1
|
Vishwakarma RK, Brodolin K. The σ Subunit-Remodeling Factors: An Emerging Paradigms of Transcription Regulation. Front Microbiol 2020; 11:1798. [PMID: 32849409 PMCID: PMC7403470 DOI: 10.3389/fmicb.2020.01798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Transcription initiation is a key checkpoint and highly regulated step of gene expression. The sigma (σ) subunit of RNA polymerase (RNAP) controls all transcription initiation steps, from recognition of the -10/-35 promoter elements, upon formation of the closed promoter complex (RPc), to stabilization of the open promoter complex (RPo) and stimulation of the primary steps in RNA synthesis. The canonical mechanism to regulate σ activity upon transcription initiation relies on activators that recognize specific DNA motifs and recruit RNAP to promoters. This mini-review describes an emerging group of transcriptional regulators that form a complex with σ or/and RNAP prior to promoter binding, remodel the σ subunit conformation, and thus modify RNAP activity. Such strategy is widely used by bacteriophages to appropriate the host RNAP. Recent findings on RNAP-binding protein A (RbpA) from Mycobacterium tuberculosis and Crl from Escherichia coli suggest that activator-driven changes in σ conformation can be a widespread regulatory mechanism in bacteria.
Collapse
Affiliation(s)
- Rishi Kishore Vishwakarma
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| | - Konstantin Brodolin
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, Montpellier, France
| |
Collapse
|
2
|
Wang Erickson AF, Deighan P, Chen S, Barrasso K, Garcia CP, Martínez-Lumbreras S, Alfano C, Krysztofinska EM, Thapaliya A, Camp AH, Isaacson RL, Hochschild A, Losick R. A novel RNA polymerase-binding protein that interacts with a sigma-factor docking site. Mol Microbiol 2017; 105:652-662. [PMID: 28598017 PMCID: PMC5558796 DOI: 10.1111/mmi.13724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 11/30/2022]
Abstract
Sporulation in Bacillus subtilis is governed by a cascade of alternative RNA polymerase sigma factors. We previously identified a small protein Fin that is produced under the control of the sporulation sigma factor σF to create a negative feedback loop that inhibits σF -directed gene transcription. Cells deleted for fin are defective for spore formation and exhibit increased levels of σF -directed gene transcription. Based on pull-down experiments, chemical crosslinking, bacterial two-hybrid experiments and nuclear magnetic resonance chemical shift analysis, we now report that Fin binds to RNA polymerase and specifically to the coiled-coil region of the β' subunit. The coiled-coil is a docking site for sigma factors on RNA polymerase, and evidence is presented that the binding of Fin and σF to RNA polymerase is mutually exclusive. We propose that Fin functions by a mechanism distinct from that of classic sigma factor antagonists (anti-σ factors), which bind directly to a target sigma factor to prevent its association with RNA polymerase, and instead functions to inhibit σF by competing for binding to the β' coiled-coil.
Collapse
Affiliation(s)
- Anna F. Wang Erickson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Padraig Deighan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115
| | - Shanshan Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Kelsey Barrasso
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115
| | - Cinthia P. Garcia
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
- Department of Biology, Emmanuel College, 400 The Fenway, Boston, MA 02115
| | | | - Caterina Alfano
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, United Kingdom
| | - Ewelina M. Krysztofinska
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, United Kingdom
| | - Arjun Thapaliya
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, United Kingdom
| | - Amy H. Camp
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075
| | - Rivka L. Isaacson
- Department of Chemistry, King's College London, Britannia House, Trinity Street, London, United Kingdom
| | - Ann Hochschild
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
3
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
4
|
Gilmore JM, Bieber Urbauer RJ, Minakhin L, Akoyev V, Zolkiewski M, Severinov K, Urbauer JL. Determinants of affinity and activity of the anti-sigma factor AsiA. Biochemistry 2010; 49:6143-54. [PMID: 20545305 DOI: 10.1021/bi1002635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The AsiA protein is a T4 bacteriophage early gene product that regulates transcription of host and viral genes. Monomeric AsiA binds tightly to the sigma(70) subunit of Escherichia coli RNA polymerase, thereby inhibiting transcription from bacterial promoters and phage early promoters and coactivating transcription from phage middle promoters. Results of structural studies have identified amino acids at the protomer-protomer interface in dimeric AsiA and at the monomeric AsiA-sigma(70) interface and demonstrated substantial overlap in the sets of residues that comprise each. Here we evaluate the contributions of individual interfacial amino acid side chains to protomer-protomer affinity in AsiA homodimers, to monomeric AsiA affinity for sigma(70), and to AsiA function in transcription. Sedimentation equilibrium, dynamic light scattering, electrophoretic mobility shift, and transcription activity measurements were used to assess affinity and function of site-specific AsiA mutants. Alanine substitutions for solvent-inaccessible residues positioned centrally in the protomer-protomer interface of the AsiA homodimer, V14, I17, and I40, resulted in the largest changes in free energy of dimer association, whereas alanine substitutions at other interfacial positions had little effect. These residues also contribute significantly to AsiA-dependent regulation of RNA polymerase activity, as do additional residues positioned at the periphery of the interface (K20 and F21). Notably, the relative contributions of a given amino acid side chain to RNA polymerase inhibition and activation (MotA-independent) by AsiA are very similar in most cases. The mainstay for intermolecular affinity and AsiA function appears to be I17. Our results define the core interfacial residues of AsiA, establish roles for many of the interfacial amino acids, are in agreement with the tenets underlying protein-protein interactions and interfaces, and will be beneficial for a general, comprehensive understanding of the mechanistic underpinnings of bacterial RNA polymerase regulation.
