1
|
Daniyan MO, Singh H, Blatch GL. The J Domain Proteins of Plasmodium knowlesi, a Zoonotic Malaria Parasite of Humans. Int J Mol Sci 2024; 25:12302. [PMID: 39596368 PMCID: PMC11594657 DOI: 10.3390/ijms252212302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Plasmodium knowlesi is a zoonotic form of human malaria, the pathology of which is poorly understood. While the J domain protein (JDP) family has been extensively studied in Plasmodium falciparum, and shown to contribute to malaria pathology, there is currently very limited information on the P. knowlesi JDPs (PkJDPs). This review provides a critical analysis of the literature and publicly available data on PkJDPs. Interestingly, the P. knowlesi genome encodes at least 31 PkJDPs, with well over half belonging to the most diverse types which contain only the signature J domain (type IIIs, 19) or a corrupted version of the J domain (type IVs, 2) as evidence of their membership. The more typical PkJDPs containing other domains typical of JDPs in addition to the J domain are much fewer in number (type IIs, 8; type Is, 2). This study indentifies PkJDPs that are potentially involved in: folding of newly synthesized or misfolded proteins within the P. knowlesi cytosol (a canonical type I and certain typical type IIs); protein translocation (a type III) and folding (a type II) in the ER; and protein import into mitochondria (a type III). Interestingly, a type II PkJDP is potentially exported to the host cell cytosol where it may recruit human HSP70 for the trafficking and folding of other exported P. knowlesi proteins. Experimental studies are required on this fascinating family of proteins, not only to validate their role in the pathology of knowlesi malaria, but also because they represent potential anti-malarial drug targets.
Collapse
Affiliation(s)
- Michael O Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife 220005, Nigeria
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar 144008, India
| | - Gregory L Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6140, South Africa
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA 6959, Australia
| |
Collapse
|
2
|
Nelson B, Soper N, Lupoli TJ. Bacterial J-Domains with C-Terminal Tags Contact the Substrate Binding Domain of DnaK and Sequester Chaperone Activity. Chembiochem 2023; 24:e202300261. [PMID: 37556312 DOI: 10.1002/cbic.202300261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
Functional interactions between the molecular chaperone DnaK and cofactor J-proteins (DnaJs), as well as their homologs, are crucial to the maintenance of proteostasis across cell types. In the bacterial pathogen Mycobacterium tuberculosis, DnaK-DnaJ interactions are essential for cell growth and represent potential targets for antibiotic or adjuvant development. While the N-terminal J-domains of J-proteins are known to form important contacts with DnaK, C-terminal domains have varied roles. Here, we have studied the effect of adding C-terminal tags to N-terminal J-domain truncations of mycobacterial DnaJ1 and DnaJ2 to promote additional interactions with DnaK. We found that His6 tags uniquely promote binding to additional sites in the substrate binding domain at the C-terminus of DnaK. Other C-terminal tags attached to J-domains, even peptides known to interact with DnaK, do not produce the same effects. Expression of C-terminally modified DnaJ1 or DnaJ2 J-domains in mycobacterial cells suppresses chaperone activity following proteotoxic stress, which is exaggerated in the presence of a small-molecule DnaK inhibitor. Hence, this work uncovers genetically encodable J-protein variants that may be used to study chaperone-cofactor interactions in other organisms.
Collapse
Affiliation(s)
- Brock Nelson
- Department of Chemistry, New York University, New York, 10003, USA
| | - Nathan Soper
- Department of Chemistry, New York University, New York, 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, 10003, USA
| |
Collapse
|
3
|
Richards A, Lupoli TJ. Peptide-based molecules for the disruption of bacterial Hsp70 chaperones. Curr Opin Chem Biol 2023; 76:102373. [PMID: 37516006 PMCID: PMC11217992 DOI: 10.1016/j.cbpa.2023.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/31/2023]
Abstract
DnaK is a chaperone that aids in nascent protein folding and the maintenance of proteome stability across bacteria. Due to the importance of DnaK in cellular proteostasis, there have been efforts to generate molecules that modulate its function. In nature, both protein substrates and antimicrobial peptides interact with DnaK. However, many of these ligands interact with other cellular machinery as well. Recent work has sought to modify these peptide scaffolds to create DnaK-selective and species-specific probes. Others have reported protein domain mimics of interaction partners to disrupt cellular DnaK function and high-throughput screening approaches to discover clinically-relevant peptidomimetics that inhibit DnaK. The described work provides a foundation for the design of new assays and molecules to regulate DnaK activity.
Collapse
Affiliation(s)
- Aweon Richards
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Tania J Lupoli
- Department of Chemistry, New York University, New York, NY 10003, USA.
| |
Collapse
|
4
|
Wang Y, Abazid A, Badendieck S, Mustea A, Stope MB. Impact of Non-Invasive Physical Plasma on Heat Shock Protein Functionality in Eukaryotic Cells. Biomedicines 2023; 11:biomedicines11051471. [PMID: 37239142 DOI: 10.3390/biomedicines11051471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Recently, biomedical research has increasingly investigated physical plasma as an innovative therapeutic approach with a number of therapeutic biomedical effects. It is known from radiation and chemotherapy that these applications can lead to the induction and activation of primarily cytoprotective heat shock proteins (HSP). HSP protect cells and tissues from physical, (bio)chemical, and physiological stress and, ultimately, along with other mechanisms, govern resistance and treatment failure. These mechanisms are well known and comparatively well studied in drug therapy. For therapies in the field of physical plasma medicine, however, extremely little data are available to date. In this review article, we provide an overview of the current studies on the interaction of physical plasma with the cellular HSP system.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Abazid
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Steffen Badendieck
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, Scharnhorststrasse 13, 10115 Berlin, Germany
| | - Alexander Mustea
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Matthias B Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
5
|
Nelson B, Hong SH, Lupoli TJ. Protein Cofactor Mimics Disrupt Essential Chaperone Function in Stressed Mycobacteria. ACS Infect Dis 2022; 8:901-910. [PMID: 35412813 DOI: 10.1021/acsinfecdis.1c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial DnaK is an ATP-dependent molecular chaperone important for maintaining cellular proteostasis in concert with cofactor proteins. The cofactor DnaJ delivers non-native client proteins to DnaK and activates its ATPase activity, which is required for protein folding. In the bacterial pathogen Mycobacterium tuberculosis, DnaK is assisted by two DnaJs, DnaJ1 and DnaJ2. Functional protein-protein interactions (PPIs) between DnaK and at least one DnaJ are essential for survival of mycobacteria; hence, these PPIs represent untapped antibacterial targets. Here, we synthesize peptide-based mimetics of DnaJ1 and DnaJ2 N-terminal domains as rational inhibitors of DnaK-cofactor interactions. We find that covalently stabilized DnaJ mimetics are capable of disrupting DnaK-cofactor activity in vitro and prevent mycobacterial recovery from proteotoxic stress in vivo, leading to cell death. Since chaperones and cofactors are highly conserved, we anticipate these results will inform the design of other mimetics to modulate chaperone function across cell types.
Collapse
Affiliation(s)
- Brock Nelson
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Seong Ho Hong
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
6
|
Liu Q, Liang C, Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 2019; 29:378-390. [PMID: 31509306 DOI: 10.1002/pro.3725] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
As one of the most abundant and highly conserved molecular chaperones, the 70-kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective.
