1
|
Chen C, Chen S, Wang B. A glance at the gut microbiota and the functional roles of the microbes based on marmot fecal samples. Front Microbiol 2023; 14:1035944. [PMID: 37125200 PMCID: PMC10140447 DOI: 10.3389/fmicb.2023.1035944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
Research on the gut microbiota, which involves a large and complex microbial community, is an important part of infectious disease control. In China, few studies have been reported on the diversity of the gut microbiota of wild marmots. To obtain full details of the gut microbiota, including bacteria, fungi, viruses and archaea, in wild marmots, we have sequenced metagenomes from five sample-sites feces on the Hulun Buir Grassland in Inner Mongolia, China. We have created a comprehensive database of bacterial, fungal, viral, and archaeal genomes and aligned metagenomic sequences (determined based on marmot fecal samples) against the database. We delineated the detailed and distinct gut microbiota structures of marmots. A total of 5,891 bacteria, 233 viruses, 236 fungi, and 217 archaea were found. The dominant bacterial phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinomycetes. The viral families were Myoviridae, Siphoviridae, Phycodnaviridae, Herpesviridae and Podoviridae. The dominant fungi phyla were Ascomycota, Basidiomycota, and Blastocladiomycota. The dominant archaea were Biobacteria, Omoarchaea, Nanoarchaea, and Microbacteria. Furthermore, the gut microbiota was affected by host species and environment, and environment was the most important factor. There were 36,989 glycoside hydrolase genes in the microbiota, with 365 genes homologous to genes encoding β-glucosidase, cellulase, and cellulose β-1,4-cellobiosidase. Additionally, antibiotic resistance genes such as macB, bcrA, and msbA were abundant. To sum up, the gut microbiota of marmot had population diversity and functional diversity, which provides a basis for further research on the regulatory effects of the gut microbiota on the host. In addition, metagenomics revealed that the gut microbiota of marmots can degrade cellulose and hemicellulose.
Collapse
Affiliation(s)
- Chuizhe Chen
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine and the Second Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shu Chen
- Medical Laboratory Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Bo Wang
- Department of Pathology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- *Correspondence: Bo Wang,
| |
Collapse
|
2
|
Liu S, Liu Y, Luo S, Dong A, Liu M, Ji H, Gao J, Hao J. Molecular dynamics simulation of the interaction between dense-phase carbon dioxide and the myosin heavy chain. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Janati-Fard F, Housaindokht MR, Monhemi H, Nakhaeipour A. How a multimeric macromolecule is affected by divalent salts? Experimental and simulation study. Int J Biol Macromol 2017; 106:284-292. [PMID: 28782614 DOI: 10.1016/j.ijbiomac.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
Abstract
Salts exist in any cell and living organism in contact with biological macromolecules. How these salts affect biomolecules such as enzyme is important from both basic sciences and practical technologies. It was observed that divalent salts can change structure and function of protein at higher concentrations. Here, we investigated the effect of divalent salt on the behavior of a multimeric enzyme. We treated glucose oxidase as dimer-active enzyme in different CaCl2 concentration and seen that the enzyme become inactive at high concentration of salt. These experimental results are in agreement with recently published researches. To find a possible mechanism, a series of molecular dynamics simulation of the enzyme were performed at different salt concentration. According to the MD simulation, the conformational changes at the active site and FAD-binding site support the hypothesis of enzyme inactivation at high CaCl2 concentration. MD simulations also showed that enzyme has an unstable conformation at higher salt concentration which is in agreement with our experimental data. Detailed structural properties of the enzyme have been analyzed under different conditions. To the best of our knowledge, this is the first study that bears detailed structural mechanism about the salt effects on multimeric macromolecules.
Collapse
Affiliation(s)
- Fatemeh Janati-Fard
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad R Housaindokht
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Hassan Monhemi
- Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Nakhaeipour
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
4
|
Janati-Fard F, Housaindokht MR, Monhemi H. Investigation of structural stability and enzymatic activity of glucose oxidase and its subunits. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Jones PM, George AM. The Nucleotide-Free State of the Multidrug Resistance ABC Transporter LmrA: Sulfhydryl Cross-Linking Supports a Constant Contact, Head-to-Tail Configuration of the Nucleotide-Binding Domains. PLoS One 2015; 10:e0131505. [PMID: 26120849 PMCID: PMC4485892 DOI: 10.1371/journal.pone.0131505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022] Open
Abstract
ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs), which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR) transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration ‘sandwich’ dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD ‘Switch’ mechanism in which the NBD monomers separate in between ATP hydrolysis cycles.
Collapse
Affiliation(s)
- Peter M Jones
- School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
6
|
Abstract
Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp. Crystal structures of homologues in four different conformations were used as intermediate targets in the dynamics simulations. Transitions from conformations that were wide open to the cytoplasm to transition state conformations that were wide open to the extracellular space were studied. Twenty-six nonredundant transitional protein structures were identified from these targeted molecular dynamics simulations using evolutionary structure analyses. Coupled movement of nucleotide binding domains (NBDs) and transmembrane domains (TMDs) that form the drug binding cavities were observed. Pronounced twisting of the NBDs as they approached each other as well as the quantification of a dramatic opening of the TMDs to the extracellular space as the ATP hydrolysis transition state was reached were observed. Docking interactions of 21 known transport ligands or inhibitors were analyzed with each of the 26 transitional structures. Many of the docking results obtained here were validated by previously published biochemical determinations. As the ATP hydrolysis transition state was approached, drug docking in the extracellular half of the transmembrane domains seemed to be destabilized as transport ligand exit gates opened to the extracellular space.
Collapse
Affiliation(s)
- John G Wise
- Department of Biological Sciences, Center for Drug Discovery, Design and Delivery at Dedman College, and Center for Scientific Computation, Southern Methodist University, Dallas, Texas 75275-0376, USA.
| |
Collapse
|
7
|
Ward AB, Guvench O, Hills RD. Coarse grain lipid-protein molecular interactions and diffusion with MsbA flippase. Proteins 2012; 80:2178-90. [DOI: 10.1002/prot.24108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 12/27/2022]
|
8
|
Structural behavior of Candida antarctica lipase B in water and supercritical carbon dioxide: A molecular dynamic simulation study. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2011.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Abstract
Membrane proteins that bind and transport lipids face special challenges. Since lipids typically have low water solubility, both accessibility of the substrate to the protein and delivery to the desired destination are problematical. The amphipathic nature of membrane lipids, and their relatively large molecular size, also means that these proteins must possess substrate-binding sites of a different nature than those designed to handle small polar molecules. This review considers two integral proteins whose function is to bind and transfer membrane lipids within or across a membrane. The first protein, MsbA, is a putative lipid flippase that is a member of the ATP-binding cassette (ABC) superfamily. The protein is found in the inner (cytoplasmic) membrane (IM) of Gram-negative bacteria such as E. coli, where it is proposed to move lipid A from the inner to the outer membrane (OM) leaflet, an important step in the lipopolysaccharide biosynthetic pathway. Cholesterol is a major component of the plasma membrane in eukaryotic cells, where it regulates bilayer fluidity. The other lipid-binding protein discussed here, mammalian NPC1 (Niemann-Pick disease, Type C1), binds cholesterol inside late endosomes/lysosomes (LE/LY) and is involved in its transfer to the cytosol as part of a key intracellular sterol-trafficking pathway. Mutations in NPC1 lead to a devastating neurodegenerative condition, Niemann-Pick Type C disease, which is characterized by massive cholesterol accumulation in LE/LY. The accelerating pace of membrane protein structure determination over the past decade has allowed us a glimpse of how lipid binding and transfer by membrane proteins such as MsbA and NPC1 might be achieved.