Collapse
Affiliation(s)
- Joshua M Gilmore
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Yuan AH, Hochschild A. Direct activator/co-activator interaction is essential for bacteriophage T4 middle gene expression. Mol Microbiol 2009; 74:1018-30. [PMID: 19843221 DOI: 10.1111/j.1365-2958.2009.06916.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bacteriophage T4 AsiA protein is a bifunctional regulator that inhibits transcription from the major class of bacterial promoters and also serves as an essential co-activator of transcription from T4 middle promoters. AsiA binds the primary s factor in Escherichia coli, sigma(70), and modifies the promoter recognition properties of the sigma(70)-containing RNA polymerase(RNAP) holoenzyme. In its role as co-activator, AsiA directs RNAP to T4 middle promoters in the presence of the T4-encoded activator MotA. According to the current model for T4 middle promoter activation, AsiA plays an indirect role in stabilizing the activation complex by facilitating interaction between DNA-bound MotA and sigma(70). Here we show that AsiA also plays a direct role in T4 middle promoter activation by contacting the MotA activation domain. Furthermore,we show that interaction between AsiA and the beta-flap domain of RNAP is important for co-activation. Based on our findings, we propose a revised model for T4 middle promoter activation, with AsiA organizing the activation complex via three distinct protein-protein interactions.
Collapse
Affiliation(s)
- Andy H Yuan
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., D1, Boston, MA 02115, USA
| | | |
Collapse
|
6
|
The bacteriophage T4 AsiA protein contacts the beta-flap domain of RNA polymerase. Proc Natl Acad Sci U S A 2009; 106:6597-602. [PMID: 19366670 DOI: 10.1073/pnas.0812832106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To initiate transcription from specific promoters, the bacterial RNA polymerase (RNAP) core enzyme must associate with the initiation factor sigma, which contains determinants that allow sequence-specific interactions with promoter DNA. Most bacteria contain several sigma factors, each of which directs recognition of a distinct set of promoters. A large and diverse family of proteins known as "anti-sigma factors" regulates promoter utilization by targeting specific sigma factors. The founding member of this family is the AsiA protein of bacteriophage T4. AsiA specifically targets the primary sigma factor in Escherichia coli, sigma(70), and inhibits transcription from the major class of sigma(70)-dependent promoters. AsiA-dependent transcription inhibition has been attributed to a well-documented interaction between AsiA and conserved region 4 of sigma(70). Here, we establish that efficient AsiA-dependent transcription inhibition also requires direct protein-protein contact between AsiA and the RNAP core. In particular, we demonstrate that AsiA contacts the flap domain of the RNAP beta-subunit (the beta-flap). Our findings support the emerging view that the beta-flap is a target site for regulatory proteins that affect RNAP function during all stages of the transcription cycle.
Collapse
|
7
|
Campbell EA, Westblade LF, Darst SA. Regulation of bacterial RNA polymerase sigma factor activity: a structural perspective. Curr Opin Microbiol 2008; 11:121-7. [PMID: 18375176 DOI: 10.1016/j.mib.2008.02.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 12/16/2022]
Abstract
In bacteria, sigma factors are essential for the promoter DNA-binding specificity of RNA polymerase. The sigma factors themselves are regulated by anti-sigma factors that bind and inhibit their cognate sigma factor, and 'appropriators' that deploy a particular sigma-associated RNA polymerase to a specific promoter class. Adding to the complexity is the regulation of anti-sigma factors by both anti-anti-sigma factors, which turn on sigma factor activity, and co-anti-sigma factors that act in concert with their partner anti-sigma factor to inhibit or redirect sigma activity. While sigma factor structure and function are highly conserved, recent results highlight the diversity of structures and mechanisms that bacteria use to regulate sigma factor activity, reflecting the diversity of environmental cues that the bacterial transcription system has evolved to respond.