Collapse
Affiliation(s)
- Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Ce Liang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Ajayi OO, Peters SO, De Donato M, Mujibi FD, Khan WA, Hussain T, Babar ME, Imumorin IG, Thomas BN. Genetic variation in N- and C-terminal regions of bovine DNAJA1 heat shock protein gene in African, Asian and American cattle. J Genomics 2018; 6:1-8. [PMID: 29290829 PMCID: PMC5744232 DOI: 10.7150/jgen.23248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/18/2017] [Indexed: 11/12/2022] Open
Abstract
DNAJA1 or heat shock protein 40 (Hsp40) is associated with heat adaptation in various organisms. We amplified and sequenced a total of 1,142 bp of bovine Hsp40 gene representing the critical N-terminal (NTR) and C-terminal (CTR) regions in representative samples of African, Asian and American cattle breeds. Eleven and 9 different haplotypes were observed in the NTR in Asian and African breeds respectively while in American Brangus, only two mutations were observed resulting in two haplotypes. The CTR appears to be highly conserved between cattle and yak. In-silico functional analysis with PANTHER predicted putative deleterious functional impact of c.161 T>A; p. V54Q while alignment of bovine and human NTR-J domains revealed that p.Q19H, p.E20Q and p. E21X mutations occurred in helix 2 and p.V54Q missense mutation occurred in helix 3 respectively. The 124 bp insertion found in the yak DNAJA1 ortholog may have significant functional relevance warranting further investigation. Our results suggest that these genetic differences may be concomitant with population genetic history and possible functional consequences for climate adaptation in bovidae.
Collapse
Affiliation(s)
- Oyeyemi O. Ajayi
- Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - Sunday O. Peters
- Department of Animal Science, Berry College, Mount Berry, GA 30149
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Marcos De Donato
- Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
- Departamento Regional de Bioingenierias, Instituto Tecnologico y de Estudios Superiores de Monterrey, Queretaro, Mexico
| | - F. Denis Mujibi
- Usomi Ltd., PO Box 105086-00101, Ushirika Road, Karen, Nairobi, Kenya
| | - Waqas A. Khan
- Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Tanveer Hussain
- Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
- Department of Molecular Biology, Virtual University of Pakistan, Lahore, Pakistan
| | - Masroor E. Babar
- African Institute for Biosciences Research and Training, Ibadan, Nigeria
| | - Ikhide G. Imumorin
- Animal Genetics and Genomics Laboratory, International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
- African Institute for Biosciences Research and Training, Ibadan, Nigeria
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester NY, 14623
| |
Collapse
|
8
|
Xue YL, Zhou L, Sun Y, Li H, Jones GW, Song Y. Steered molecular dynamics simulation of the binding of the bovine auxilin J domain to the Hsc70 nucleotide-binding domain. J Mol Model 2017; 23:320. [PMID: 29063205 DOI: 10.1007/s00894-017-3453-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022]
Abstract
The Hsp70 and Hsp40 chaperone machine plays critical roles in protein folding, membrane translocation, and protein degradation by binding and releasing protein substrates in a process that utilizes ATP. The activities of the Hsp70 family of chaperones are recruited and stimulated by the J domains of Hsp40 chaperones. However, structural information on the Hsp40-Hsp70 complex is lacking, and the molecular details of this interaction are yet to be elucidated. Here we used steered molecular dynamics (SMD) simulations to investigate the molecular interactions that occur during the dissociation of the auxilin J domain from the Hsc70 nucleotide-binding domain (NBD). The changes in energy observed during the SMD simulation suggest that electrostatic interactions are the dominant type of interaction. Additionally, we found that Hsp70 mainly interacts with auxilin through the surface residues Tyr866, Arg867, and Lys868 of helix II, His874, Asp876, Lys877, Thr879, and Gln881 of the HPD loop, and Phe891, Asn895, Asp896, and Asn903 of helix III. The conservative residues Tyr866, Arg867, Lys868, His874, Asp876, Lys877, and Phe891 were also found in a previous study to be indispensable to the catalytic activity of the DnaJ J domain and the binding of it with the NBD of DnaK. The in silico identification of the importance of auxilin residues Asn895, Asp896, and Asn903 agrees with previous mutagenesis and NMR data suggesting that helix III of the J domain of the T antigen interacts with Hsp70. Furthermore, our data indicate that Thr879 and Gln881 from the HPD loop are also important as they mediate the interaction between the bovine auxilin J domain and Hsc70.
Collapse
Affiliation(s)
- You-Lin Xue
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.,College of Light Industry, Liaoning University, Shenyang, 110036, China
| | - Lei Zhou
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Yuna Sun
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life Science, Liaoning University, Shenyang, 110036, China
| | - Hui Li
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life Science, Liaoning University, Shenyang, 110036, China
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Youtao Song
- School of Environmental Science, Liaoning University, Shenyang, 110036, China. .,Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life Science, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
9
|
Xue YL, Wang H, Riedy M, Roberts BL, Sun Y, Song YB, Jones GW, Masison DC, Song Y. Molecular dynamics simulations of Hsp40 J-domain mutants identifies disruption of the critical HPD-motif as the key factor for impaired curing in vivo of the yeast prion [URE3]. J Biomol Struct Dyn 2017; 36:1764-1775. [PMID: 28766406 DOI: 10.1080/07391102.2017.1334594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic screens using Saccharomyces cerevisiae have identified an array of Hsp40 (Ydj1p) J-domain mutants that are impaired in the ability to cure the yeast [URE3] prion through disrupting functional interactions with Hsp70. However, biochemical analysis of some of these Hsp40 J-domain mutants has so far failed to provide major insight into the specific functional changes in Hsp40-Hsp70 interactions. To explore the detailed structural and dynamic properties of the Hsp40 J-domain, 20 ns molecular dynamic simulations of 4 mutants (D9A, D36A, A30T, and F45S) and wild-type J-domain were performed, followed by Hsp70 docking simulations. Results demonstrated that although the Hsp70 interaction mechanism of the mutants may vary, the major structural change was targeted to the critical HPD motif of the J-domain. Our computational analysis fits well with previous yeast genetics studies regarding highlighting the importance of J-domain function in prion propagation. During the molecular dynamics simulations several important residues were identified and predicted to play an essential role in J-domain structure. Among these residues, Y26 and F45 were confirmed, using both in silico and in vivo methods, as being critical for Ydj1p function.