Collapse
Affiliation(s)
- Gavin King
- Department of Molecular and Cellular Biology and Biophysics Interdepartmental Group, University of Guelph, Guelph ON Canada
| | | |
Collapse
|
10
|
Inter-domain communication mechanisms in an ABC importer: a molecular dynamics study of the MalFGK2E complex. PLoS Comput Biol 2011; 7:e1002128. [PMID: 21829343 PMCID: PMC3150292 DOI: 10.1371/journal.pcbi.1002128] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/07/2011] [Indexed: 12/22/2022] Open
Abstract
ATP-Binding Cassette transporters are ubiquitous membrane proteins that convert the energy from ATP-binding and hydrolysis into conformational changes of the transmembrane region to allow the translocation of substrates against their concentration gradient. Despite the large amount of structural and biochemical data available for this family, it is still not clear how the energy obtained from ATP hydrolysis in the ATPase domains is “transmitted” to the transmembrane domains. In this work, we focus our attention on the consequences of hydrolysis and inorganic phosphate exit in the maltose uptake system (MalFGK2E) from Escherichia coli. The prime goal is to identify and map the structural changes occurring during an ATP-hydrolytic cycle. For that, we use extensive molecular dynamics simulations to study three potential intermediate states (with 10 replicates each): an ATP-bound, an ADP plus inorganic phosphate-bound and an ADP-bound state. Our results show that the residues presenting major rearrangements are located in the A-loop, in the helical sub-domain, and in the “EAA motif” (especially in the “coupling helices” region). Additionally, in one of the simulations with ADP we were able to observe the opening of the NBD dimer accompanied by the dissociation of ADP from the ABC signature motif, but not from its corresponding P-loop motif. This work, together with several other MD studies, suggests a common communication mechanism both for importers and exporters, in which ATP-hydrolysis induces conformational changes in the helical sub-domain region, in turn transferred to the transmembrane domains via the “coupling helices”. ABC transporters are membrane proteins that couple ATP binding and hydrolysis with the active transport of substrates across membranes. These transporters form one of the largest families of membrane proteins and they can be found in all phyla of life. Moreover, some members of this family are involved in several genetic diseases (such as cystic fibrosis) and in multidrug resistance in bacteria, fungi and mammals. In this work, we use molecular dynamics simulations to study conformational changes due to ATP hydrolysis in an ABC transporter responsible for maltose uptake in E. coli. These conformational changes arising from one side of the protein (NBDs – Nucleotide Binding domains) where ATP binds, are propagated across the protein to more distant regions. Additionally, we can observe an NBD dimer interface dissociation event upon inorganic phosphate exit. These simulations together with other theoretical studies suggest that there is a general inter-domain communication mechanism common to importers and exporters.
Collapse
|
11
|
Oliveira AS, Baptista AM, Soares CM. Conformational changes induced by ATP-hydrolysis in an ABC transporter: a molecular dynamics study of the Sav1866 exporter. Proteins 2011; 79:1977-90. [PMID: 21488101 DOI: 10.1002/prot.23023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/30/2011] [Accepted: 02/15/2011] [Indexed: 12/20/2022]
Abstract
ATP-Binding Cassette (ABC) transporters are ubiquitous membrane proteins that use energy from ATP binding or/and hydrolysis to actively transport allocrites across membranes. In this study, we identify ATP-hydrolysis induced conformational changes in a complete ABC exporter (Sav1866) from Staphylococcus aureaus, using molecular dynamics (MD) simulations. By performing MD simulations on the ATP and ADP+IP bound states, we identify the conformational consequences of hydrolysis, showing that the major rearrangements are not restricted to the NBDs, but extend to the transmembrane domains (TMDs) external regions. For the first time, to our knowledge, we see, within the context of a complete transporter, NBD dimer opening in the ADP+IP state in contrast with all ATP-bound states. This opening results from the dissociation of the ABC signature motif from the nucleotide. In addition, in both states, we observe the opening of a gate entrance in the intracellular loop region leading to the exposure of the TMDs internal cavity to the cytoplasm. To see if this opening was large enough to allow allocrite transport, the adiabatic energy profile for doxorubicin passage was determined. For both states, this profile, although an approximation, is overall downhill from the cytoplasmatic to the extracellular side, and the local energy barriers along the TMDs are relatively small, evidencing the exporter nature of Sav1866. The major difference between states is an energy barrier located in the cytoplasmic gate region, which becomes reduced upon hydrolysis, suggesting that allocrite passage is facilitated, and evidencing a possible molecular mechanism for the active transport in these proteins.
Collapse
Affiliation(s)
- A Sofia Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
12
|
Oliveira ASF, Baptista AM, Soares CM. Insights into the molecular mechanism of an ABC transporter: conformational changes in the NBD dimer of MJ0796. J Phys Chem B 2010; 114:5486-96. [PMID: 20369870 DOI: 10.1021/jp905735y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite the rapid advances in the study of ABC transporters, many fundamental questions linked to ATP binding/hydrolysis and its relation to the transport cycle remain unanswered. In particular, it is still neither clear nor consensual how the ATP energy is used by the nucleotide binding domains (NBDs) to produce mechanical work and drive the substrate translocation. The major conformational changes in the NBDs following ATP hydrolysis during the transport cycle and the role played by the conserved family motifs in harnessing the energy associated with nucleotide hydrolysis are yet unknown. Additionally, the way energy is transmitted from the catalytic to the membrane domains, in order to drive substrate translocation, is also a fundamental question that remains unanswered. Due to the high structure similarities of the NBD architecture throughout the whole ABC family, it is likely that the mechanism of ATP binding, hydrolysis, and communication with the transmembrane domains is similar in all family members, independently of the nature of the transported substrate. In this work, we focused our attention on the consequences of ATP hydrolysis in the NBDs, especially on the structural changes that occur during this process. For that, we use molecular dynamics simulation techniques taking as a starting point the X-ray structure of the MJ0796 dimer from Methanococcus jannaschii. Several potential intermediate states of the ATP hydrolytic cycle are investigated, each consisting of different combinations of nucleotide-bound forms. The results obtained allowed us to identify the conformational rearrangements induced by hydrolysis on the catalytic subunits, as well as the residues involved in this reorganization. The major changes are localized at specific regions of the protein, namely, involving segments 11-19 and 93-124. Additionally, our results together with the knowledge of complete ABC transporter X-ray structures suggest a possible NBD:TMD signal transmission interface.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | | |
Collapse
|
13
|
Kerr ID, Jones PM, George AM. Multidrug efflux pumps: the structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues. FEBS J 2009; 277:550-63. [PMID: 19961540 DOI: 10.1111/j.1742-4658.2009.07486.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
One of the Holy Grails of ATP-binding cassette transporter research is a structural understanding of drug binding and transport in a eukaryotic multidrug resistance pump. These transporters are front-line mediators of drug resistance in cancers and represent an important therapeutic target in future chemotherapy. Although there has been intensive biochemical research into the human multidrug pumps, their 3D structure at atomic resolution remains unknown. The recent determination of the structure of a mouse P-glycoprotein at subatomic resolution is complemented by structures for a number of prokaryotic homologues. These structures have provided advances into our knowledge of the ATP-binding cassette exporter structure and mechanism, and have provided the template data for a number of homology modelling studies designed to reconcile biochemical data on these clinically important proteins.