Collapse
Affiliation(s)
- Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | |
Collapse
|
8
|
Beck LL, Smith TG, Hoover TR. Look, no hands! Unconventional transcriptional activators in bacteria. Trends Microbiol 2007; 15:530-7. [PMID: 17997097 DOI: 10.1016/j.tim.2007.09.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 09/17/2007] [Accepted: 09/19/2007] [Indexed: 11/28/2022]
Abstract
Transcriptional activation in bacteria usually involves an activator protein that binds to sites near the target promoter. Some activators of sigma(54)-RNA polymerase holoenzyme, however, can stimulate transcription even when their DNA-binding domains are removed. Recent studies have revealed examples of sigma(54)-dependent activators that naturally lack DNA-binding domains and seem to activate transcription from solution rather than from specific DNA sites. In addition, some activators that function with other forms of RNA polymerase holoenzyme, including Bacillus subtilis Spx and the bacteriophage N4 single-stranded DNA-binding protein, also stimulate transcription without binding to DNA. Because binding to regulatory sites enables activators to stimulate transcription from specific promoters, alternative strategies for achieving specificity are required for activators that do not bind to DNA.
Collapse
Affiliation(s)
- L Lauren Beck
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
9
|
Severinov KV. Interaction of bacterial DNA-dependent RNA polymerase with promoters. Mol Biol 2007. [DOI: 10.1134/s0026893307030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Baxter K, Lee J, Minakhin L, Severinov K, Hinton DM. Mutational analysis of sigma70 region 4 needed for appropriation by the bacteriophage T4 transcription factors AsiA and MotA. J Mol Biol 2006; 363:931-44. [PMID: 16996538 PMCID: PMC1698951 DOI: 10.1016/j.jmb.2006.08.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 08/24/2006] [Accepted: 08/25/2006] [Indexed: 10/24/2022]
Abstract
Transcriptional activation of bacteriophage T4 middle promoters requires sigma70-containing Escherichia coli RNA polymerase, the T4 activator MotA, and the T4 co-activator AsiA. T4 middle promoters contain the sigma70 -10 DNA element. However, these promoters lack the sigma70 -35 element, having instead a MotA box centered at -30, which is bound by MotA. Previous work has indicated that AsiA and MotA interact with region 4 of sigma70, the C-terminal portion that normally contacts -35 DNA and the beta-flap structure in core. AsiA binding prevents the sigma70/beta-flap and sigma70/-35 DNA interactions, inhibiting transcription from promoters that require a -35 element. To test the importance of residues within sigma70 region 4 for MotA and AsiA function, we investigated how sigma70 region 4 mutants interact with AsiA, MotA, and the beta-flap and function in transcription assays in vitro. We find that alanine substitutions at residues 584-588 (region 4.2) do not impair the interaction of region 4 with the beta-flap or MotA, but they eliminate the interaction with AsiA and prevent AsiA inhibition and MotA/AsiA activation. In contrast, alanine substitutions at 551-552, 554-555 (region 4.1) eliminate the region 4/beta-flap interaction, significantly impair the AsiA/sigma70 interaction, and eliminate AsiA inhibition. However, the 4.1 mutant sigma70 is still fully competent for activation if both MotA and AsiA are present. A previous NMR structure shows AsiA binding to sigma70 region 4, dramatically distorting regions 4.1 and 4.2 and indirectly changing the conformation of the MotA interaction site at the sigma70 C terminus. Our analyses provide biochemical relevance for the sigma70 residues identified in the structure, indicate that the interaction of AsiA with sigma70 region 4.2 is crucial for activation, and support the idea that AsiA binding facilitates an interaction between MotA and the far C terminus of sigma70.