Collapse
Affiliation(s)
- You-Lin Xue
- a School of Environmental Science, Liaoning University , Shenyang , China.,d Light Industry College, Liaoning University , Shenyang , China
| | - Hao Wang
- a School of Environmental Science, Liaoning University , Shenyang , China
| | - Michael Riedy
- b Laboratory of Biochemistry and Genetics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Brittany-Lee Roberts
- b Laboratory of Biochemistry and Genetics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Yuna Sun
- a School of Environmental Science, Liaoning University , Shenyang , China
| | - Yong-Bo Song
- e School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University , Shenyang , China
| | - Gary W Jones
- c National University of Ireland Maynooth , Maynooth , Ireland
| | - Daniel C Masison
- b Laboratory of Biochemistry and Genetics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Youtao Song
- a School of Environmental Science, Liaoning University , Shenyang , China
| |
Collapse
|
10
|
Bascos NAD, Mayer MP, Bukau B, Landry SJ. The Hsp40 J-domain modulates Hsp70 conformation and ATPase activity with a semi-elliptical spring. Protein Sci 2017; 26:1838-1851. [PMID: 28685898 DOI: 10.1002/pro.3223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/22/2017] [Accepted: 06/29/2017] [Indexed: 11/12/2022]
Abstract
Regulatory protein interactions are commonly attributed to lock-and-key associations that bring interacting domains together. However, studies in some systems suggest that regulation is not achieved by binding interactions alone. We report our investigations on specific physical characteristics required of the Hsp40 J-domain to stimulate ATP hydrolysis in the Hsp40-Hsp70 molecular chaperone machine. Biophysical analysis using isothermal titration calorimetry, and nuclear magnetic resonance spectroscopy reveals the importance of helix rigidity for the maintenance of Hsp40 function. Our results suggest that the functional J-domain acts like a semi-elliptical spring, wherein the resistance to bending upon binding to the Hsp70 ATPase modulates the ATPase domain conformational change and promotes ATP hydrolysis.
Collapse
Affiliation(s)
- Neil Andrew D Bascos
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| | - Matthias P Mayer
- Center for Molecular Biology of the University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, Heidelberg, 69120, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), Im Neuenheimer Feld 282, Heidelberg, 69120, Germany
| | - Samuel J Landry
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, Louisiana, 70112
| |
Collapse
|
11
|
Malinverni D, Jost Lopez A, De Los Rios P, Hummer G, Barducci A. Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and coevolutionary sequence analysis. eLife 2017; 6. [PMID: 28498104 PMCID: PMC5519331 DOI: 10.7554/elife.23471] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
Abstract
The interaction between the Heat Shock Proteins 70 and 40 is at the core of the ATPase regulation of the chaperone machinery that maintains protein homeostasis. However, the structural details of the interaction remain elusive and contrasting models have been proposed for the transient Hsp70/Hsp40 complexes. Here we combine molecular simulations based on both coarse-grained and atomistic models with coevolutionary sequence analysis to shed light on this problem by focusing on the bacterial DnaK/DnaJ system. The integration of these complementary approaches resulted in a novel structural model that rationalizes previous experimental observations. We identify an evolutionarily conserved interaction surface formed by helix II of the DnaJ J-domain and a structurally contiguous region of DnaK, involving lobe IIA of the nucleotide binding domain, the inter-domain linker, and the β-basket of the substrate binding domain. DOI:http://dx.doi.org/10.7554/eLife.23471.001
Collapse
Affiliation(s)
- Duccio Malinverni
- Laboratoire de Biophysique Statistique, Faculté de Sciences de Base, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Paolo De Los Rios
- Laboratoire de Biophysique Statistique, Faculté de Sciences de Base, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Gerhard Hummer
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.,Institut für Biophysik, Johann Wolfgang Goethe Universität Frankfurt, Frankfurt am Main, Germany
| | - Alessandro Barducci
- Inserm, U1054, Montpellier, France.,Université de Montpellier, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier, France
| |
Collapse
|
12
|
Chen CH, Piraner D, Gorenstein NM, Geahlen RL, Beth Post C. Differential recognition of syk-binding sites by each of the two phosphotyrosine-binding pockets of the Vav SH2 domain. Biopolymers 2016; 99:897-907. [PMID: 23955592 DOI: 10.1002/bip.22371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 07/26/2013] [Accepted: 08/06/2013] [Indexed: 01/01/2023]
Abstract
The association of spleen tyrosine kinase (Syk), a central tyrosine kinase in B cell signaling, with Vav SH2 domain is controlled by phosphorylation of two closely spaced tyrosines in Syk linker B: Y342 and Y346. Previous studies established both singly phosphorylated and doubly phosphorylated forms play a role in signaling. The structure of the doubly phosphorylated form identified a new recognition of phosphotyrosine whereby two phosphotyrosines bind simultaneously to the Vav SH2 domain, one in the canonical pTyr pocket and one in the specificity pocket on the opposite side of the central β-sheet. It is unknown if the specificity pocket can bind phosphotyrosine independent of phosphotyrosine binding the pTyr pocket. To address this gap in knowledge, we determined the structure of the complex between Vav1 SH2 and a peptide (SykLB-YpY) modeling the singly phosphorylated-Y346 form of Syk with unphosphorylated Y342. The nuclear magnetic resonance (NMR) data conclusively establish that recognition of phosphotyrosine is swapped between the two pockets; phosphorylated pY346 binds the specificity pocket of Vav1 SH2, and unphosphorylated Y342 occupies what is normally the pTyr binding pocket. Nearly identical changes in chemical shifts occurred upon binding all three forms of singly and doubly phosphorylated peptides; however, somewhat smaller shift perturbations for SykLB-YpY from residues in regions of high internal mobility suggest that internal motions are coupled to binding affinity. The differential recognition that includes this swapped binding of phosphotyrosine to the specificity pocket of Vav SH2 increases the repertoire of possible phosphotyrosine binding by SH2 domains in regulating protein-protein interactions in cellular signaling.
Collapse
Affiliation(s)
- Chih-Hong Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907
| | | | | | | | | |
Collapse
|
13
|
Ludewig MH, Boshoff A, Horn D, Blatch GL. Trypanosoma brucei J protein 2 is a stress inducible and essential Hsp40. Int J Biochem Cell Biol 2015; 60:93-8. [PMID: 25562516 DOI: 10.1016/j.biocel.2014.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/08/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
Hsp40 proteins (also known as DnaJ or J proteins) serve as co-chaperones for Hsp70, but also display evidence of independent chaperone function. Furthermore, certain Hsp40s have been shown to be stress-inducible and essential. Trypanosomatids display a remarkable diversification of Hsp40 proteins, with numerous distinct Hsp40-like proteins encoded in the Trypanosoma brucei genome. This study investigated the role of one of the six T. brucei Type I Hsp40s, T. brucei J protein 2 (Tbj2). We found that Tbj2 was heat stress-inducible, and that knockdown using RNA interference resulted in a severe growth defect under normal growth temperatures. Furthermore, a green fluorescent protein (GFP)-Tbj2 fusion protein was found to be localized to the cytosol of T. brucei. Taken together, these data suggest that Tbj2 is not functionally equivalent to the other five Type I Hsp40s, and that it is an essential, cytosolic, and stress-inducible chaperone, potentially playing an important role in protein biogenesis in T. brucei.