Collapse
Affiliation(s)
- Ian D Kerr
- School of Biomedical Sciences, University of Nottingham, Nottingham, UK.
| | | | | |
Collapse
|
14
|
ABC transporters: a riddle wrapped in a mystery inside an enigma. Trends Biochem Sci 2009; 34:520-31. [PMID: 19748784 DOI: 10.1016/j.tibs.2009.06.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/22/2009] [Accepted: 06/24/2009] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters form one of the largest and most ancient of protein families. ABC transporters couple hydrolysis of ATP to vectorial translocation of diverse substrates across cellular membranes. Many human ABC transporters are medically important in causing, for example, multidrug resistance to cytotoxic drugs. Seven complete prokaryotic structures and one eukaryotic structure have been solved for transporters from 2002 to date, and a wealth of research is being conducted on and around these structures to resolve the mechanistic conundrum of how these transporters couple ATP hydrolysis in cytosolic domains to substrate translocation through the transmembrane pore. Many questions remained unanswered about this mechanism, despite a plethora of data and a number of interesting and controversial models.
Collapse
|
15
|
Nicolle E, Boumendjel A, Macalou S, Genoux E, Ahmed-Belkacem A, Carrupt PA, Di Pietro A. QSAR analysis and molecular modeling of ABCG2-specific inhibitors. Adv Drug Deliv Rev 2009; 61:34-46. [PMID: 19135106 DOI: 10.1016/j.addr.2008.10.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/01/2008] [Indexed: 01/27/2023]
Abstract
In addition to its critical role is controlling drug availability and protecting sensitive organs and stem cells through cellular detoxification, breast cancer resistance protein (BCRP/ABCG2) plays an important role in cancer cell resistance to chemotherapy, together with P-glycoprotein/ABCB1. A main approach to abolish multidrug resistance is to find out specific inhibitors of the drug-efflux activity, able to chemosensitize cancer cell proliferation. Many efforts have been primarily focused on ABCB1, discovered thirty years ago, whereas very few studies have concerned ABCG2, identified much more recently. This review describes the main types of inhibitors presently known for ABCG2, and how quantitative structure-activity relationship analysis among series of compounds may lead to build up molecular models and pharmacophores allowing to design lead inhibitors as future candidates for clinical trials. A special attention is drawn on flavonoids which constitute a structurally-diverse class of compounds, well suited to identify potent ABCG2-specific inhibitors.
Collapse
Affiliation(s)
- E Nicolle
- Département de Pharmacochimie Moléculaire, UMR 5063. ICMG-FR 2607-Université Joseph Fourier Grenoble I, 470 rue de la Chimie, 38240 St Martin d'Hères, France
| | | | | | | | | | | | | |
Collapse
|
16
|
ATP-binding cassette transporters in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1757-71. [DOI: 10.1016/j.bbamem.2008.06.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 12/14/2022]
|
17
|
Ecker GF, Stockner T, Chiba P. Computational models for prediction of interactions with ABC-transporters. Drug Discov Today 2008; 13:311-7. [PMID: 18405843 DOI: 10.1016/j.drudis.2007.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Revised: 12/10/2007] [Accepted: 12/20/2007] [Indexed: 01/22/2023]
Abstract
The polyspecific ligand recognition pattern of ATB-binding cassette (ABC)-transporters, combined with the limited knowledge on the molecular basis of their multispecificity, makes it difficult to apply traditional molecular modelling and quantitative structure-activity relationships (QSAR) methods for identification of new ligands. Recent advances relied mainly on pharmacophore modelling and machine learning methods. Structure-based design studies suffer from the lack of available protein structures at atomic resolution. The recently published protein homology models of P-glycoprotein structure, based on the high-resolution structure of the bacterial ABC-transporter of Sav1866, may open a new chapter for structure-based studies. Last, but not least, molecular dynamics simulations have already proved their high potential for structure-function modelling of ABC-transporter. Because of the recognition of several ABC-transporters as antitargets, algorithms for predicting substrate properties are of increasing interest.
Collapse
Affiliation(s)
- Gerhard F Ecker
- Emerging Field Pharmacoinformatics, Department of Medicinal Chemistry, University of Vienna, Althanstrasse 14, 1090 Wien, Austria.
| | | | | |
Collapse
|
18
|
Banerjee M, Meyerowitz E, Huang C, Mohanty S. Probing the conformation and dynamics of allatostatin neuropeptides: a structural model for functional differences. Peptides 2008; 29:375-85. [PMID: 18191874 DOI: 10.1016/j.peptides.2007.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 11/17/2022]
Abstract
Allatostatins are a family of related neuropeptides that play an important role in development, reproduction, and digestion in insects. The cockroach Diploptera punctata has 13 allatostatin neuropeptides, with pleiotropic functions, two of which are: inhibition of juvenile hormone (JH) production and inhibition of gut muscle contraction. In this study, the conformation and dynamics of D. punctata allatostatin 5 (Dippu-AST 5) and allatostatin 8 (Dippu-AST 8) are investigated by CD, NMR, and molecular dynamics simulations. These peptides contain eight and nine residues, respectively, and the identical six-residue C-terminal motif. Yet Dippu-AST 5 and Dippu-AST 8 affect juvenile hormone production and hindgut contraction with different potencies. Dippu-AST 5 is one of the most potent inhibitors of juvenile hormone production and one of the least potent inhibitors of gut contraction, whereas Dippu-AST 8 has the opposite potencies with respect to these tissues. From the NMR structure, it is clear that Dippu-AST 5 has a 3(10) helix involving three of its residues and a "gamma" turn at the end of its C-terminal motif. In contrast Dippu-AST 8 has an open "pi" turn among five of its central residues. In addition, the orientation preferences within the membrane of the two peptides were simulated. Our simulation results show that the C-terminal segment of Dippu-AST 5 orients in the membrane surface with an average angle of 17.5 degrees, whereas Dippu-AST 8 orients with an average angle of 5.1 degrees. Taken together, from the structures and orientation preferences of these peptides within the membrane, it appears that these peptides may interact with the receptor very differently.