Collapse
Affiliation(s)
- Kimberly Baxter
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | | | |
Collapse
|
11
|
Zhang Y, Nakano S, Choi SY, Zuber P. Mutational analysis of the Bacillus subtilis RNA polymerase alpha C-terminal domain supports the interference model of Spx-dependent repression. J Bacteriol 2006; 188:4300-11. [PMID: 16740936 PMCID: PMC1482945 DOI: 10.1128/jb.00220-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Spx protein of Bacillus subtilis exerts both positive and negative transcriptional control in response to oxidative stress by interacting with the C-terminal domain of the RNA polymerase (RNAP) alpha subunit (alphaCTD). Thus, transcription of the srf operon at the onset of competence development, which requires the ComA response regulator of the ComPA signal transduction system, is repressed by Spx-alphaCTD interaction. Previous genetic and structural analyses have determined that an Spx-binding surface resides in and around the alpha1 region of alphaCTD. Alanine-scanning mutagenesis of B. subtilis alphaCTD uncovered residue positions required for Spx function and ComA-dependent srf transcriptional activation. Analysis of srf-lacZ fusion expression, DNase I footprinting, and solid-phase promoter retention experiments indicate that Spx interferes with ComA-alphaCTD interaction and that residues Y263, C265, and K267 of the alpha1 region lie within overlapping ComA- and Spx-binding sites for alphaCTD interaction. Evidence is also presented that oxidized Spx, while enhancing interference of activator-RNAP interaction, is not essential for negative control.
Collapse
Affiliation(s)
- Ying Zhang
- EBS/OGI School of Science & Engineering, OHSU, 20000 NW Walker Rd., Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
12
|
Sharma UK, Chatterji D. Both regions 4.1 and 4.2 of E. coli sigma(70) are together required for binding to bacteriophage T4 AsiA in vivo. Gene 2006; 376:133-43. [PMID: 16545925 DOI: 10.1016/j.gene.2006.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/10/2006] [Accepted: 02/11/2006] [Indexed: 11/26/2022]
Abstract
The T4 AsiA is an anti-sigma factor encoded by one of the early genes of Bacteriophage T4. It has been shown that AsiA inhibits transcription from promoters containing -10 and -35 consensus sequence by binding to sigma(70) of E. coli. Binding of AsiA to sigma(70) in vivo, in E. coli, leads to inhibition of transcription of essential genes resulting in killing of the organism. By using various in vitro methods, the region of sigma(70) binding to AsiA have been mapped to domain 4.2. Additionally, mutational analysis of sigma(70) has also identified amino acid residues in domain 4.1 which are critical for interaction with AsiA. Based on NMR studies it has been suggested that either of these regions can bind to AsiA, a conclusion which was supported by high degree of amino acid homology between domain 4.1 and 4.2. However, it is not clear whether under in vivo conditions, AsiA exerts its transcription inhibitory effect by binding to one of these regions or both the regions together. In order to understand the mechanism of AsiA mediated inhibition of E. coli transcription in vivo, in terms of specific binding requirements to region 4.1 and/or 4.2, we have studied the interaction of these sub-domains with AsiA by Yeast two hybrid system as well as by co-expressing and affinity purification of the interacting partners in vivo in E. coli. It was observed that minimum fragment of sigma(70) showing observable binding to AsiA, must possess sub-domains 4.1 and 4.2 together. No binding could be detected in sigma(70) fragments lacking a part of either domain 4.1 or 4.2, in any of the assays. This data was also supported by in vitro binding studies wherein only sigma(70) fragments carrying both region 4.1 and 4.2 showed binding to AsiA. Co-expression of region 4.1 and 4.2 fragments together also did not show any interaction with AsiA. The results presented here suggest that binding of AsiA to sigma(70), in vivo, requires the presence of both sub-domains of region 4 of sigma(70).
Collapse
Affiliation(s)
- Umender K Sharma
- AstraZeneca R & D, Bellary Road, Hebbal, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
13
|
Rédly GA, Poole K. FpvIR control of fpvA ferric pyoverdine receptor gene expression in Pseudomonas aeruginosa: demonstration of an interaction between FpvI and FpvR and identification of mutations in each compromising this interaction. J Bacteriol 2005; 187:5648-57. [PMID: 16077110 PMCID: PMC1196079 DOI: 10.1128/jb.187.16.5648-5657.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FpvR is a presumed cytoplasmic membrane-associated anti-sigma factor that controls the activities of extracytoplasmic function sigma factors PvdS and FpvI responsible for transcription of pyoverdine biosynthetic genes and the ferric pyoverdine receptor gene, fpvA, respectively. Using deletion analysis and an in vivo bacterial two-hybrid system, FpvR interaction with these sigma factors was confirmed and shown to involve the cytoplasmic N-terminal 67 amino acid resides of FpvR. FpvR bound specifically to a C-terminal region of FpvI corresponding to region 4 of the sigma(70) family of sigma factors. FpvR and FpvI mutant proteins compromised for this interaction were generated by random and site-directed PCR mutagenesis and invariably contained secondary structure-altering proline substitution in predicted alpha-helices within the FpvR N terminus or FpvI region 4. PvdS was shown to bind to the same N-terminal region of FpvR, and FpvR mutations compromising FpvI binding also compromised PvdS binding, although some mutations had a markedly greater impact on PvdS binding. Apparently, these two sigma factors bind to FpvR in a substantially similar but not identical fashion. Intriguingly, defects in FpvR binding correlated with a substantial drop in yields of the FpvI and to a lesser extent PvdS sigma factors, suggesting that FpvR-bound FpvI and PvdS are stable while free and active sigma factor is prone to turnover.
