1
|
Ghiglione B, Rodríguez MM, Penzotti P, Bethel CR, Gutkind G, Bonomo RA, Klinke S, Power P. Crystal structure of the class A extended-spectrum β-lactamase CTX-M-96 in complex with relebactam at 1.03 Angstrom resolution. Antimicrob Agents Chemother 2024; 68:e0172123. [PMID: 38990013 PMCID: PMC11304709 DOI: 10.1128/aac.01721-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/30/2024] [Indexed: 07/12/2024] Open
Abstract
The use of β-lactam/β-lactamase inhibitors constitutes an important strategy to counteract β-lactamases in multidrug-resistant (MDR) Gram-negative bacteria. Recent reports have described ceftazidime-/avibactam-resistant isolates producing CTX-M variants with different amino acid substitutions (e.g., P167S, L169Q, and S130G). Relebactam (REL) combined with imipenem has proved very effective against Enterobacterales producing ESBLs, serine-carbapenemases, and AmpCs. Herein, we evaluated the inhibitory efficacy of REL against CTX-M-96, a CTX-M-15-type variant. The CTX-M-96 structure was obtained in complex with REL at 1.03 Å resolution (PDB 8EHH). REL was covalently bound to the S70-Oγ atom upon cleavage of the C7-N6 bond. Compared with apo CTX-M-96, binding of REL forces a slight displacement of the deacylating water inwards the active site (0.81 Å), making the E166 and N170 side chains shift to create a proper hydrogen bonding network. Binding of REL also disturbs the hydrophobic patch formed by Y105, P107, and Y129, likely due to the piperidine ring of REL that creates clashes with these residues. Also, a remarkable change in the positioning of the N104 sidechain is also affected by the piperidine ring. Therefore, differences in the kinetic behavior of REL against class A β-lactamases seem to rely, at least in part, on differences in the residues being involved in the association and stabilization of the inhibitor before hydrolysis. Our data provide the biochemical and structural basis for REL effectiveness against CTX-M-producing Gram-negative pathogens and essential details for further DBO design. Imipenem/REL remains an important choice for dealing with isolates co-producing CTX-M with other β-lactamases.
Collapse
Affiliation(s)
- Barbara Ghiglione
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Margarita Rodríguez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pedro Penzotti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Gabriel Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Sebastián Klinke
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentin
| | - Pablo Power
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
van Alen I, Chikunova A, van Zanten DB, de Block AA, Timmer M, Brünle S, Ubbink M. Asp179 in the class A β-lactamase from Mycobacterium tuberculosis is a conserved yet not essential residue due to epistasis. FEBS J 2023; 290:4933-4949. [PMID: 37335937 DOI: 10.1111/febs.16892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
Conserved residues are often considered essential for function, and substitutions in such residues are expected to have a negative influence on the properties of a protein. However, mutations in a few highly conserved residues of the β-lactamase from Mycobacterium tuberculosis, BlaC, were shown to have no or only limited negative effect on the enzyme. One such mutant, D179N, even conveyed increased ceftazidime resistance upon bacterial cells, while displaying good activity against penicillins. The crystal structures of BlaC D179N in resting state and in complex with sulbactam reveal subtle structural changes in the Ω-loop as compared to the structure of wild-type BlaC. Introducing this mutation in four other β-lactamases, CTX-M-14, KPC-2, NMC-A and TEM-1, resulted in decreased antibiotic resistance for penicillins and meropenem. The results demonstrate that the Asp in position 179 is generally essential for class A β-lactamases but not for BlaC, which can be explained by the importance of the interaction with the side chain of Arg164 that is absent in BlaC. It is concluded that Asp179 though conserved is not essential in BlaC, as a consequence of epistasis.