Collapse
Affiliation(s)
- Monimoy Banerjee
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | | | | | | |
Collapse
|
19
|
Molecular dynamics simulations and membrane protein structure quality. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:403-9. [PMID: 17960373 DOI: 10.1007/s00249-007-0225-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 09/28/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
Abstract
Despite a growing repertoire of membrane protein structures (currently approximately 120 unique structures), considerations of low resolution and crystallization in the absence of a lipid bilayer require the development of techniques to assess the global quality of membrane protein folds. This is also the case for assessment of, e.g. homology models of human membrane proteins based on structures of (distant) bacterial homologues. Molecular dynamics (MD) simulations may be used to help evaluate the quality of a membrane protein structure or model. We have used a structure of the bacterial ABC transporter MsbA which has the correct transmembrane helices but an incorrect handedness and topology of their packing to test simulation methods of quality assessment. An MD simulation of the MsbA model in a lipid bilayer is compared to a simulation of another bacterial ABC transporter, BtuCD. The latter structure has demonstrated good conformational stability in the same bilayer environment and over the same timescale (20 ns) as for the MsbA model simulation. A number of comparative analyses of the two simulations were performed to assess changes in the structural integrity of each protein. The results show a significant difference between the two simulations, chiefly due to the dramatic structural deformations of MsbA. We therefore propose that MD could become a useful quality control tool for membrane protein structural biology. In particular, it provides a way in which to explore the global conformational stability of a model membrane protein fold.
Collapse
|
20
|
Federici L, Woebking B, Velamakanni S, Shilling RA, Luisi B, van Veen HW. New structure model for the ATP-binding cassette multidrug transporter LmrA. Biochem Pharmacol 2007; 74:672-8. [PMID: 17624317 DOI: 10.1016/j.bcp.2007.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 05/11/2007] [Accepted: 05/21/2007] [Indexed: 12/14/2022]
Abstract
Multidrug resistance of pathogenic microorganisms and mammalian tumors can be associated with the overexpression of multidrug transporters. These integral membrane proteins are capable of extruding a wide range of structurally unrelated compounds from the cell. Among the different classes of multidrug transporters are the ATP binding cassette (ABC) transporters, which are dependent on the binding and hydrolysis of ATP. In the past five years, many researchers have built homology models of ABC extrusion systems using the atomic coordinates of crystallized MsbA, a lipopolysaccharide transporter in Gram-negative bacteria. Likewise, we have previously used the Vibrio cholera MsbA structure as a template in the modeling of the multidrug transporter LmrA from Lactococcus lactis. In view of the recently discovered inaccuracies in the MsbA structure, we have remodelled LmrA using the atomic coordinates of the MsbA homologue Sav1866 from Staphylococcus aureus. To compare and test our MsbA-based and Sav1866-based LmrA models we performed cysteine cross-linking at three key positions in LmrA. The pattern of cross-linking at these positions was consistent with the overall topology of transmembrane helices in Sav1866, suggesting that its crystal structure might be physiologically relevant. We recently identified E314 as a residue important in proton conduction by LmrA. The predicted location of this residue at the interface between the two half-transporters in the Sav1866-based homodimer, within the inner leaflet of the phospholipid bilayer, provides a new structural basis for the role of E314 in LmrA-mediated transport.
Collapse
Affiliation(s)
- Luca Federici
- Ce.S.I. Centro Studi sull'Invecchiamento, Fondazione Universita' G. D'Annunzio, Via Colle dell'Ara, 66013 Chieti, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Oloo EO, Kandt C, O'Mara ML, Tieleman DP. Computer simulations of ABC transporter componentsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:900-11. [PMID: 17215877 DOI: 10.1139/o06-182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current computer simulation techniques provide robust tools for studying the detailed structure and functional dynamics of proteins, as well as their interaction with each other and with other biomolecules. In this minireview, we provide an illustration of recent progress and future challenges in computer modeling by discussing computational studies of ATP-binding cassette (ABC) transporters. ABC transporters have multiple components that work in a well coordinated fashion to enable active transport across membranes. The mechanism by which members of this superfamily execute transport remains largely unknown. Molecular dynamics simulations initiated from high-resolution crystal structures of several ABC transporters have proven to be useful in the investigation of the nature of conformational coupling events that may drive transport. In addition, fruitful efforts have been made to predict unknown structures of medically relevant ABC transporters, such as P-glycoprotein, using homology-based computational methods. The various techniques described here are also applicable to gaining an atomically detailed understanding of the functional mechanisms of proteins in general.
Collapse
Affiliation(s)
- Eliud O Oloo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | | | | | | |
Collapse
|
22
|
Linton KJ, Higgins CF. Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch 2006; 453:555-67. [PMID: 16937116 DOI: 10.1007/s00424-006-0126-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 06/15/2006] [Accepted: 06/19/2006] [Indexed: 10/24/2022]
Abstract
ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that facilitate the transbilayer movement of ligands. They comprise, minimally, two transmembrane domains, which impart ligand specificity, and two nucleotide-binding domains (NBDs), which power the transport cycle. Almost 25 years of biochemistry is reviewed in light of the recent structure analyses resulting in the ATP-switch model for function in which the NBDs switch between a dimeric conformation, closed around two molecules of ATP, and a nucleotide-free, dimeric 'open' conformation. The flexibility of this switching mechanism has evolved to provide different kinetic control for different transporters and has also been co-opted to diverse functions other than transmembrane transport.
Collapse
Affiliation(s)
- Kenneth J Linton
- MRC Clinical Sciences Centre, Imperial College Hammersmith Hospital Campus, London, UK.
| | | |
Collapse
|
23
|
Haubertin DY, Madaoui H, Sanson A, Guérois R, Orlowski S. Molecular dynamics simulations of E. coli MsbA transmembrane domain: formation of a semipore structure. Biophys J 2006; 91:2517-31. [PMID: 16782794 PMCID: PMC1562368 DOI: 10.1529/biophysj.106.084020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The human P-glycoprotein (MDR1/P-gp) is an ATP-binding cassette (ABC) transporter involved in cellular response to chemical stress and failures of anticancer chemotherapy. In the absence of a high-resolution structure for P-gp, we were interested in the closest P-gp homolog for which a crystal structure is available: the bacterial ABC transporter MsbA. Here we present the molecular dynamics simulations performed on the transmembrane domain of the open-state MsbA in a bilayer composed of palmitoyl oleoyl phosphatidylethanolamine lipids. The system studied contained more than 90,000 atoms and was simulated for 50 ns. This simulation shows that the open-state structure of MsbA can be stable in a membrane environment and provides invaluable insights into the structural relationships between the protein and its surrounding lipids. This study reveals the formation of a semipore-like structure stabilized by two key phospholipids which interact with the hinge region of the protein during the entire simulation. Multiple sequence alignments of ABC transporters reveal that one of the residues involved in the interaction with these two phospholipids are under a strong selection pressure specifically applied on the bacterial homologs of MsbA. Hence, comparison of molecular dynamics simulation and phylogenetic data appears as a powerful approach to investigate the functional relevance of molecular events occurring during simulations.