Collapse
Affiliation(s)
- Gyula Alan Rédly
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
14
|
Gregory BD, Deighan P, Hochschild A. An artificial activator that contacts a normally occluded surface of the RNA polymerase holoenzyme. J Mol Biol 2005; 353:497-506. [PMID: 16185714 DOI: 10.1016/j.jmb.2005.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/16/2005] [Accepted: 08/18/2005] [Indexed: 11/26/2022]
Abstract
Many activators of transcription are sequence-specific DNA-binding proteins that stimulate transcription initiation through interaction with RNA polymerase (RNAP). Such activators can be constructed artificially by fusing a DNA-binding protein to a protein domain that can interact with an accessible surface of RNAP. In these cases, the artificial activator is directed to a target promoter bearing a recognition site for the DNA-binding protein. Here we describe an artificial activator that functions by contacting a normally occluded surface of promoter-bound RNAP holoenzyme. This artificial activator consists of a DNA-binding protein fused to the bacteriophage T4-encoded transcription regulator AsiA. On its own, AsiA inhibits transcription by Escherichia coli RNAP because it remodels the holoenzyme, disrupting an intersubunit interaction that is required for recognition of the major class of bacterial promoters. However, when tethered to the DNA via a DNA-binding protein, AsiA can exert a strong stimulatory effect on transcription by disrupting the same intersubunit interaction, contacting an otherwise occluded surface of the holoenzyme. We show that mutations that affect the intersubunit interaction targeted by AsiA modulate the stimulatory effect of this artificial activator. Our results thus demonstrate that changes in the accessibility of a normally occluded surface of the RNAP holoenzyme can modulate the activity of a gene-specific regulator of transcription.
Collapse
Affiliation(s)
- Brian D Gregory
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Hinton DM, Pande S, Wais N, Johnson XB, Vuthoori M, Makela A, Hook-Barnard I. Transcriptional takeover by σ appropriation: remodelling of the σ 70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA. Microbiology (Reading) 2005; 151:1729-1740. [PMID: 15941982 DOI: 10.1099/mic.0.27972-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of bacteriophage T4 middle promoters, which occurs about 1 min after infection, uses two phage-encoded factors that change the promoter specificity of the host RNA polymerase. These phage factors, the MotA activator and the AsiA co-activator, interact with theσ70specificity subunit ofEscherichia coliRNA polymerase, which normally contacts the −10 and −35 regions of host promoter DNA. Like host promoters, T4 middle promoters have a good match to the canonicalσ70DNA element located in the −10 region. However, instead of theσ70DNA recognition element in the promoter's −35 region, they have a 9 bp sequence (a MotA box) centred at −30, which is bound by MotA. Recent work has begun to provide information about the MotA/AsiA system at a detailed molecular level. Accumulated evidence suggests that the presence of MotA and AsiA reconfigures protein–DNA contacts in the upstream promoter sequences, without significantly affecting the contacts ofσ70with the −10 region. This type of activation, which is called ‘σappropriation’, is fundamentally different from other well-characterized models of prokaryotic activation in which an activator frequently serves to forceσ70to contact a less than ideal −35 DNA element. This review summarizes the interactions of AsiA and MotA withσ70, and discusses how these interactions accomplish the switch to T4 middle promoters by inhibiting the typical contacts of the C-terminal region ofσ70, region 4, with the host −35 DNA element and with other subunits of polymerase.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suchira Pande
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neelowfar Wais
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xanthia B Johnson
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhavi Vuthoori
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Makela
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - India Hook-Barnard
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Minakhin L, Severinov K. Transcription regulation by bacteriophage T4 AsiA. Protein Expr Purif 2005; 41:1-8. [PMID: 15802215 DOI: 10.1016/j.pep.2004.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 09/29/2004] [Indexed: 10/25/2022]
Abstract
Bacteriophage T4 AsiA, a strong inhibitor of bacterial RNA polymerase, was the first antisigma protein to be discovered. Recent advances that made it possible to purify large amounts of this highly toxic protein led to an increased understanding of AsiA function and structure. In this review, we discuss how the small 10-KDa AsiA protein plays a key role in T4 development through its ability to both inhibit and activate bacterial RNA polymerase transcription.