Collapse
Affiliation(s)
- Michael H Ludewig
- Biomedical and Biotechnology Research Unit, Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - Aileen Boshoff
- Biomedical and Biotechnology Research Unit, Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa
| | - David Horn
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Gregory L Blatch
- Biomedical and Biotechnology Research Unit, Biotechnology Innovation Centre, Rhodes University, Grahamstown 6140, South Africa; College of Health & Biomedicine, Victoria University, Melbourne, Victoria 8001, Australia.
| |
Collapse
|
14
|
NMR characterization of the electrostatic interaction of the basic residues in HDGF and FGF2 during heparin binding. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1851-9. [DOI: 10.1016/j.bbapap.2014.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/25/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022]
|
15
|
Servas C, Römisch K. The Sec63p J-domain is required for ERAD of soluble proteins in yeast. PLoS One 2013; 8:e82058. [PMID: 24324744 PMCID: PMC3852996 DOI: 10.1371/journal.pone.0082058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/28/2013] [Indexed: 12/02/2022] Open
Abstract
How misfolded proteins are exported from the ER to the cytosol for degradation (ER-associated Degradation, ERAD) and which proteins are participating in this process is not understood. Several studies using a single, leaky mutant indicated that Sec63p might be involved in ERAD. More recently, Sec63p was also found strongly associated with proteasomes attached to the protein-conducting channel in the ER membrane which presumably form part of the export machinery. These observations prompted us to reinvestigate the role of Sec63p in ERAD by generating new mutants which were selected in a screen monitoring the intracellular accumulation of the ERAD substrate CPY*. We show that a mutation in the DnaJ-domain of Sec63p causes a defect in ERAD, whereas mutations in the Brl, acidic, and transmembrane domains only affect protein import into the ER. Unexpectedly, mutations in the acidic domain which mediates interaction of Sec63p with Sec62p also caused defects in cotranslational import. In contrast to mammalian cells where SEC63 expression levels affect steady-state levels of multi-spanning transmembrane proteins, the sec63 J-domain mutant was only defective in ERAD of soluble substrates.
Collapse
Affiliation(s)
- Christina Servas
- Department of Microbiology, Faculty of Natural Sciences and Technology VIII, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
16
|
Baker MA, Naumovski N, Hetherington L, Weinberg A, Velkov T, Aitken RJ. Head and flagella subcompartmental proteomic analysis of human spermatozoa. Proteomics 2013; 13:61-74. [PMID: 23161668 DOI: 10.1002/pmic.201200350] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/16/2012] [Accepted: 10/25/2012] [Indexed: 01/02/2023]
Abstract
Subcellular proteomics not only deepens our knowledge of what proteins are present within cells, but also opens our understanding as to where those proteins reside. Given the highly differentiated, cross-linked state of spermatozoa, such studies have proven difficult to perform. In this study we have fractionated spermatozoa into two components, consisting of either the head or flagellar region. Following SDS-PAGE, 1 mm slices were digested and used for LC-MS/MS analysis. In total, 1429 proteins were identified with 721 proteins being exclusively found in the tail and 521 exclusively in the head. Not only is this the largest reported proteomic analysis of human spermatozoa, but also it has provided novel insights into the compartmentalization of proteins, particularly receptors, never previously reported to be present in this cell type.
Collapse
Affiliation(s)
- Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
17
|
Stollar EJ, Lin H, Davidson AR, Forman-Kay JD. Differential dynamic engagement within 24 SH3 domain: peptide complexes revealed by co-linear chemical shift perturbation analysis. PLoS One 2012; 7:e51282. [PMID: 23251481 PMCID: PMC3520974 DOI: 10.1371/journal.pone.0051282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence for the functional importance of multiple dynamically populated states within single proteins. However, peptide binding by protein-protein interaction domains, such as the SH3 domain, has generally been considered to involve the full engagement of peptide to the binding surface with minimal dynamics and simple methods to determine dynamics at the binding surface for multiple related complexes have not been described. We have used NMR spectroscopy combined with isothermal titration calorimetry to comprehensively examine the extent of engagement to the yeast Abp1p SH3 domain for 24 different peptides. Over one quarter of the domain residues display co-linear chemical shift perturbation (CCSP) behavior, in which the position of a given chemical shift in a complex is co-linear with the same chemical shift in the other complexes, providing evidence that each complex exists as a unique dynamic rapidly inter-converting ensemble. The extent the specificity determining sub-surface of AbpSH3 is engaged as judged by CCSP analysis correlates with structural and thermodynamic measurements as well as with functional data, revealing the basis for significant structural and functional diversity amongst the related complexes. Thus, CCSP analysis can distinguish peptide complexes that may appear identical in terms of general structure and percent peptide occupancy but have significant local binding differences across the interface, affecting their ability to transmit conformational change across the domain and resulting in functional differences.
Collapse
Affiliation(s)
- Elliott J. Stollar
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (EJS); (JFK)
| | - Hong Lin
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Alan R. Davidson
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie D. Forman-Kay
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (EJS); (JFK)
| |
Collapse
|
18
|
Botha M, Chiang AN, Needham PG, Stephens LL, Hoppe HC, Külzer S, Przyborski JM, Lingelbach K, Wipf P, Brodsky JL, Shonhai A, Blatch GL. Plasmodium falciparum encodes a single cytosolic type I Hsp40 that functionally interacts with Hsp70 and is upregulated by heat shock. Cell Stress Chaperones 2011; 16:389-401. [PMID: 21191678 PMCID: PMC3118825 DOI: 10.1007/s12192-010-0250-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022] Open
Abstract
Heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) function as molecular chaperones during the folding and trafficking of proteins within most cell types. However, the Hsp70-Hsp40 chaperone partnerships within the malaria parasite, Plasmodium falciparum, have not been elucidated. Only one of the 43 P. falciparum Hsp40s is predicted to be a cytosolic, canonical Hsp40 (termed PfHsp40) capable of interacting with the major cytosolic P. falciparum-encoded Hsp70, PfHsp70. Consistent with this hypothesis, we found that PfHsp40 is upregulated under heat shock conditions in a similar pattern to PfHsp70. In addition, PfHsp70 and PfHsp40 reside mainly in the parasite cytosol, as assessed using indirect immunofluorescence microscopy. Recombinant PfHsp40 stimulated the ATP hydrolytic rates of both PfHsp70 and human Hsp70 similar to other canonical Hsp40s of yeast (Ydj1) and human (Hdj2) origin. In contrast, the Hsp40-stimulated plasmodial and human Hsp70 ATPase activities were differentially inhibited in the presence of pyrimidinone-based small molecule modulators. To further probe the chaperone properties of PfHsp40, protein aggregation suppression assays were conducted. PfHsp40 alone suppressed protein aggregation, and cooperated with PfHsp70 to suppress aggregation. Together, these data represent the first cellular and biochemical evidence for a PfHsp70-PfHsp40 partnership in the malaria parasite, and furthermore that the plasmodial and human Hsp70-Hsp40 chaperones possess unique attributes that are differentially modulated by small molecules.
