxins. J Pept Sci 2006; 12:420-7. [PMID: 16432807 DOI: 10.1002/psc.744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Scorpion toxins are important physiological probes for characterizing ion channels. Molecular databases have limited functional annotation of scorpion toxins. Their function can be inferred by searching for conserved motifs in sequence signature databases that are derived statistically but are not necessarily biologically relevant. Mutation studies provide biological information on residues and positions important for structure-function relationship but are not normally used for extraction of binding motifs. 3D structure analyses also aid in the extraction of peptide motifs in which non-contiguous residues are clustered spatially. Here we present new, functionally relevant peptide motifs for ion channels, derived from the analyses of scorpion toxin native and mutant peptides.
Collapse
Affiliation(s)
- Paul T J Tan
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613
| | | | | |
Collapse
|
38
|
Ali SA, Wang B, Alam M, Beck A, Stoeva S, Voelter W, Abbasi A, Duszenko M. Structure-activity relationship of an alpha-toxin Bs-Tx28 from scorpion (Buthus sindicus) venom suggests a new alpha-toxin subfamily. Arch Biochem Biophys 2005; 445:81-94. [PMID: 16309623 DOI: 10.1016/j.abb.2005.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 10/14/2005] [Accepted: 10/14/2005] [Indexed: 11/18/2022]
Abstract
Scorpion venoms are among the most widely known source of peptidyl neurotoxins used for callipering different ion channels, e.g., for Na(+), K(+), Ca(+) or Cl(-). An alpha-toxin (Bs-Tx28) has been purified from the venom of scorpion Buthus sindicus, a common yellow scorpion of Sindh, Pakistan. The primary structure of Bs-Tx28 was established using a combination of MALDI-TOF-MS, LC-ESI-MS, and automated Edman degradation analysis. Bs-Tx28 consists of 65 amino acid residues (7274.3+/-2Da), including eight cysteine residues, and shows very high sequence identity (82-94%) with other long-chain alpha-neurotoxins, active against receptor site-3 of mammalian (e.g., Lqq-IV and Lqh-IV from scorpions Leiurus sp.) and insect (e.g., BJalpha-IT and Od-1 from Buthotus judaicus and Odonthobuthus doriae, respectively) voltage-gated Na(+) channels. Multiple sequence alignment and phylogenetic analysis of Bs-Tx28 with other known alpha- and alpha-like toxins suggests the presence of a new and separate subfamily of scorpion alpha-toxins. Bs-Tx28 which is weakly active in both, mammals and insects (LD(50) 0.088 and 14.3microg/g, respectively), shows strong induction of the rat afferent nerve discharge in a dose-dependent fashion (EC(50)=0.01microg/mL) which was completely abolished in the presence of tetrodotoxin suggesting the binding of Bs-Tx28 to the TTX-sensitive Na(+)-channel. Three-dimensional structural features of Bs-Tx28, established by homology modeling, were compared with other known classical alpha-mammal (AaH-II), alpha-insect (Lqh-alphaIT), and alpha-like (BmK-M4) toxins and revealed subtle variations in the Nt-, Core-, and RT-CT-domains (functional domains) which constitute a "necklace-like" structure differing significantly in all alpha-toxin subfamilies. On the other hand, a high level of conservation has been observed in the conserved hydrophobic surface with the only substitution of W43 (Y43/42) and an additional hydrophobic character at position F40 (L40/A/V/G39), as compared to the other mentioned alpha-toxins. Despite major differences within the primary structure and activities of Bs-Tx28, it shares a common structural and functional motif (e.g., transRT-farCT) within the RT-CT domain which is characteristic of scorpion alpha-mammal toxins.