Collapse
Affiliation(s)
- Leonid Minakhin
- Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854, United States
| | | |
Collapse
|
17
|
Abstract
A recent structure obtained by nuclear magnetic resonance (NMR) spectroscopy shows that the binding of a small phage factor to the sigma(70) subunit of Escherichia coli RNA polymerase induces an unprecedented remodeling of a region of sigma(70), converting a DNA-binding helix-turn-helix into a continuous pseudohelix. This conformational change suggests how the phage factor can function both as an inhibitor and co-activator of transcription.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, MD 20892-0830, USA.
| |
Collapse
|
18
|
Gregory BD, Nickels BE, Darst SA, Hochschild A. An altered-specificity DNA-binding mutant of Escherichia coliσ70 facilitates the analysis of σ70 function in vivo. Mol Microbiol 2005; 56:1208-19. [PMID: 15882415 DOI: 10.1111/j.1365-2958.2005.04624.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The sigma subunit of bacterial RNA polymerase is strictly required for promoter recognition. The primary (housekeeping) sigma factor of Escherichia coli, sigma(70), is responsible for most of the gene expression in exponentially growing cells. The fact that sigma(70) is an essential protein has complicated efforts to genetically dissect the functions of sigma(70). To facilitate the analysis of sigma(70) function in vivo, we isolated an altered-specificity DNA-binding mutant of sigma(70), sigma(70) R584A, which preferentially recognizes a mutant promoter that is not efficiently recognized by wild-type sigma(70). Exploiting this sigma(70) mutant as a genetic tool, we establish an in vivo assay for the inhibitory effect of the bacteriophage T4-encoded anti-sigma factor AsiA on sigma(70)-dependent transcription. Our results demonstrate the utility of this altered-specificity system for genetically dissecting sigma(70) and its interactions with transcription regulators.
Collapse
Affiliation(s)
- Brian D Gregory
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | | | |
Collapse
|
19
|
Pineda M, Gregory BD, Szczypinski B, Baxter KR, Hochschild A, Miller ES, Hinton DM. A family of anti-sigma70 proteins in T4-type phages and bacteria that are similar to AsiA, a Transcription inhibitor and co-activator of bacteriophage T4. J Mol Biol 2005; 344:1183-97. [PMID: 15561138 DOI: 10.1016/j.jmb.2004.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 09/30/2004] [Accepted: 10/05/2004] [Indexed: 11/24/2022]
Abstract
Anti-sigma70 factors interact with sigma70 proteins, the specificity subunits of prokaryotic RNA polymerase. The bacteriophage T4 anti-sigma70 protein, AsiA, binds tightly to regions 4.1 and 4.2 of the sigma70 subunit of Escherichia coli RNA polymerase and inhibits transcription from sigma70 promoters that require recognition of the canonical sigma70 -35 DNA sequence. In the presence of the T4 transcription activator MotA, AsiA also functions as a co-activator of transcription from T4 middle promoters, which retain the canonical sigma70 -10 consensus sequence but have a MotA box sequence centered at -30 rather than the sigma70 -35 sequence. The E.coli anti-sigma70 protein Rsd also interacts with region 4.2 of sigma70 and inhibits transcription from sigma70 promoters. Our sequence comparisons of T4 AsiA with Rsd, with the predicted AsiA orthologs of the T4-type phages RB69, 44RR, KVP40, and Aeh1, and with AlgQ, a regulator of alginate production in Pseudomonas aeruginosa indicate that these proteins share conserved amino acid residues at positions known to be important for the binding of T4 AsiA to sigma70 region 4. We show that, like T4 AsiA, Rsd binds to sigma70 in a native protein gel and, as with T4 AsiA, a L18S substitution in Rsd disrupts this complex. Previous work has assigned sigma70 amino acid F563, within region 4.1, as a critical determinant for AsiA binding. This residue is also involved in the binding of sigma70 to the beta-flap of core, suggesting that AsiA inhibits transcription by disrupting the interaction between sigma70 region 4.1 and the beta-flap. We find that as with T4 AsiA, the interaction of KVP40 AsiA, Rsd, or AlgQ with sigma70 region 4 is diminished by the substitution F563Y. We also demonstrate that like T4 AsiA and Rsd, KVP40 AsiA inhibits transcription from sigma70-dependent promoters. We speculate that the phage AsiA orthologs, Rsd, and AlgQ are members of a related family in T4-type phage and bacteria, which interact similarly with primary sigma factors. In addition, we show that even though a clear MotA ortholog has not been identified in the KVP40 genome and the phage genome appears to lack typical middle promoter sequences, KVP40 AsiA activates transcription from T4 middle promoters in the presence of T4 MotA. We speculate that KVP40 encodes a protein that is dissimilar in sequence, but functionally equivalent, to T4 MotA.