Collapse
Affiliation(s)
- Melissa Botha
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | - Annette N. Chiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Patrick G. Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Linda L. Stephens
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | - Heinrich C. Hoppe
- Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Simone Külzer
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Jude M. Przyborski
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Klaus Lingelbach
- Department of Parasitology, Faculty of Biology, Philipps University Marburg, Marburg, Germany
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA USA
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA USA
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa, South Africa
| | - Gregory L. Blatch
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
19
|
Wisén S, Bertelsen EB, Thompson AD, Patury S, Ung P, Chang L, Evans CG, Walter GM, Wipf P, Carlson HA, Brodsky JL, Zuiderweg ERP, Gestwicki JE. Binding of a small molecule at a protein-protein interface regulates the chaperone activity of hsp70-hsp40. ACS Chem Biol 2010; 5:611-22. [PMID: 20481474 PMCID: PMC2950966 DOI: 10.1021/cb1000422] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Heat shock protein 70 (Hsp70) is a highly conserved molecular chaperone that plays multiple roles in protein homeostasis. In these various tasks, the activity of Hsp70 is shaped by interactions with co-chaperones, such as Hsp40. The Hsp40 family of co-chaperones binds to Hsp70 through a conserved J-domain, and these factors stimulate ATPase and protein-folding activity. Using chemical screens, we identified a compound, 115-7c, which acts as an artificial co-chaperone for Hsp70. Specifically, the activities of 115-7c mirrored those of a Hsp40; the compound stimulated the ATPase and protein-folding activities of a prokaryotic Hsp70 (DnaK) and partially compensated for a Hsp40 loss-of-function mutation in yeast. Consistent with these observations, NMR and mutagenesis studies indicate that the binding site for 115-7c is adjacent to a region on DnaK that is required for J-domain-mediated stimulation. Interestingly, we found that 115-7c and the Hsp40 do not compete for binding but act in concert. Using this information, we introduced additional steric bulk to 115-7c and converted it into an inhibitor. Thus, these chemical probes either promote or inhibit chaperone functions by regulating Hsp70-Hsp40 complex assembly at a native protein-protein interface. This unexpected mechanism may provide new avenues for exploring how chaperones and co-chaperones cooperate to shape protein homeostasis.
Collapse
Affiliation(s)
- Susanne Wisén
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Eric B. Bertelsen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Andrea D. Thompson
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Srikanth Patury
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Peter Ung
- Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Lyra Chang
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Christopher G. Evans
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Gladis M. Walter
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Jason E. Gestwicki
- Department of Pathology and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
- Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
20
|
Li J, Qian X, Sha B. Heat shock protein 40: structural studies and their functional implications. Protein Pept Lett 2009; 16:606-12. [PMID: 19519518 DOI: 10.2174/092986609788490159] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The mechanism by which Hsp40 and other molecular chaperones recognize and interact with non-native polypeptides is a fundamental question, as is how Hsp40 co-operates with Hsp70 to facilitate protein folding. Years of structural studies of Hsp40 from yeast and other species, conducted using X-ray protein crystallography, NMR and small-angle X-ray scattering, have shed light on the mechanisms how Hsp40 functions as a molecular chaperone and how Hsp40-Hsp70 pair promotes protein folding, protein transport and degradation. This review provides a discussion of recent structural studies of Hsp40s and their functional implications.
Collapse
Affiliation(s)
- Jingzhi Li
- Department of Cell Biology, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
21
|
Sharma D, Masison DC. Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept Lett 2009; 16:571-81. [PMID: 19519514 DOI: 10.2174/092986609788490230] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock proteins protect cells from various conditions of stress. Hsp70, the most ubiquitous and highly conserved Hsp, helps proteins adopt native conformation or regain function after misfolding. Various co-chaperones specify Hsp70 function and broaden its substrate range. We discuss Hsp70 structure and function, regulation by co-factors and influence on propagation of yeast prions.
Collapse
Affiliation(s)
- Deepak Sharma
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National institutes of Health, Bethesda, MD 20892-0851, USA
| | | |
Collapse
|
22
|
NMR evaluation of adipocyte fatty acid binding protein (aP2) with R- and S-ibuprofen. Bioorg Med Chem 2008; 16:4323-30. [DOI: 10.1016/j.bmc.2008.02.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Revised: 02/11/2008] [Accepted: 02/25/2008] [Indexed: 01/22/2023]
|
23
|
Awad W, Estrada I, Shen Y, Hendershot LM. BiP mutants that are unable to interact with endoplasmic reticulum DnaJ proteins provide insights into interdomain interactions in BiP. Proc Natl Acad Sci U S A 2008; 105:1164-9. [PMID: 18203820 PMCID: PMC2234109 DOI: 10.1073/pnas.0702132105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Indexed: 11/18/2022] Open
Abstract
The heat shock protein (Hsp)70 family of molecular chaperones interacts with unfolded proteins through a C-terminal substrate-binding domain (SBD) that is controlled by nucleotide binding to the N-terminal domain. The ATPase cycle is regulated by cochaperones, including DnaJ proteins that accelerate ATP hydrolysis to stabilize the Hsp70-substrate complex. We found that R197 in hamster BiP, which resides at the surface of the nucleotide-binding domain, is critical for both association with endoplasmic reticulum DnaJ proteins and interaction with the SBD. Decreasing the positive charge at this residue enhanced basal ATPase activity, destabilized interaction with the SBD, and reduced substrate release both in vitro and in vivo. Mutation of three glutamic acids in the SBD mimicked many of these effects. Our data provide insights into communications between the two domains and suggest a mechanism by which DnaJ proteins increase ATP hydrolysis.
Collapse
Affiliation(s)
- Walid Awad
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Isaac Estrada
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ying Shen
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Linda M. Hendershot
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
24
|
Hoshino T, Nakaya T, Araki W, Suzuki K, Suzuki T, Mizushima T. Endoplasmic reticulum chaperones inhibit the production of amyloid-beta peptides. Biochem J 2007; 402:581-9. [PMID: 17132139 PMCID: PMC1863563 DOI: 10.1042/bj20061318] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Abeta (amyloid-beta peptides) generated by proteolysis of APP (beta-amyloid precursor protein), play an important role in the pathogenesis of AD (Alzheimer's disease). ER (endoplasmic reticulum) chaperones, such as GRP78 (glucose-regulated protein 78), make a major contribution to protein quality control in the ER. In the present study, we examined the effect of overexpression of various ER chaperones on the production of Abeta in cultured cells, which produce a mutant type of APP (APPsw). Overexpression of GRP78 or inhibition of its basal expression, decreased and increased respectively the level of Abeta40 and Abeta42 in conditioned medium. Co-expression of GRP78's co-chaperones ERdj3 or ERdj4 stimulated this inhibitory effect of GRP78. In the case of the other ER chaperones, overexpression of some (150 kDa oxygen-regulated protein and calnexin) but not others (GRP94 and calreticulin) suppressed the production of Abeta. These results indicate that certain ER chaperones are effective suppressors of Abeta production and that non-toxic inducers of ER chaperones may be therapeutically beneficial for AD treatment. GRP78 was co-immunoprecipitated with APP and overexpression of GRP78 inhibited the maturation of APP, suggesting that GRP78 binds directly to APP and inhibits its maturation, resulting in suppression of the proteolysis of APP. On the other hand, overproduction of APPsw or addition of synthetic Abeta42 caused up-regulation of the mRNA of various ER chaperones in cells. Furthermore, in the cortex and hippocampus of transgenic mice expressing APPsw, the mRNA of some ER chaperones was up-regulated in comparison with wild-type mice. We consider that this up-regulation is a cellular protective response against Abeta.