Collapse
Affiliation(s)
- Syed Abid Ali
- International Center for Chemical Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rodríguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 2005; 46:831-44. [PMID: 16274721 DOI: 10.1016/j.toxicon.2005.09.006] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scorpion venoms contain a large number of bioactive components. Several of the long-chain peptides were shown to be responsible for neurotoxic effects, due to their ability to recognize Na(+) channels and to cause impairment of channel functions. Here, we revisited the basic paradigms in the study of these peptides in the light of recent data concerning their structure-function relationships, their functional divergence and extant biodiversity. The reviewed topics include: the criteria for classification of long-chain peptides according to their function, and a revision of the state-of-the-art knowledge concerning the surface areas of contact of these peptides with known Na(+) channels. Additionally, we compiled a comprehensive list encompassing 191 different amino acid sequences from long-chain peptides purified from scorpion venoms. With this dataset, a phylogenetic tree was constructed and discussed taking into consideration their documented functional divergence. A critical view on problems associated with the study of these scorpion peptides is presented, drawing special attention to the points that need revision and to the subjects under intensive research at this moment, regarding scorpion toxins specific for Na(+) channels and the other related long-chain peptides recently described.
Collapse
Affiliation(s)
- Ricardo C Rodríguez de la Vega
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Av. Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico
| | | |
Collapse
|
40
|
Ye X, Bosmans F, Li C, Zhang Y, Wang DC, Tytgat J. Structural basis for the voltage-gated Na+ channel selectivity of the scorpion alpha-like toxin BmK M1. J Mol Biol 2005; 353:788-803. [PMID: 16209876 DOI: 10.1016/j.jmb.2005.08.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/26/2005] [Accepted: 08/26/2005] [Indexed: 11/21/2022]
Abstract
Scorpion alpha-like toxins are proteins that act on mammalian and insect voltage-gated Na+ channels. Therefore, these toxins constitute an excellent target for examining the foundations that underlie their target specificity. With this motive we dissected the role of six critical amino acids located in the five-residue reverse turn (RT) and C-tail (CT) of the scorpion alpha-like toxin BmK M1. These residues were individually substituted resulting in 11 mutants and were subjected to a bioassay on mice, an electrophysiological characterization on three cloned voltage-gated Na+ channels (Nav1.2, Nav1.5 and para), a CD analysis and X-ray crystallography. The results reveal two molecular sites, a couplet of residues (8-9) in the RT and a hydrophobic surface consisting of residues 57 and 59-61 in the CT, where the substitution with specific residues can redirect the alpha-like characteristics of BmK M1 to either total insect or much higher mammal specificity. Crystal structures reveal that the pharmacological ramification of these mutants is accompanied by the reshaping of the 3D structure surrounding position 8. Furthermore, our results also reveal that residues 57 and 59-61, located at the CT, enclose the critical residue 58 in order to form a hydrophobic "gasket". Mutants of BmK M1 that interrupt this hydrophobic surface significantly gain insect selectivity.
Collapse
Affiliation(s)
- Xiang Ye
- Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Legros C, Céard B, Vacher H, Marchot P, Bougis PE, Martin-Eauclaire MF. Expression of the standard scorpion alpha-toxin AaH II and AaH II mutants leading to the identification of some key bioactive elements. Biochim Biophys Acta Gen Subj 2005; 1723:91-9. [PMID: 15725394 DOI: 10.1016/j.bbagen.2005.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 01/12/2005] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
The AaH II toxin from the scorpion Androctonus australis Hector is considered to be the standard alpha-toxin because it selectively binds with the highest known affinity to site 3 of mammalian voltage-activated Na+ channels (Na(v)) on rat brain synaptosomes but does not bind to insect synaptosomes. We generated two different constructs in pMALp allowing us to produce AaH II fused with the maltose-binding protein (MBP) in E. coli. We obtained reasonable amounts of recombinant AaH II after cleavage by enterokinase at the site DDDDK. We show that the introduction of a net negative charge at the C-terminus by the suppression of H64 amidation and the addition of an extra residue to the C-terminus (G65) led to fully active AaH II mutants, exhibiting exactly the same affinity as the native toxin for its target on rat brain synaptosomes. In contrast, the mutation of residue K58 into V, I or E residues drastically reduced toxin activity.