Collapse
Affiliation(s)
- Melissa Pineda
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Building 8, Room 2A-13, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wigneshweraraj SR, Burrows PC, Bordes P, Schumacher J, Rappas M, Finn RD, Cannon WV, Zhang X, Buck M. The second paradigm for activation of transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:339-69. [PMID: 16096032 DOI: 10.1016/s0079-6603(04)79007-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S R Wigneshweraraj
- Department of Biological Sciences and Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Orsini G, Igonet S, Pène C, Sclavi B, Buckle M, Uzan M, Kolb A. Phage T4 early promoters are resistant to inhibition by the anti-sigma factor AsiA. Mol Microbiol 2004; 52:1013-28. [PMID: 15130121 DOI: 10.1111/j.1365-2958.2004.04038.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phage T4 early promoters are transcribed in vivo and in vitro by the Escherichia coli RNA polymerase holoenzyme Esigma(70). We studied in vitro the effects of the T4 anti-sigma(70) factor AsiA on the activity of several T4 early promoters. In single-round transcription, promoters motB, denV, mrh.2, motA wild type and UP element-deleted motA are strongly resistant to inhibition by AsiA. The alpha-C-terminal domain of Esigma(70) is crucial to this resistance. DNase I footprinting of Esigma(70) and Esigma(70)AsiA on motA and mrh.2 shows extended contacts between the holoenzyme with or without AsiA and upstream regions of these promoters. A TG --> TC mutation of the extended -10 motif in the motA UP element-deleted promoter strongly increases susceptibility to inhibition by AsiA, but has no effect on the motA wild-type promoter: either the UP element or the extended -10 site confers resistance to AsiA. Potassium permanganate reactivity shows that the two structure elements are not equivalent: with AsiA, the motA UP element-deleted promoter opens more slowly whereas the motA TC promoter opens like the wild type. Changes in UV laser photoreactivity at position +4 on variants of motA reveal an analogous distinction in the roles of the extended -10 and UP promoter elements.
Collapse
Affiliation(s)
- Gilbert Orsini
- Unité des Régulations Transcriptionnelles, Département de Microbiologie Fondamentale et Médicale, URA 2185 du CNRS, Institut Pasteur, F-75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Geszvain K, Gruber TM, Mooney RA, Gross CA, Landick R. A Hydrophobic Patch on the Flap-tip Helix of E.coli RNA Polymerase Mediates σ70 Region 4 Function. J Mol Biol 2004; 343:569-87. [PMID: 15465046 DOI: 10.1016/j.jmb.2004.08.063] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2004] [Revised: 08/19/2004] [Accepted: 08/19/2004] [Indexed: 11/15/2022]
Abstract
The Escherichia coli RNA polymerase beta subunit contains a flexible flap domain that interacts with region 4 of sigma(70) to position it for recognition of the -35 element of promoters. We report that this function depends on a hydrophobic patch on one face of the short stretch of alpha helix located at the tip of the flap domain, called the flap-tip helix. Disruption of the hydrophobic patch by the substitution of hydrophilic or charged amino acids resulted in a loss of the interaction between the flap and sigma region 4, as determined by protease sensitivity assays, and impaired transcription from -35-dependent promoters. We suggest that contact of the flap-tip helix hydrophobic patch to the sigma region 4 hydrophobic core is essential for stable interaction of the flap-tip helix with region 4. This contact allowed region 4.2 recognition of the -35 promoter element and appeared to stabilize region 4 interaction with the beta' Zn(2+) binding domain. Our studies failed to detect any role for sigma region 1.1 in establishing or maintaining the flap-sigma region 4 interaction, consistent with recent reports placing sigma region 1.1 in the downstream DNA channel.