Collapse
Affiliation(s)
- David Y Haubertin
- Service de Biophysique des Fonctions Membranaires, Département de Biologie Joliot-Curie and URA 2096 CNRS, Direction des Sciences du Vivant/Commissariat á l'Energie Atomique (CEA), Centre de Saclay, 91191 Gif-sur-Yvette cedex, France
| | | | | | | | | |
Collapse
|
24
|
Ravaud S, Do Cao MA, Jidenko M, Ebel C, Le Maire M, Jault JM, Di Pietro A, Haser R, Aghajari N. The ABC transporter BmrA from Bacillus subtilis is a functional dimer when in a detergent-solubilized state. Biochem J 2006; 395:345-53. [PMID: 16405427 PMCID: PMC1422757 DOI: 10.1042/bj20051719] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BmrA from Bacillus subtilis is a half-size ABC (ATP-binding cassette) transporter involved in multidrug resistance. Although its supramolecular organization has been investigated after reconstitution in a lipid bilayer environment, and shows a dimeric and possibly a tetrameric form, the precise quaternary structure in a detergent-solubilized state has never been addressed. In the present study, BmrA was purified from Escherichia coli membranes using an optimized purification protocol and different detergents. Furthermore, the ATPase activity of BmrA and the quantity of bound lipids and detergent were determined, and the oligomeric state was analysed using SEC (size-exclusion chromatography) and analytical ultracentrifugation. The activity and the quaternary structure of BmrA appeared to be strongly influenced by the type and concentration of the detergent used. SEC data showed that BmrA could be purified in a functional form in 0.05 and 0.01% DDM (n-dodecyl-beta-D-maltoside) and was homogeneous and monodisperse with an R(s) (Stokes radius) of 5.6 nm that is compatible with a dimer structure. Sedimentation-velocity and equilibrium experiments unequivocally supported that BmrA purified in DDM is a dimer and excluded the presence of other oligomeric states. These observations, which are discussed in relation to results obtained in proteoliposomes, also constitute an important first step towards crystallographic studies of BmrA structure.
Collapse
Affiliation(s)
- Stéphanie Ravaud
- *Laboratoire de BioCristallographie, Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/UCBL, IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Marie-Ange Do Cao
- †Laboratoire de Protéines de Résistance aux Agents Chimiothérapeutiques, Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/UCBL, IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Marie Jidenko
- ‡DBJC/SBFM, URA 2096 CNRS/CEA and LRA17V (Commissariat à l'Energie Atomique/Université Paris XI), Bâtiment 528, 91191 Gif-sur-Yvette Cedex, France
| | - Christine Ebel
- §Laboratoire de Biophysique Moléculaire, Institut de Biologie Structurale, UMR 5075 CEA/CNRS/UJF, 41 rue Jules Horowitz, 38027 Grenoble Cedex 01, France
| | - Marc Le Maire
- ‡DBJC/SBFM, URA 2096 CNRS/CEA and LRA17V (Commissariat à l'Energie Atomique/Université Paris XI), Bâtiment 528, 91191 Gif-sur-Yvette Cedex, France
| | - Jean-Michel Jault
- ∥Laboratoire de Biophysique Moléculaire et Cellulaire, DRDC, UMR 5090 CNRS/CEA/UJF, CEA, 17 rue des Martyrs, Bâtiment K, 38054 Grenoble Cedex 09, France
| | - Attilio Di Pietro
- †Laboratoire de Protéines de Résistance aux Agents Chimiothérapeutiques, Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/UCBL, IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Richard Haser
- *Laboratoire de BioCristallographie, Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/UCBL, IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, F-69367 Lyon Cedex 07, France
| | - Nushin Aghajari
- *Laboratoire de BioCristallographie, Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/UCBL, IFR 128 BioSciences Lyon-Gerland, 7 Passage du Vercors, F-69367 Lyon Cedex 07, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
25
|
Omote H, Al-Shawi MK. Interaction of transported drugs with the lipid bilayer and P-glycoprotein through a solvation exchange mechanism. Biophys J 2006; 90:4046-59. [PMID: 16565061 PMCID: PMC1459527 DOI: 10.1529/biophysj.105.077743] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Broad substrate specificity of human P-glycoprotein (ABCB1) is an essential feature of multidrug resistance. Transport substrates of P-glycoprotein are mostly hydrophobic and many of them have net positive charge. These compounds partition into the membrane. Utilizing the energy of ATP hydrolysis, P-glycoprotein is thought to take up substrates from the cytoplasmic leaflet of the plasma membrane and to transport them to the outside of the cell. We examined this model by molecular dynamics simulation of the lipid bilayer, in the presence of transport substrates together with an atomic resolution structural model of P-glycoprotein. Taken together with previous electron paramagnetic resonance studies, the results suggest that most transported drugs are concentrated near the surface zone of the inner leaflet of the plasma membrane. Here the drugs can easily diffuse laterally into the drug-binding site of P-glycoprotein through an open cleft. It was concluded that the initial high-affinity drug-binding site was located in the interfacial surface area of P-glycoprotein in contact with the membrane interface. Based on these results and our recent kinetic studies, a "solvation exchange" drug transport mechanism of P-glycoprotein is discussed. A molecular basis for the improved colchicine transport efficiency by the much-studied colchicine-resistance G185V mutant human P-glycoprotein is also provided.
Collapse
MESH Headings
- 1,2-Dipalmitoylphosphatidylcholine/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/chemistry
- Amino Acid Sequence
- Amino Acid Transport Systems, Basic/chemistry
- Bacterial Proteins/chemistry
- Binding Sites
- Biological Transport
- Computer Simulation
- Conserved Sequence
- Drug Resistance, Multiple
- Humans
- Hydrogen Bonding
- Lipid Bilayers/chemistry
- Lipid Bilayers/metabolism
- Models, Biological
- Models, Molecular
- Molecular Sequence Data
- Pharmaceutical Preparations/chemistry
- Pharmaceutical Preparations/metabolism
- Protein Conformation
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Hiroshi Omote
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908-0736, USA
| | | |
Collapse
|
26
|
Abstract
Transporter proteins facilitate the transfer of solutes across the cell membrane and have an intricate role in drug absorption, distribution and excretion. Because of their substrate promiscuity, several transporters represent viable pharmacological targets for enhancing drug absorption, preventing drug toxicity or facilitating localized tissue delivery. However, the slow emergence of high-resolution structures for these proteins has hampered the intelligent design of transporter substrates. Nonetheless, currently available functional, as well as structural, data provide an attractive scaffold for generating fusion models that merge substrate-based SARs and protein-based homology structures. The resultant models offer features that extend single modality paradigms in predictive function.