Collapse
Affiliation(s)
- Tatsuya Hoshino
- *Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tadashi Nakaya
- †Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Wataru Araki
- ‡Department of Demyelinating Disease and Ageing, National Institute of Neuroscience, Kodaira 187-8502, Japan
| | - Keitarou Suzuki
- *Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Toshiharu Suzuki
- †Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Tohru Mizushima
- *Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Wright CM, Fewell SW, Sullivan ML, Pipas JM, Watkins SC, Brodsky JL. The Hsp40 molecular chaperone Ydj1p, along with the protein kinase C pathway, affects cell-wall integrity in the yeast Saccharomyces cerevisiae. Genetics 2007; 175:1649-64. [PMID: 17237519 PMCID: PMC1855118 DOI: 10.1534/genetics.106.066274] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular chaperones, such as Hsp40, regulate cellular processes by aiding in the folding, localization, and activation of multi-protein machines. To identify new targets of chaperone action, we performed a multi-copy suppressor screen for genes that improved the slow-growth defect of yeast lacking the YDJ1 chromosomal locus and expressing a defective Hsp40 chimera. Among the genes identified were MID2, which regulates cell-wall integrity, and PKC1, which encodes protein kinase C and is linked to cell-wall biogenesis. We found that ydj1delta yeast exhibit phenotypes consistent with cell-wall defects and that these phenotypes were improved by Mid2p or Pkc1p overexpression or by overexpression of activated downstream components in the PKC pathway. Yeast containing a thermosensitive allele in the gene encoding Hsp90 also exhibited cell-wall defects, and Mid2p or Pkc1p overexpression improved the growth of these cells at elevated temperatures. To determine the physiological basis for suppression of the ydj1delta growth defect, wild-type and ydj1delta yeast were examined by electron microscopy and we found that Mid2p overexpression thickened the mutant's cell wall. Together, these data provide the first direct link between cytoplasmic chaperone function and cell-wall integrity and suggest that chaperones orchestrate the complex biogenesis of this structure.
Collapse
Affiliation(s)
- Christine M Wright
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
26
|
Nicoll W, Botha M, McNamara C, Schlange M, Pesce ER, Boshoff A, Ludewig M, Zimmermann R, Cheetham M, Chapple J, Blatch G. Cytosolic and ER J-domains of mammalian and parasitic origin can functionally interact with DnaK. Int J Biochem Cell Biol 2006; 39:736-51. [PMID: 17239655 PMCID: PMC1906734 DOI: 10.1016/j.biocel.2006.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/12/2006] [Accepted: 11/14/2006] [Indexed: 02/05/2023]
Abstract
Both prokaryotic and eukaryotic cells contain multiple heat shock protein 40 (Hsp40) and heat shock protein 70 (Hsp70) proteins, which cooperate as molecular chaperones to ensure fidelity at all stages of protein biogenesis. The Hsp40 signature domain, the J-domain, is required for binding of an Hsp40 to a partner Hsp70, and may also play a role in the specificity of the association. Through the creation of chimeric Hsp40 proteins by the replacement of the J-domain of a prokaryotic Hsp40 (DnaJ), we have tested the functional equivalence of J-domains from a number of divergent Hsp40s of mammalian and parasitic origin (malarial Pfj1 and Pfj4, trypanosomal Tcj3, human ERj3, ERj5, and Hsj1, and murine ERj1). An in vivo functional assay was used to test the functionality of the chimeric proteins on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant Escherichia coli strain (OD259). The Hsp40 chimeras containing J-domains originating from soluble (cytosolic or endoplasmic reticulum (ER)-lumenal) Hsp40s were able to reverse the thermosensitivity of E. coli OD259. In all cases, modified derivatives of these chimeric proteins containing an His to Gln substitution in the HPD motif of the J-domain were unable to reverse the thermosensitivity of E. coli OD259. This suggested that these J-domains exerted their in vivo functionality through a specific interaction with E. coli Hsp70, DnaK. Interestingly, a Hsp40 chimera containing the J-domain of ERj1, an integral membrane-bound ER Hsp40, was unable to reverse the thermosensitivity of E. coli OD259, suggesting that this J-domain was unable to functionally interact with DnaK. Substitutions of conserved amino acid residues and motifs were made in all four helices (I–IV) and the loop regions of the J-domains, and the modified chimeric Hsp40s were tested for functionality using the in vivo assay. Substitution of a highly conserved basic residue in helix II of the J-domain was found to disrupt in vivo functionality for all the J-domains tested. We propose that helix II and the HPD motif of the J-domain represent the fundamental elements of a binding surface required for the interaction of Hsp40s with Hsp70s, and that this surface has been conserved in mammalian, parasitic and bacterial systems.
Collapse
Affiliation(s)
- W.S. Nicoll
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - M. Botha
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - C. McNamara
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - M. Schlange
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - E.-R. Pesce
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - A. Boshoff
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - M.H. Ludewig
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
| | - R. Zimmermann
- Department of Medical Biochemistry & Molecular Biology, Universität des Saarlandes, Homburg D66421, Germany
| | - M.E. Cheetham
- Division of Molecular and Cellular Neuroscience, Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - J.P. Chapple
- Center for Endocrinology, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London C1M 6BQ, UK
| | - G.L. Blatch
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown 6140, South Africa
- Corresponding author. Tel.: +27 46 603 8262; fax: +27 46 622 3984.
| |
Collapse
|
27
|
Mokranjac D, Bourenkov G, Hell K, Neupert W, Groll M. Structure and function of Tim14 and Tim16, the J and J-like components of the mitochondrial protein import motor. EMBO J 2006; 25:4675-85. [PMID: 16977310 PMCID: PMC1590002 DOI: 10.1038/sj.emboj.7601334] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 08/16/2006] [Indexed: 11/09/2022] Open
Abstract
The import motor of the mitochondrial translocase of the inner membrane (TIM23) mediates the ATP-dependent translocation of preproteins into the mitochondrial matrix by cycles of binding to and release from mtHsp70. An essential step of this process is the stimulation of the ATPase activity of mtHsp70 performed by the J cochaperone Tim14. Tim14 forms a complex with the J-like protein Tim16. The crystal structure of this complex shows that the conserved domains of the two proteins have virtually identical folds but completely different surfaces enabling them to perform different functions. The Tim14-Tim16 dimer reveals a previously undescribed arrangement of J and J-like domains. Mutations that destroy the complex between Tim14 and Tim16 are lethal demonstrating that complex formation is an essential requirement for the viability of cells. We further demonstrate tight regulation of the cochaperone activity of Tim14 by Tim16. The first crystal structure of a J domain in complex with a regulatory protein provides new insights into the function of the mitochondrial TIM23 translocase and the Hsp70 chaperone system in general.