Collapse
Affiliation(s)
- Christian Legros
- Ingénierie des Protéines CNRS FRE 2738, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Secteur Nord, Université de la Méditerranée, Bd Pierre Dramard, 13916, Marseille, cedex 20, France
| | | | | | | | | | | |
Collapse
|
42
|
Vasconcelos F, Lanchote VL, Bendhack LM, Giglio JR, Sampaio SV, Arantes EC. Effects of voltage-gated Na+ channel toxins from Tityus serrulatus venom on rat arterial blood pressure and plasma catecholamines. Comp Biochem Physiol C Toxicol Pharmacol 2005; 141:85-92. [PMID: 15996531 DOI: 10.1016/j.cca.2005.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 05/09/2005] [Accepted: 05/09/2005] [Indexed: 11/15/2022]
Abstract
Scorpion toxins interact with ionic channels of excitable cells, leading to a massive release of neurotransmitters. Voltage-gated Na+ channel toxins are mainly responsible for the toxic effects of scorpion envenoming and can be classified into two classes: alpha- and beta-neurotoxins. TsTX-V and TsTX-I from Tityus serrulatus venom (TsV) are, respectively, examples of these toxins. In this work, we compared the effects of these toxins on mean arterial pressure (MAP) and catecholamines release in rats. Toxins were isolated by ion exchange chromatography (TsTX-I) followed by RP-HPLC (TsTX-V). All experiments were performed on conscious unrestrained rats previously catheterised. The toxins (15 and 30 microg/kg) and TsV (50 and 100 microg/kg) were injected intravenously. MAP was continuously monitored through femoral catheter. Epinephrine (E) and norepinephrine (NE) levels were determined by RP-HPLC with electrochemical detection, at 10 min before and 2.5, 30 and 90 min after treatments. Maximal pressor effects were observed at 2.5-3.5 min. TsV induced intense long lasting increase in MAP, as did TsTX-I. TsTX-V showed the lowest pressor effects. TsV showed the highest effects on catecholamines release, followed by TsTX-I and TsTX-V with maximal effect at 2.5 min, followed by a gradual reduction, however remaining higher than controls. Although both toxins act on Na+ channels, TsTX-I displayed significant and more intense effects on catecholamines release and blood pressure than TsTX-V. It seems that the toxicity of TsTX-V is not related only with its ability to release catecholamines, indicating that other neurotransmitters, may be involved in its toxicity.
Collapse
Affiliation(s)
- Flávio Vasconcelos
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, USP, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Liu LH, Bosmans F, Maertens C, Zhu RH, Wang DC, Tytgat J. Molecular basis of the mammalian potency of the scorpion α‐like toxin, BmK M1. FASEB J 2005; 19:594-6. [PMID: 15677695 DOI: 10.1096/fj.04-2485fje] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In-depth structure-function studies of voltage-gated Na+ channels and peptide toxins are continuously increasing our understanding of their interaction. In this study, an effective yeast expression system was used to study the role of 14 N- and C-terminal residues from the alpha-like toxin BmK M1 from the Chinese scorpion Buthus martensii Karsch. With the use of site-directed mutagenesis, all of these residues were individually substituted by one or more amino acids, resulting in a total of 19 mutants. These were then subjected to a bioassay on mice, an elaborate electrophysiological characterization on three cloned voltage-gated Na+ channels (Nav1.2, Nav1.5, and para), and a circular dichroism analysis. Our results reveal large mutant-dependent differences that emphasize important and specific roles for the studied residues. By mutating single amino acids, we were able to redirect the alpha-like characteristics of BmK M1 (active on both mammals and insects) to either much higher mammal specificity or, in a few cases, total insect specificity. This study therefore represents a thorough mapping and elucidation of three epitopes that underlie the molecular basis of the mammalian and insecticidal potency of the scorpion alpha-like toxin, BmK M1 on voltage-gated Na+ channels.