Collapse
Affiliation(s)
- Cheng Chang
- Biophysics Program, Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
27
|
Dalmas O, Orelle C, Foucher AE, Geourjon C, Crouzy S, Di Pietro A, Jault JM. The Q-loop Disengages from the First Intracellular Loop during the Catalytic Cycle of the Multidrug ABC Transporter BmrA. J Biol Chem 2005; 280:36857-64. [PMID: 16107340 DOI: 10.1074/jbc.m503266200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette is the most abundant family of transporters including many medically relevant members and gathers both importers and exporters involved in the transport of a wide variety of substrates. Although three high resolution three-dimensional structures have been obtained for a prototypic exporter, MsbA, two have been subjected to much criticism. Here, conformational changes of BmrA, a multidrug bacterial transporter structurally related to MsbA, have been studied. A three-dimensional model of BmrA, based on the "open" conformation of Escherichia coli MsbA, was probed by simultaneously introducing two cysteine residues, one in the first intracellular loop of the transmembrane domain and the other in the Q-loop of the nucleotide-binding domain (NBD). Intramolecular disulfide bonds could be created in the absence of any effectors, which prevented both drug transport and ATPase activity. Interestingly, addition of ATP/Mg plus vanadate strongly prevented this bond formation in a cysteine double mutant, whereas ATP/Mg alone was sufficient when the ATPase-inactive E504Q mutation was also introduced, in agreement with additional BmrA models where the ATP-binding sites are positioned at the NBD/NBD interface. Furthermore, cross-linking between the two cysteine residues could still be achieved in the presence of ATP/Mg plus vanadate when homobifunctional cross-linkers separated by more than 13 Angstrom were added. Altogether, these results give support to the existence, in the resting state, of a monomeric conformation of BmrA similar to that found within the open MsbA dimer and show that a large motion is required between intracellular loop 1 and the nucleotide-binding domain for the proper functioning of a multidrug ATP-binding cassette transporter.
Collapse
Affiliation(s)
- Olivier Dalmas
- Institut de Biologie et Chimie des Protéines, Unité Mixte de Recherche 5086 CNRS-UCBL1 and IFR 128, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Ash WL, Zlomislic MR, Oloo EO, Tieleman DP. Computer simulations of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:158-89. [PMID: 15519314 DOI: 10.1016/j.bbamem.2004.04.012] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 04/29/2004] [Indexed: 11/30/2022]
Abstract
Computer simulations are rapidly becoming a standard tool to study the structure and dynamics of lipids and membrane proteins. Increasing computer capacity allows unbiased simulations of lipid and membrane-active peptides. With the increasing number of high-resolution structures of membrane proteins, which also enables homology modelling of more structures, a wide range of membrane proteins can now be simulated over time spans that capture essential biological processes. Longer time scales are accessible by special computational methods. We review recent progress in simulations of membrane proteins.
Collapse
Affiliation(s)
- Walter L Ash
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary AB, Canada T2N 1N4
| | | | | | | |
Collapse
|
29
|
Campbell JD, Proks P, Lippiat JD, Sansom MSP, Ashcroft FM. Identification of a functionally important negatively charged residue within the second catalytic site of the SUR1 nucleotide-binding domains. Diabetes 2004; 53 Suppl 3:S123-7. [PMID: 15561899 DOI: 10.2337/diabetes.53.suppl_3.s123] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ATP-sensitive K+ channel (KATP channel) couples glucose metabolism to insulin secretion in pancreatic beta-cells. It is comprised of sulfonylurea receptor (SUR)-1 and Kir6.2 proteins. Binding of Mg nucleotides to the nucleotide-binding domains (NBDs) of SUR1 stimulates channel opening and leads to membrane hyperpolarization and inhibition of insulin secretion. To elucidate the structural basis of this regulation, we constructed a molecular model of the NBDs of SUR1, based on the crystal structures of mammalian proteins that belong to the same family of ATP-binding cassette transporter proteins. This model is a dimer in which there are two nucleotide-binding sites, each of which contains residues from NBD1 as well as from NBD2. It makes the novel prediction that residue D860 in NBD1 helps coordinate Mg nucleotides at site 2. We tested this prediction experimentally and found that, unlike wild-type channels, channels containing the SUR1-D860A mutation were not activated by MgADP in either the presence or absence of MgATP. Our model should be useful for designing experiments aimed at elucidating the relationship between the structure and function of the KATP channel.
Collapse
Affiliation(s)
- Jeff D Campbell
- University Laboratory of Physiology, University of Oxford, Parks Rd., Oxford, OX1 3PT, UK
| | | | | | | | | |
Collapse
|
30
|
Campbell JD, Deol SS, Ashcroft FM, Kerr ID, Sansom MSP. Nucleotide-dependent conformational changes in HisP: molecular dynamics simulations of an ABC transporter nucleotide-binding domain. Biophys J 2004; 87:3703-15. [PMID: 15377525 PMCID: PMC1304884 DOI: 10.1529/biophysj.104.046870] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 09/09/2004] [Indexed: 11/18/2022] Open
Abstract
ATP-binding cassette (ABC) transporters mediate the movement of molecules across cell membranes in both prokaryotes and eukaryotes. In ABC transporters, solute translocation occurs after ATP is either bound or hydrolyzed at the intracellular nucleotide-binding domains (NBDs). Molecular dynamics (MD) simulations have been employed to study the interactions of nucleotide with NBD. The results of extended (approximately 20 ns) MD simulations of HisP (total simulation time approximately 80 ns), the NBD of the histidine transporter HisQMP2J from Salmonella typhimurium, are presented. Analysis of the MD trajectories reveals conformational changes within HisP that are dependent on the presence of ATP in the binding pocket of the protein, and are sensitive to the presence/absence of Mg ions bound to the ATP. These changes are predominantly confined to the alpha-helical subdomain of HisP. Specifically there is a rotation of three alpha-helices within the subdomain, and a movement of the signature sequence toward the bound nucleotide. In addition, there is considerable conformational flexibility in a conserved glutamine-containing loop, which is situated at the interface between the alpha-helical subdomain and the F1-like subdomain. These results support the mechanism for ATP-induced conformational transitions derived from the crystal structures of other NBDs.
Collapse
Affiliation(s)
- Jeff D Campbell
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|
31
|
Rosenberg MF, Callaghan R, Modok S, Higgins CF, Ford RC. Three-dimensional structure of P-glycoprotein: the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J Biol Chem 2004; 280:2857-62. [PMID: 15485807 DOI: 10.1074/jbc.m410296200] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance of cancer cells and pathogens is a serious clinical problem. A major factor contributing to drug resistance in cancer is the over-expression of P-glycoprotein, a plasma membrane ATP-binding cassette (ABC) drug efflux pump. Three-dimensional structural data with a resolution limit of approximately 8 A have been obtained from two-dimensional crystals of P-glycoprotein trapped in the nucleotide-bound state. Each of the two transmembrane domains of P-glycoprotein consists of six long alpha-helical segments. Five of the alpha-helices from each transmembrane domain are related by a pseudo-2-fold symmetry, whereas the sixth breaks the symmetry. The two alpha-helices positioned closest to the (pseudo-) symmetry axis at the center of the molecule appear to be kinked. A large loop of density at the extracellular surface of the transporter is likely to correspond to the glycosylated first extracellular loop, whereas two globular densities at the cytoplasmic side correspond to the hydrophilic, nucleotide-binding domains. This is the first three-dimensional structure for an intact eukaryotic ABC transporter. Comparison with the structures of two prokaryotic ABC transporters suggests significant differences in the packing of the transmembrane alpha-helices within this protein family.