Collapse
Affiliation(s)
- Dejana Mokranjac
- Institute for Physiological Chemistry, Ludwig-Maximilians University, Munich, Germany
| | - Gleb Bourenkov
- Max-Planck-Group for Structural Molecular Biology at DESY, Hamburg, Germany
| | - Kai Hell
- Institute for Physiological Chemistry, Ludwig-Maximilians University, Munich, Germany
| | - Walter Neupert
- Institute for Physiological Chemistry, Ludwig-Maximilians University, Munich, Germany
| | - Michael Groll
- Institute for Physiological Chemistry, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
28
|
Cintron NS, Toft D. Defining the requirements for Hsp40 and Hsp70 in the Hsp90 chaperone pathway. J Biol Chem 2006; 281:26235-44. [PMID: 16854979 DOI: 10.1074/jbc.m605417200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Hsp90 chaperoning pathway and its model client substrate, the progesterone receptor (PR), have been used extensively to study chaperone complex formation and maturation of a client substrate in a near native state. This chaperoning pathway can be reconstituted in vitro with the addition of five proteins plus ATP: Hsp40, Hsp70, Hop, Hsp90, and p23. The addition of these proteins is necessary to reconstitute hormone-binding capacity to the immuno-isolated PR. It was recently shown that the first step for the recognition of PR by this system is binding by Hsp40. We compared type I and type II Hsp40 proteins and created point mutations in Hsp40 and Hsp70 to understand the requirements for this first step. The type I proteins, Ydj1 and DjA1 (HDJ2), and a type II, DjB1 (HDJ1), act similarly in promoting hormone binding and Hsp70 association to PR, while having different binding characteristics to PR. Ydj1 and DjA1 bind tightly to PR whereas the binding of DjB1 apparently has rapid on and off rates and its binding cannot be observed by antibody pull-down methods using either purified proteins or cell lysates. Mutation studies indicate that client binding, interactions between Hsp40 and Hsp70, plus ATP hydrolysis by Hsp70 are all required to promote conformational maturation of PR via the Hsp90 pathway.
Collapse
Affiliation(s)
- Nela S Cintron
- Department of Biochemistry and Molecular Biology, Mayo Graduate School, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
29
|
Xiao J, Kim LS, Graham TR. Dissection of Swa2p/auxilin domain requirements for cochaperoning Hsp70 clathrin-uncoating activity in vivo. Mol Biol Cell 2006; 17:3281-90. [PMID: 16687570 PMCID: PMC1483056 DOI: 10.1091/mbc.e06-02-0106] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/17/2006] [Accepted: 04/27/2006] [Indexed: 11/11/2022] Open
Abstract
The auxilin family of J-domain proteins load Hsp70 onto clathrin-coated vesicles (CCVs) to drive uncoating. In vitro, auxilin function requires its ability to bind clathrin and stimulate Hsp70 ATPase activity via its J-domain. To test these requirements in vivo, we performed a mutational analysis of Swa2p, the yeast auxilin ortholog. Swa2p is a modular protein with three N-terminal clathrin-binding (CB) motifs, a ubiquitin association (UBA) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal J-domain. In vitro, clathrin binding is mediated by multiple weak interactions, but a Swa2p truncation lacking two CB motifs and the UBA domain retains nearly full function in vivo. Deletion of all CB motifs strongly abrogates clathrin disassembly but does not eliminate Swa2p function in vivo. Surprisingly, mutation of the invariant HPD motif within the J-domain to AAA only partially affects Swa2p function. Similarly, a TPR point mutation (G388R) causes a modest phenotype. However, Swa2p function is abolished when these TPR and J mutations are combined. The TPR and J-domains are not functionally redundant because deletion of either domain renders Swa2p nonfunctional. These data suggest that the TPR and J-domains collaborate in a bipartite interaction with Hsp70 to regulate its activity in clathrin disassembly.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634
| | - Leslie S. Kim
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634
| | - Todd R. Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235-1634
| |
Collapse
|
30
|
Tsutsumi S, Namba T, Tanaka KI, Arai Y, Ishihara T, Aburaya M, Mima S, Hoshino T, Mizushima T. Celecoxib upregulates endoplasmic reticulum chaperones that inhibit celecoxib-induced apoptosis in human gastric cells. Oncogene 2006; 25:1018-29. [PMID: 16205636 DOI: 10.1038/sj.onc.1209139] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in cancer cells and this effect is involved in their antitumor activity. We recently demonstrated that NSAIDs upregulate GRP78, an endoplasmic reticulum (ER) chaperone, in gastric mucosal cells in primary culture. In the present study, induction of ER chaperones by NSAIDs and the effect of those chaperones on NSAID-induced apoptosis were examined in human gastric carcinoma cells. Celecoxib, an NSAID, upregulated ER chaperones (GRP78 and its cochaperones ERdj3 and ERdj4) but also C/EBP homologous transcription factor (CHOP), a transcription factor involved in apoptosis. Celecoxib also upregulated GRP78 in xenograft tumors, accompanying with the suppression of tumor growth in nude mice. Celecoxib caused phosphorylation of eukaryotic translation initiation factor 2 kinase (PERK) and eukaryotic initiation factor-2alpha (eIF2alpha) and production of activating transcription factor (ATF)4 mRNA. Suppression of ATF4 expression by small interfering RNA (siRNA) partially inhibited the celecoxib-dependent upregulation of GRP78. Celecoxib increased the intracellular Ca2+ concentration, while 1,2-bis(2-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid, an intracellular Ca2+ chelator, inhibited the upregulation of GRP78 and ATF4. These results suggest that the Ca2+-dependent activation of the PERK-eIF2alpha-ATF4 pathway is involved in the upregulation of ER chaperones by celecoxib. Overexpression of GRP78 partially suppressed the apoptosis and induction of CHOP in the presence of celecoxib and this suppression was stimulated by coexpression of either ERdj3 or ERdj4. On the other hand, suppression of GRP78 expression by siRNA drastically stimulated cellular apoptosis and production of CHOP in the presence of celecoxib. These results show that upregulation of ER chaperones by celecoxib protects cancer cells from celecoxib-induced apoptosis, thus may decrease the potential antitumor activity of celecoxib.
Collapse
Affiliation(s)
- S Tsutsumi
- Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL. Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 2005; 14:1697-709. [PMID: 15987899 PMCID: PMC2253343 DOI: 10.1110/ps.051406805] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40-Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.
Collapse
Affiliation(s)
- Fritha Hennessy
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | | | | | |
Collapse
|
32
|
Abstract
Polyomavirus T antigens share a common N-terminal sequence that comprises a DnaJ domain. DnaJ domains activate DnaK molecular chaperones. The functions of J domains have primarily been tested by mutation of their conserved HPD residues. Here, we report detailed mutagenesis of the polyomavirus J domain in both large T (63 mutants) and middle T (51 mutants) backgrounds. As expected, some J mutants were defective in binding DnaK (Hsc70); other mutants retained the ability to bind Hsc70 but were defective in stimulating its ATPase activity. Moreover, the J domain behaves differently in large T and middle T. A given mutation was twice as likely to render large T unstable as it was to affect middle T stability. This apparently arose from middle T's ability to bind stabilizing proteins such as protein phosphatase 2A (PP2A), since introduction of a second mutation preventing PP2A binding rendered some middle T J-domain mutants unstable. In large T, the HPD residues are critical for Rb-dependent effects on the host cell. Residues Q32, A33, Y34, H49, M52, and N56 within helix 2 and helix 3 of the large T J domain were also found to be required for Rb-dependent transactivation. Cyclin A promoter assays showed that J domain function also contributes to large T transactivation that is independent of Rb. Single point mutations in middle T were generally without effect. However, residue Q37 is critical for middle T's ability to form active signaling complexes. The Q37A middle T mutant was defective in association with pp60(c-src) and in transformation.