Collapse
Affiliation(s)
- Li-Hui Liu
- Center for Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Wang JM, Roh SH, Kim S, Lee CW, Kim JI, Swartz KJ. Molecular surface of tarantula toxins interacting with voltage sensors in K(v) channels. ACTA ACUST UNITED AC 2004; 123:455-67. [PMID: 15051809 PMCID: PMC2217462 DOI: 10.1085/jgp.200309005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The venom from spiders, scorpions, and sea anemone contain a rich diversity of protein toxins that interact with ion channel voltage sensors. Although atomic structures have been solved for many of these toxins, the surfaces that are critical for interacting with voltage sensors are poorly defined. Hanatoxin and SGTx are tarantula toxins that inhibit activation of K(v) channels by interacting with each of the four voltage sensors. In this study we set out to identify the active surface of these toxins by alanine-scanning SGTx and characterizing the interaction of each mutant with the K(v)2.1 channel. Examination of the concentration dependence for inhibition identified 15 mutants with little effect on the concentration dependence for toxin inhibition of the K(v)2.1 channel, and 11 mutants that display moderate to dramatic perturbations. Mapping of these results onto the structure of SGTx identifies one face of the toxin where mutations with pronounced perturbations cluster together, and a backside of the toxin where mutations are well tolerated. The active surface of SGTx contains a ring-like assembly of highly polar residues, with two basic residues that are particularly critical, concentrically arranged around a hydrophobic protrusion containing critical aliphatic and aromatic residues. These results identify the active surface of the toxin and reveal the types of side chains that are important for interacting with voltage sensors.
Collapse
Affiliation(s)
- Julia M Wang
- Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Guan RJ, Xiang Y, He XL, Wang CG, Wang M, Zhang Y, Sundberg EJ, Wang DC. Structural mechanism governing cis and trans isomeric states and an intramolecular switch for cis/trans isomerization of a non-proline peptide bond observed in crystal structures of scorpion toxins. J Mol Biol 2004; 341:1189-204. [PMID: 15321715 DOI: 10.1016/j.jmb.2004.06.067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 06/15/2004] [Accepted: 06/22/2004] [Indexed: 11/20/2022]
Abstract
Non-proline cis peptide bonds have been observed in numerous protein crystal structures even though the energetic barrier to this conformation is significant and no non-prolyl-cis/trans-isomerase has been identified to date. While some external factors, such as metal binding or co-factor interaction, have been identified that appear to induce cis/trans isomerization of non-proline peptide bonds, the intrinsic structural basis for their existence and the mechanism governing cis/trans isomerization in proteins remains poorly understood. Here, we report the crystal structure of a newly isolated neurotoxin, the scorpion alpha-like toxin Buthus martensii Karsch (BmK) M7, at 1.4A resolution. BmK M7 crystallizes as a dimer in which the identical non-proline peptide bond between residues 9 and 10 exists either in the cis conformation or as a mixture of cis and trans conformations in either monomer. We also determined the crystal structures of several mutants of BmK M1, a representative scorpion alpha-like toxin that contains an identical non-proline cis peptide bond as that observed in BmK M7, in which residues within or neighboring the cis peptide bond were altered. Substitution of an aspartic acid residue for lysine at residue 8 in the BmK M1 (K8D) mutant converted the cis form of the non-proline peptide bond 9-10 into the trans form, revealing an intramolecular switch for cis-to-trans isomerization. Cis/trans interconversion of the switch residue at position 8 appears to be sequence-dependent as the peptide bond between residues 9 and 10 retains its wild-type cis conformation in the BmK M1 (K8Q) mutant structure. The structural interconversion of the isomeric states of the BmK M1 non-proline cis peptide bond may relate to the conversion of the scorpion alpha-toxins subgroups.
Collapse
Affiliation(s)
- Rong-Jin Guan
- Center for Structural and Molecular Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier JM. Diversity of folds in animal toxins acting on ion channels. Biochem J 2004; 378:717-26. [PMID: 14674883 PMCID: PMC1224033 DOI: 10.1042/bj20031860] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 12/16/2003] [Indexed: 12/15/2022]
Abstract
Animal toxins acting on ion channels of excitable cells are principally highly potent short peptides that are present in limited amounts in the venoms of various unrelated species, such as scorpions, snakes, sea anemones, spiders, insects, marine cone snails and worms. These toxins have been used extensively as invaluable biochemical and pharmacological tools to characterize and discriminate between the various ion channel types that differ in ionic selectivity, structure and/or cell function. Alongside the huge molecular and functional diversity of ion channels, a no less impressive structural diversity of animal toxins has been indicated by the discovery of an increasing number of polypeptide folds that are able to target these ion channels. Indeed, it appears that these peptide toxins have evolved over time on the basis of clearly distinct architectural motifs, in order to adapt to different ion channel modulating strategies (pore blockers compared with gating modifiers). Herein, we provide an up-to-date overview of the various types of fold from animal toxins that act on ion channels selective for K+, Na+, Ca2+ or Cl- ions, with special emphasis on disulphide bridge frameworks and structural motifs associated with these peptide folds.