Collapse
Affiliation(s)
- Mark F Rosenberg
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, P. O. Box 88, Manchester M60 1QD, United Kingdom
| | | | | | | | | |
Collapse
|
32
|
Oloo EO, Tieleman DP. Conformational transitions induced by the binding of MgATP to the vitamin B12 ATP-binding cassette (ABC) transporter BtuCD. J Biol Chem 2004; 279:45013-9. [PMID: 15308647 DOI: 10.1074/jbc.m405084200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette transporters use the free energy of ATP hydrolysis to transport structurally diverse molecules across prokaryotic and eukaryotic membranes. Computer simulation studies of the "real-time" dynamics of the ATP binding process in BtuCD, the vitamin B12 importer from Escherichia coli, demonstrate that the docking of ATP to the catalytic pockets progressively draws the two cytoplasmic nucleotide-binding cassettes toward each other. Movement of the cassettes into closer opposition in turn induces conformational rearrangement of alpha-helices in the transmembrane domain. The shape of the translocation pathway consequently changes in a manner that could aid the vectorial movement of vitamin B12. These results suggest that ATP binding may indeed represent the power stroke in the catalytic mechanism. Moreover, occlusion of ATP at one catalytic site is mechanically coupled to opening of the nucleotide-binding pocket at the second site. We propose that this asymmetry in nucleotide binding behavior at the two catalytic pockets may form the structural basis by which the transporter is able to alternate ATP hydrolysis from one site to the other.
Collapse
Affiliation(s)
- Eliud O Oloo
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
33
|
Ecker GF, Pleban K, Kopp S, Csaszar E, Poelarends GJ, Putman M, Kaiser D, Konings WN, Chiba P. A Three-Dimensional Model for the Substrate Binding Domain of the Multidrug ATP Binding Cassette Transporter LmrA. Mol Pharmacol 2004; 66:1169-79. [PMID: 15304548 DOI: 10.1124/mol.104.001420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance presents a major obstacle to the treatment of infectious diseases and cancer. LmrA, a bacterial ATP-dependent multidrug transporter, mediates efflux of hydrophobic cationic substrates, including antibiotics. The substrate-binding domain of LmrA was identified by using photo-affinity ligands, proteolytic degradation of LmrA, and identification of ligand-modified peptide fragments with matrix-assisted laser desorption ionization/time of flight mass spectrometry. In the nonenergized state, labeling occurred in the alpha-helical transmembrane segments (TM) 3, 5 and 6 of the membrane-spanning domain. Upon nucleotide binding, the accessibility of TM5 for substrates increased, whereas that of TM6 decreased. Inverse changes were observed upon ATP-hydrolysis. An atomic-detail model of dimeric LmrA was generated based on the template structure of the homologous transporter MsbA from Vibrio cholerae, allowing a three-dimensional visualization of the substrate-binding domain. Labeling of TM3 of one monomer occurred in a predicted area of contact with TM5 or TM6 of the opposite monomer, indicating substrate-binding at the monomer/monomer interface. Inverse changes in the reactivity of TM segments 5 and 6 suggest that substrate binding and release involves a repositioning of these helices during the catalytic cycle.
Collapse
Affiliation(s)
- Gerhard F Ecker
- Institute of Medical Chemistry, Medical University of Vienna, Waehringerstrasse 10, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rosenberg MF, Kamis AB, Aleksandrov LA, Ford RC, Riordan JR. Purification and crystallization of the cystic fibrosis transmembrane conductance regulator (CFTR). J Biol Chem 2004; 279:39051-7. [PMID: 15247233 DOI: 10.1074/jbc.m407434200] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein that is mutated in patients suffering from cystic fibrosis. Here we report the purification and first crystallization of wild-type human CFTR. Functional characterization of the material showed it to be highly active. Electron crystallography of negatively stained two-dimensional crystals of CFTR has revealed the overall architecture of this channel for two different conformational states. These show a strong structural homology to two conformational states of another eukaryotic ATP-binding cassette transporter, P-glycoprotein. In contrast to P-glycoprotein, however, both conformational states can be observed in the presence of a nucleotide, which may be related to the role of CFTR as an ion channel rather than a transporter. The hypothesis that the two conformations could represent the "open" and "closed" states of the channel is considered.
Collapse
Affiliation(s)
- Mark F Rosenberg
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Hwang PM, Bishop RE, Kay LE. The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc Natl Acad Sci U S A 2004; 101:9618-23. [PMID: 15210985 PMCID: PMC470724 DOI: 10.1073/pnas.0402324101] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 05/17/2004] [Indexed: 11/18/2022] Open
Abstract
PhoPQ-activated gene P (PagP) is an integral membrane enzyme that transfers the sn-1 palmitate chain from phospholipid to lipopolysaccharide in Gram-negative bacteria. A recent x-ray crystallographic study established that the sn-1 palmitate binds within a long cavity at the center of the PagP beta barrel. The high mobility required to permit substrate entry into the central core of the barrel contrasts with the need to assemble a well defined structure in the peripheral loops, where many key catalytic residues are located. To gain insight into how dynamics relate to the function of PagP, the enzyme was reconstituted into CYFOS-7, a detergent that supports enzymatic activity. Under these conditions, PagP exists in equilibrium between two states, relaxed (R) and tense (T). The kinetics and thermodynamics of the interchange have been investigated by (1)H-(15)N NMR spectroscopy, with Delta H = -10.7 kcal/mol and Delta S = -37.5 cal/mol.K for the R--> T transition. A comparison of chemical shifts between the two states indicates that major structural changes occur in the large extracellular L1 loop and adjacent regions of the beta barrel. In addition to the R,T interconversion, other conformational exchange processes are observed in the R state, showing it to be quite flexible. Thus a picture emerges in which substrate entry is facilitated by the mobility of the R state, whereas the relatively rigid T state adopts a radically different conformation in a region of the protein known to be essential for catalysis. The ability to switch between dynamically distinct states may be a key feature of the catalytic cycle of PagP.
Collapse
Affiliation(s)
- Peter M Hwang
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | | | | |
Collapse
|
36
|
Abstract
ATP-binding cassette (ABC) transporters couple ATP hydrolysis to the uptake and efflux of solutes across the cell membrane in bacteria and eukaryotic cells. In bacteria, these transporters are important virulence factors because they play roles in nutrient uptake and in secretion of toxins and antimicrobial agents. In humans, many diseases, such as cystic fibrosis, hyperinsulinemia, and macular dystrophy, are traced to defects in ABC transporters. Recent advances in structural determination and functional analysis of bacterial ABC transporters, reviewed herein, have greatly increased our understanding of the molecular mechanism of transport in this transport superfamily.