Collapse
Affiliation(s)
- Kerry A Whalen
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
33
|
Gur E, Katz C, Ron EZ. All three J-domain proteins of theEscherichia coliDnaK chaperone machinery are DNA binding proteins. FEBS Lett 2005; 579:1935-9. [PMID: 15792799 DOI: 10.1016/j.febslet.2005.01.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 01/30/2005] [Accepted: 01/31/2005] [Indexed: 11/21/2022]
Abstract
DnaJ, DjlA and CbpA are the J-domain proteins of DnaK, the major Hsp70 of Escherichia coli. CbpA was originally discovered as a DNA binding protein. Here, we show that DNA binding is a property of DnaJ and DjlA as well. Of special interest in this respect is DjlA, as this cytoplasmic protein is membrane bound and, as shown here, its affinity for DNA is extremely high. The finding that all the three J-proteins of DnaK are DNA binding proteins sheds new light on the cellular activity of these proteins.
Collapse
Affiliation(s)
- Eyal Gur
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
34
|
Gruschus JM, Greene LE, Eisenberg E, Ferretti JA. Experimentally biased model structure of the Hsc70/auxilin complex: substrate transfer and interdomain structural change. Protein Sci 2005; 13:2029-44. [PMID: 15273304 PMCID: PMC2279835 DOI: 10.1110/ps.03390504] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A model structure of the Hsc70/auxilin complex has been constructed to gain insight into interprotein substrate transfer and ATP hydrolysis induced conformational changes in the multidomain Hsc70 structure. The Hsc70/auxilin system, which is a member of the Hsp70/Hsp40 chaperone system family, uncoats clathrin-coated vesicles in an ATP hydrolysis-driven process. Incorporating previous results from NMR and mutant binding studies, the auxilin J-domain was docked into the Hsc70 ATPase domain lower cleft using rigid backbone/flexible side chain molecular dynamics, and the Hsc70 substrate binding domain was docked by a similar procedure. For comparison, J-domain and substrate binding domain docking sites were obtained by the rigid-body docking programs DOT and ZDOCK, filtered and ranked by the program ClusPro, and relaxed using the same rigid backbone/flexible side chain dynamics. The substrate binding domain sites were assessed in terms of conserved surface complementarity and feasibility in the context of substrate transfer, both for auxilin and another Hsp40 protein, Hsc20. This assessment favors placement of the substrate binding domain near D152 on the ATPase domain surface adjacent to the J-domain invariant HPD segment, with the Hsc70 interdomain linker in the lower cleft. Examining Hsc70 interdomain energetics, we propose that long-range electrostatic interactions, perhaps due to a difference in the pKa values of bound ATP and ADP, could play a major role in the structural change induced by ATP hydrolysis. Interdomain electrostatic interactions also appear to play a role in stimulation of ATPase activity due to J-domain binding and substrate binding by Hsc70.
Collapse
Affiliation(s)
- James M Gruschus
- Laboratories of Biophysical Chemistry and Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-8013, USA.
| | | | | | | |
Collapse
|
35
|
Gur E, Biran D, Shechter N, Genevaux P, Georgopoulos C, Ron EZ. The Escherichia coli DjlA and CbpA proteins can substitute for DnaJ in DnaK-mediated protein disaggregation. J Bacteriol 2004; 186:7236-42. [PMID: 15489435 PMCID: PMC523209 DOI: 10.1128/jb.186.21.7236-7242.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DnaJ (Hsp40) protein of Escherichia coli serves as a cochaperone of DnaK (Hsp70), whose activity is involved in protein folding, protein targeting for degradation, and rescue of proteins from aggregates. Two other E. coli proteins, CbpA and DjlA, which exhibit homology with DnaJ, are known to interact with DnaK and to stimulate its chaperone activity. Although it has been shown that in dnaJ mutants both CbpA and DjlA are essential for growth at temperatures above 37 degrees C, their in vivo role is poorly understood. Here we show that in a dnaJ mutant both CbpA and DjlA are required for efficient protein dissaggregation at 42 degrees C.
Collapse
Affiliation(s)
- Eyal Gur
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The Hsp70 family members play an essential role in cellular protein metabolism by acting as polypeptide-binding and release factors that interact with nonnative regions of proteins at different stages of their life cycles. Hsp40 cochaperone proteins regulate complex formation between Hsp70 and client proteins. Herein, literature is reviewed that describes the mechanisms by which Hsp40 proteins interact with Hsp70 to specify its cellular functions.
Collapse
Affiliation(s)
- Chun-Yang Fan
- Department of Cell and Developmental Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
37
|
Giese KC, Vierling E. Mutants in a small heat shock protein that affect the oligomeric state. Analysis and allele-specific suppression. J Biol Chem 2004; 279:32674-83. [PMID: 15152007 DOI: 10.1074/jbc.m404455200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oligomerization is an essential property of small heat shock proteins (sHSPs) that appears to regulate their chaperone activity. We have examined the role of conserved hydrophobic residues that are postulated to stabilize sHSP oligomers. We identified a mutation of Synechocystis Hsp16.6 that impairs function in vivo and in vitro. The V143A mutation is in the C-terminal extension, a region predicted to form an oligomeric interaction with a hydrophobic region that includes the site of a previously characterized mutation, L66A. Both mutants were dimeric, but V143A had a stronger oligomerization defect than L66A. However, V143A protected a model substrate better than L66A. This suggests that although the two regions both play a role in oligomerization, they are not equivalent. Nevertheless, the addition of either dimeric sHSP enhanced the in vitro chaperone activity of wild type Hsp16.6, consistent with models that the sHSP dimers initiate interactions with substrates. Suppressor analysis of V143A identified mutations in the N terminus that restored activity by restabilizing the oligomer. These mutants were allele-specific and unable to suppress L66A, although they suppressed a dimeric C-terminal truncation of Hsp16.6. Conversely, suppressors of L66A were unable to suppress either V143A or the truncation, although they, like suppressors of V143A, stabilize the Hsp16.6 oligomer. We interpret these data as evidence that the mutations V143A and L66A stabilize two different dimeric structures and as further support that sHSP dimers are active species.
Collapse
Affiliation(s)
- Kim C Giese
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, 85721, USA
| | | |
Collapse
|
38
|
Brehmer D, Gässler C, Rist W, Mayer MP, Bukau B. Influence of GrpE on DnaK-substrate interactions. J Biol Chem 2004; 279:27957-64. [PMID: 15102842 DOI: 10.1074/jbc.m403558200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The DnaK chaperone of Escherichia coli assists protein folding by an ATP-dependent interaction with short peptide stretches within substrate polypeptides. This interaction is regulated by the DnaJ and GrpE co-chaperones, which stimulate ATP hydrolysis and nucleotide exchange by DnaK, respectively. Furthermore, GrpE has been claimed to trigger substrate release independent of its role as a nucleotide exchange factor. However, we show here that GrpE can accelerate substrate release from DnaK exclusively in the presence of ATP. In addition, GrpE prevented the association of peptide substrates with DnaK through an activity of its N-terminal 33 amino acids. A ternary complex of GrpE, DnaK, and a peptide substrate could be observed only when the peptide binding to DnaK precedes GrpE binding. Furthermore, we demonstrate that GrpE slows down the release of a protein substrate, sigma(32), from DnaK in the absence of ATP. These findings suggest that the ATP-triggered dissociation of GrpE and substrates from DnaK occurs in a concerted fashion.
Collapse
Affiliation(s)
- Dirk Brehmer
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|