Collapse
Affiliation(s)
- Stéphanie Mouhat
- Laboratoire Cellpep S.A., 13-15 Rue Ledru-Rollin, 13015 Marseille, France
| | | | | | | | | |
Collapse
|
47
|
Huys I, Xu CQ, Wang CZ, Vacher H, Martin-Eauclaire MF, Chi CW, Tytgat J. BmTx3, a scorpion toxin with two putative functional faces separately active on A-type K+ and HERG currents. Biochem J 2004; 378:745-52. [PMID: 14599291 PMCID: PMC1223995 DOI: 10.1042/bj20031324] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 10/31/2003] [Accepted: 11/05/2003] [Indexed: 11/17/2022]
Abstract
A novel HERG channel blocker was isolated from the venom of the scorpion Buthus martensi Karsch, sequenced and characterized at the pharmacological level after chemical synthesis. According to the determined amino acid sequence, the cDNA and genomic genes were then cloned. The genomic gene consists of two exons interrupted by an intron of 65 bp at position -6 upstream from the mature toxin. The protein sequence of this toxin was completely identical with that of a known A-type K+ current blocker BmTx3, belonging to scorpion alpha-KTx subfamily 15. Thus BmTx3 is the first reported alpha-KTx peptide also showing HERG-blocking activity, like gamma-KTx peptides. Moreover, different from classical alpha-KTx peptides, such as charybdotoxin, BmTx3 cannot block Shaker -type K+ channels. Phylogenetic tree analysis reveals that this toxin takes an intermediate position between classical alpha-KTx and gamma-KTx toxins. From a structural point of view, we propose that two separate functional faces might exist on the BmTx3 molecule, responsible for the two different K+-current-blocking functions. Face A, composed of Arg18 and Lys19 in the alpha-helix side, might correspond to HERG blocking activity, whereas Face B, containing a putative functional dyad (Lys27 and Tyr36) in the beta-sheet side, might correspond to A-type blocking activity. A specific deletion mutant with the disrupted Face B, BmTx3-Y36P37del, loses the A-type current-blocking activity, but keeps a similar HERG-blocking activity, as seen with the wild-type toxin.
Collapse
Affiliation(s)
- Isabelle Huys
- Laboratory of Toxicology, University of Leuven, Faculty of Pharmaceutical Sciences, E. Van Evenstraat 4, 3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
48
|
del Río-Portilla F, Hernández-Marín E, Pimienta G, Coronas FV, Zamudio FZ, Rodríguez de la Vega RC, Wanke E, Possani LD. NMR solution structure of Cn12, a novel peptide from the Mexican scorpion Centruroides noxius with a typical beta-toxin sequence but with alpha-like physiological activity. ACTA ACUST UNITED AC 2004; 271:2504-16. [PMID: 15182366 DOI: 10.1111/j.1432-1033.2004.04181.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cn12 isolated from the venom of the scorpion Centruroides noxius has 67 amino-acid residues, closely packed with four disulfide bridges. Its primary structure and disulfide bridges were determined. Cn12 is not lethal to mammals and arthropods in vivo at doses up to 100 microg per animal. Its 3D structure was determined by proton NMR using 850 distance constraints, 36 phi angles derived from 36 coupling constants obtained by two different methods, and 22 hydrogen bonds. The overall structure has a two and half turn alpha-helix (residues 24-32), three strands of antiparallel beta-sheet (residues 2-4, 37-40 and 45-48), and a type II turn (residues 41-44). The amino-acid sequence of Cn12 resembles the beta scorpion toxin class, although patch-clamp experiments showed the induction of supplementary slow inactivation of Na(+) channels in F-11 cells (mouse neuroblastoma N18TG-2 x rat DRG2), which means that it behaves more like an alpha scorpion toxin. This behaviour prompted us to analyse Na(+) channel binding sites using information from 112 Na(+) channel gene clones available in the literature, focusing on the extracytoplasmic loops of the S5-S6 transmembrane segments of domain I and the S3-S4 segments of domain IV, sites considered to be responsible for binding alpha scorpion toxins.