Collapse
Affiliation(s)
- Amy L Davidson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
37
|
Haimeur A, Conseil G, Deeley RG, Cole SPC. Mutations of Charged Amino Acids in or near the Transmembrane Helices of the Second Membrane Spanning Domain Differentially Affect the Substrate Specificity and Transport Activity of the Multidrug Resistance Protein MRP1 (ABCC1). Mol Pharmacol 2004; 65:1375-85. [PMID: 15155831 DOI: 10.1124/mol.65.6.1375] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance protein 1 (MRP1) belongs to the ATP-binding cassette superfamily of transport proteins. In addition to drugs, MRP1 mediates the active transport of many conjugated and unconjugated organic anions. MRP1 consists of two membrane-spanning domains (MSD2 and MSD3) each followed by a nucleotide binding domain plus a third NH2-terminal MSD1. MSD2 contains transmembrane (TM) helices 6 through 11, and previously, we identified two charged residues in TM6 as having important but markedly different roles in MRP1 transport activity and substrate specificity by characterizing mutants containing nonconservative substitutions of Lys332 and Asp336. We have now extended these studies and found that the same-charge TM6 mutant K332R, like the nonconservatively substituted Lys332 mutants, exhibits a selective decrease in leukotriene C4 (LTC4) transport, associated with substantial changes in both Km and Vmax and LTC4 binding. The overall organic anion transport activity of the same-charge mutant of Asp336 (D336E) also remained very low, as observed for D336R. In addition, nonconservative substitutions of TM6-associated Lys319 and Lys347 resulted in a selective decrease in GSH transport. Of eight other charged residues in or proximal to TM7 to TM11 that were investigated, nonconservative substitutions of three of them [Lys396 (TM7), Asp436 (TM8), and Arg593 (TM11)] caused a substantial and global reduction in transport activity. However, unlike TM6 Asp336, wild-type transport activity could be reestablished in these MRP1 mutants by conservative substitutions. We conclude that MSD2-charged residues in or proximal to TM6, TM7, TM8, and TM11 play critical but differential roles in MRP1 transport activity and substrate specificity.
Collapse
Affiliation(s)
- Anass Haimeur
- Cancer Research Laboratories, Queen's University, Kingston, Ontario, Canada
| | | | | | | |
Collapse
|
38
|
Zubkov S, Lennarz WJ, Mohanty S. Structural basis for the function of a minimembrane protein subunit of yeast oligosaccharyltransferase. Proc Natl Acad Sci U S A 2004; 101:3821-6. [PMID: 15001703 PMCID: PMC374328 DOI: 10.1073/pnas.0400512101] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
N-glycosylation of proteins is an essential, highly conserved modification reaction that occurs in all eukaryotes and some prokaryotes. This process is catalyzed by oligosaccharyltransferase (OT), a multisubunit enzyme localized in the endoplasmic reticulum. Complete loss of N-glycosylation is lethal in all organisms. In Saccharomyces cerevisiae, OT is composed of nine nonidentical membrane proteins. Here, we report the atomic structure of an OT subunit from S. cerevisiae, Ost4p. This unusually small membrane protein containing only 36 residues folds into a well formed, kinked helix in the model-membrane solvent system used in this study. The residues critical for the OT activity and the stability of Stt3p-Ost4p-Ost3p subcomplex are located in helix alpha2, the larger cytosolic half of this kinked helix. The residues known to disrupt Ost4p-Stt3p complex form a well defined ridge in the 3D structure. Taking together prior mutational studies and the NMR structure of Ost4p, we propose that in the OT complex Stt3p is packed against the alpha 2-helix of Ost4p by using a "ridges-into-grooves" model, with Met-18, Leu-21, and Ile-24 as the packing interface on one face, whereas Ost3p is involved in interactions with Met-19, Thr-20, Ile-22, and Val-23 on the other face.
Collapse
Affiliation(s)
- Sergey Zubkov
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
39
|
Stenham DR, Campbell JD, Sansom MSP, Higgins CF, Kerr ID, Linton KJ. An atomic detail model for the human ATP binding cassette transporter P‐glycoprotein derived from disulphide cross‐ linking and homology modeling. FASEB J 2003; 17:2287-9. [PMID: 14563687 DOI: 10.1096/fj.03-0107fje] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The multidrug resistance P-glycoprotein mediates the extrusion of chemotherapeutic drugs from cancer cells. Characterization of the drug binding and ATPase activities of the protein have made it the paradigm ATP binding cassette (ABC) transporter. P-glycoprotein has been imaged at low resolution by electron cryo-microscopy and extensively analyzed by disulphide cross-linking, but a high resolution structure solved ab initio remains elusive. Homology models of P-glycoprotein were generated using the structure of a related prokaryotic ABC transporter, the lipid A transporter MsbA, as a template together with structural data describing the dimer interface of the nucleotide binding domains (NBDs). The first model, which maintained the NBD:transmembrane domain (TMD) interface of MsbA, did not satisfy previously published cross-linking data. This suggests that either P-glycoprotein has a very different structure from MsbA or that the published E. coli MsbA structure does not reflect a physiological state. To distinguish these alternatives, we mapped the interface between the two TMDs of P-glycoprotein experimentally by chemical cross-linking of introduced triple-cysteine residues. Based on these data, a plausible atomic model of P-glycoprotein could be generated using the MsbA template, if the TMDs of MsbA are reoriented with respect to the NBDs. This model will be important for understanding the mechanism of P-glycoprotein and other ABC transporters.
Collapse
Affiliation(s)
- Daniella R Stenham
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital Campus, London, UK
| | | | | | | | | | | |
Collapse
|
40
|
Seigneuret M, Garnier-Suillerot A. A structural model for the open conformation of the mdr1 P-glycoprotein based on the MsbA crystal structure. J Biol Chem 2003; 278:30115-24. [PMID: 12777401 DOI: 10.1074/jbc.m302443200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The validity of the structure of the Escherichia coli MsbA lipid transporter as a model from the mdr1 P-glycoprotein has been evaluated. Comparative sequence analyses, motif search and secondary structure prediction indicated that each of the two P-glycoprotein halves is structurally similar to the MsbA monomer and also suggested that the open dimer structure is valid for P-glycoprotein. Homology modeling was used to predict the structure of P-glycoprotein using MsbA as a template. The resulting modeled structure allowed a detailed study of the interactions between the intracellular domain and the nucleotide binding domain and suggested that these contacts are involved in mediating the coupling between nucleotide binding domain conformational changes and transmembrane helices reorientation during transport. In P-glycoprotein, the internal chamber open to the inner leaflet and the inner medium is significantly different in size and charge than in MsbA. These differences can be related to those of the transported substrates. Moreover an ensemble of 20 conserved aromatic residues appears to border the periphery of each side of the chamber in P-glycoprotein. These may be important for size selection and proper positioning of drugs for transport. The relevance of the modeled conformation to P-gp function is discussed.
Collapse
Affiliation(s)
- Michel Seigneuret
- Laboratoire de Physochimie Biomoléculaire et Cellulaire, UMR-CNRS 7033, Universitĕ Paris 6, France.
| | | |
Collapse
|
41
|
Domene C, Bond PJ, Sansom MS. Membrane protein simulations: ion channels and bacterial outer membrane proteins. ADVANCES IN PROTEIN CHEMISTRY 2003; 66:159-93. [PMID: 14631819 DOI: 10.1016/s0065-3233(03)66005-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carmen Domene
- Laboratory of Molecular Biophysics (LMB), Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|