Collapse
Affiliation(s)
- Kati Geszvain
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
23
|
Lambert LJ, Wei Y, Schirf V, Demeler B, Werner MH. T4 AsiA blocks DNA recognition by remodeling sigma70 region 4. EMBO J 2004; 23:2952-62. [PMID: 15257291 PMCID: PMC514929 DOI: 10.1038/sj.emboj.7600312] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 06/16/2004] [Indexed: 11/09/2022] Open
Abstract
Bacteriophage T4 AsiA is a versatile transcription factor capable of inhibiting host gene expression as an 'anti-sigma' factor while simultaneously promoting gene-specific expression of T4 middle genes in conjunction with T4 MotA. To accomplish this task, AsiA engages conserved region 4 of Eschericia coli sigma70, blocking recognition of most host promoters by sequestering the DNA-binding surface at the AsiA/sigma70 interface. The three-dimensional structure of an AsiA/region 4 complex reveals that the C-terminal alpha helix of region 4 is unstructured, while four other helices adopt a completely different conformation relative to the canonical structure of unbound region 4. That AsiA induces, rather than merely stabilizes, this rearrangement can be realized by comparison to the homologous structures of region 4 solved in a variety of contexts, including the structure of Thermotoga maritima sigmaA region 4 described herein. AsiA simultaneously occupies the surface of region 4 that ordinarily contacts core RNA polymerase (RNAP), suggesting that an AsiA-bound sigma70 may also undergo conformational changes in the context of the RNAP holoenzyme.
Collapse
Affiliation(s)
- Lester J Lambert
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
| | - Yufeng Wei
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
| | - Virgil Schirf
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Borries Demeler
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Milton H Werner
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, Box 42, New York, NY 10021, USA. Tel.: +1 212 327 7221; Fax: +1 212 327 7222; E-mail:
| |
Collapse
|
24
|
Gregory BD, Nickels BE, Garrity SJ, Severinova E, Minakhin L, Urbauer RJB, Urbauer JL, Heyduk T, Severinov K, Hochschild A. A regulator that inhibits transcription by targeting an intersubunit interaction of the RNA polymerase holoenzyme. Proc Natl Acad Sci U S A 2004; 101:4554-9. [PMID: 15070756 PMCID: PMC384785 DOI: 10.1073/pnas.0400923101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structures of the bacterial RNA polymerase holoenzyme have provided detailed information about the intersubunit interactions within the holoenzyme. Functional analysis indicates that one of these is critical in enabling the holoenzyme to recognize the major class of bacterial promoters. It has been suggested that this interaction, involving the flap domain of the beta subunit and conserved region 4 of the sigma subunit, is a potential target for regulation. Here we provide genetic and biochemical evidence that the sigma region 4/beta-flap interaction is targeted by the transcription factor AsiA. Specifically, we show that AsiA competes directly with the beta-flap for binding to sigma region 4, thereby inhibiting transcription initiation by disrupting the sigma region 4/beta-flap interaction.
Collapse
Affiliation(s)
- B D Gregory
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Minakhin L, Severinov K. On the role of the Escherichia coli RNA polymerase sigma 70 region 4.2 and alpha-subunit C-terminal domains in promoter complex formation on the extended -10 galP1 promoter. J Biol Chem 2003; 278:29710-8. [PMID: 12801925 DOI: 10.1074/jbc.m304906200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial promoters of the extended -10 class contain a single consensus element, and the DNA sequence upstream of this element is not critical for promoter activity. Open promoter complexes can be formed on an extended -10 Escherichia coli galP1 promoter at temperatures as low as 6 degrees C, when complexes on most promoters are closed. Here, we studied the contribution of upstream contacts to promoter complex formation using galP1 and its derivatives lacking the extended -10 motif and/or containing the -35 promoter consensus element. A panel of E. coli RNA polymerase holoenzymes containing two, one, or no alpha-subunit C-terminal domains (alpha CTD) and either wild-type sigma 70 subunit or sigma 70 lacking region 4.2 was assembled and tested for promoter complex formation. At 37 degrees C, alpha CTD and sigma 70 region 4.2 were individually dispensable for promoter complex formation on galP1 derivatives with extended -10 motif. However, no promoter complexes formed when both alpha CTD and sigma 70 region 4.2 were absent. Thus, in the context of an extended -10 promoter, alpha CTD and sigma 70 region 4.2 interactions with upstream DNA can functionally substitute for each other. In contrast, at low temperature, alpha CTD and sigma 70 region 4.2 interactions with upstream DNA were found to be functionally distinct, for sigma 70 region 4.2 but not alpha CTD was required for open promoter complex formation on galP1 derivatives with extended -10 motif. We propose a model involving sigma 70 region 4.2 interaction with the beta flap domain that explains these observations.
Collapse
Affiliation(s)
- Leonid Minakhin
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|