Collapse
|
49
|
Karbat I, Frolow F, Froy O, Gilles N, Cohen L, Turkov M, Gordon D, Gurevitz M. Molecular basis of the high insecticidal potency of scorpion alpha-toxins. J Biol Chem 2004; 279:31679-86. [PMID: 15133045 DOI: 10.1074/jbc.m402048200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scorpion alpha-toxins are similar in their mode of action and three-dimensional structure but differ considerably in affinity for various voltage-gated sodium channels (NaChs). To clarify the molecular basis of the high potency of the alpha-toxin LqhalphaIT (from Leiurus quinquestriatus hebraeus) for insect NaChs, we identified by mutagenesis the key residues important for activity. We have found that the functional surface is composed of two distinct domains: a conserved "Core-domain" formed by residues of the loops connecting the secondary structure elements of the molecule core and a variable "NC-domain" formed by a five-residue turn (residues 8-12) and a C-terminal segment (residues 56-64). We further analyzed the role of these domains in toxin activity on insects by their stepwise construction onto the scaffold of the anti-mammalian alpha-toxin, Aah2 (from Androctonus australis hector). The chimera harboring both domains, Aah2(LqhalphaIT(face)), was as active to insects as LqhalphaIT. Structure determination of Aah2(LqhalphaIT(face)) by x-ray crystallography revealed that the NC-domain deviates from that of Aah2 and forms an extended protrusion off the molecule core as appears in LqhalphaIT. Notably, such a protrusion is observed in all alpha-toxins active on insects. Altogether, the division of the functional surface into two domains and the unique configuration of the NC-domain illuminate the molecular basis of alpha-toxin specificity for insects and suggest a putative binding mechanism to insect NaChs.
Collapse
Affiliation(s)
- Izhar Karbat
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Leipold E, Lu S, Gordon D, Hansel A, Heinemann SH. Combinatorial interaction of scorpion toxins Lqh-2, Lqh-3, and LqhalphaIT with sodium channel receptor sites-3. Mol Pharmacol 2004; 65:685-91. [PMID: 14978247 DOI: 10.1124/mol.65.3.685] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Scorpion alpha-toxins LqhalphaIT, Lqh-2, and Lqh-3 are representatives of three groups of alpha-toxins that differ in their preference for insects and mammals. These alpha-insect, antimammalian, and alpha-like toxins bind to voltage-gated sodium channels and slow down channel inactivation. Sodium channel mutagenesis studies using various alpha-toxins have shown that they interact with receptor site 3, which is composed mainly of a short stretch of amino-acid residues between S3 and S4 of domain 4. Variation in this region results in marked differences between various subtypes of sodium channels with respect to their sensitivity to the three Lqh toxins. We incorporated the S3-S4 linker of domain 4 from hNaV1.2/hNaV1.1, hNaV1.3, hNaV1.6, and hNaV1.7 channels as well as individual point mutations into the rNaV1.4 skeletal muscle sodium channel. Our data show that the affinity of Lqh-3 and LqhalphaIT to sodium channels is markedly determined by an aspartate residue (Asp1428 in rNaV1.4); when mutated to glutamate, as is present in NaV1.1-1.3 channels, Lqh-3-channel interactions are abolished. The interaction of Lqh-2 and LqhalphaIT, however, is strongly reduced when a lysine residue (Lys1432 in rNaV1.4) is replaced by threonine (as in hNaV1.7), whereas this substitution is without effect for Lqh-3. The influence of Lys1432 on Lqh-2 and LqhalphaIT strongly depends on the context of the Asp/Glu site at position 1428, giving rise to a wide variety of toxicological phenotypes by means of a combinatorial mixing and matching of only a few residues in receptor site 3.
Collapse
Affiliation(s)
- Enrico Leipold
- Molecular and Cellular Biophysics, Friedrich Schiller University Jena, Jena, Germany
| | | | | | | | | |
Collapse
|