Collapse
Affiliation(s)
- Ilona van Alen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | | - Danny B van Zanten
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Amber A de Block
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Steffen Brünle
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| |
Collapse
|
3
|
Agarwal V, Yadav TC, Tiwari A, Varadwaj P. Detailed investigation of catalytically important residues of class A β-lactamase. J Biomol Struct Dyn 2023; 41:2046-2073. [PMID: 34986744 DOI: 10.1080/07391102.2021.2023645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An increasing global health challenge is antimicrobial resistance. Bacterial infections are often treated by using β-lactam antibiotics. But several resistance mechanisms have evolved in clinically mutated bacteria, which results in resistance against such antibiotics. Among which production of novel β-lactamase is the major one. This results in bacterial resistance against penicillin, cephalosporin, and carbapenems, which are considered to be the last resort of antibacterial treatment. Hence, β-lactamase enzymes produced by such bacteria are called extended-spectrum β-lactamase and carbapenemase enzymes. Further, these bacteria have developed resistance against many β-lactamase inhibitors as well. So, investigation of important residues that play an important role in altering and expanding the spectrum activity of these β-lactamase enzymes becomes necessary. This review aims to gather knowledge about the role of residues and their mutations in class A β-lactamase, which could be responsible for β-lactamase mediated resistance. Class A β-lactamase enzymes contain most of the clinically significant and expanded spectrum of β-lactamase enzymes. Ser70, Lys73, Ser130, Glu166, and Asn170 residues are mostly conserved and have a role in the enzyme's catalytic activity. In-depth investigation of 69, 130, 131, 132, 164, 165, 166, 170, 171, 173, 176, 178, 179, 182, 237, 244, 275 and 276 residues were done along with its kinetic analysis for knowing its significance. Further, detailed information from many previous studies was gathered to know the effect of mutations on the kinetic activity of class A β-lactamase enzymes with β-lactam antibiotics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vidhu Agarwal
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| | - Tara Chand Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Akhilesh Tiwari
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| | - Pritish Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, Jhalwa, Uttar Pradesh, India
| |
Collapse
|
4
|
Kaur M, Cohen Y, Poverenov E, Eltzov E. Synergistic antimicrobial effect of the combination of beta-lactam antibiotics and chitosan derivative on multidrug-resistant bacteria. Int J Biol Macromol 2022; 223:1107-1114. [PMID: 36395926 DOI: 10.1016/j.ijbiomac.2022.11.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Dissemination of multidrug-resistant (MDR) bacteria with CTX-M-type extended-spectrum β-lactamases (blaCTX-M) has become the greatest challenge in public health care. This study aimed to investigate the synergistic antibacterial potential of N-alkylaminated chitosan nanoparticles (CNPs) combined with conventional β-lactam antibiotics (BLAs) against multidrug-resistant pathogen with blaCTX-M gene. The results of this study showed that the developed nano-formulation resensitized the studied E. coli MDR strain (E001) to ampicillin (AMP) and piperacillin (PIP) by causing a 1000-10,000-fold decrease in their MIC values (5000-50,000 mg/L to 5 mg/L). The conjugation of CNPs with cefoxitin (FOX) and ceftazidime (CAZ) showed a comparatively lower synergistic inhibitory effect owing to the higher susceptibility (MIC value = 0.5 mg/L-5 mg/L) of E001 to these antibiotics. The results indicate that CNPs could be effectively employed as an additive to augment the antibacterial effect of the BLAs for which MDR strains exhibit higher MIC values.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yael Cohen
- Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Elena Poverenov
- Agro-Nanotechnology and Advanced Materials Research Center, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel
| | - Evgeni Eltzov
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Institute of Postharvest and Food Science, Agricultural Research Organization, The Volcani Institute, Rishon LeZion 7505101, Israel.
| |
Collapse
|
5
|
Shurina BA, Page RC. Structural Comparisons of Cefotaximase (CTX-M-ase) Sub Family 1. Front Microbiol 2021; 12:688509. [PMID: 34504475 PMCID: PMC8421805 DOI: 10.3389/fmicb.2021.688509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
The cefotaximase or CTX-M, family of serine-β-lactamases represents a significant clinical concern due to the ability for these enzymes to confer resistance to a broad array of β-lactam antibiotics an inhibitors. This behavior lends CTX-M-ases to be classified as extended spectrum β-lactamases (ESBL). Across the family of CTX-M-ases most closely related to CTX-M-1, the structures of CTX-M-15 with a library of different ligands have been solved and serve as the basis of comparison within this review. Herein we focus on the structural changes apparent in structures of CTX-M-15 in complex with diazabicyclooctane (DABCO) and boronic acid transition state analog inhibitors. Interactions between a positive surface patch near the active site and complementary functional groups of the bound inhibitor play key roles in the dictating the conformations of active site residues. The insights provided by analyzing structures of CTX-M-15 in complex with DABCO and boronic acid transition state analog inhibitors and analyzing existing structures of CTX-M-64 offer opportunities to move closer to making predictions as to how CTX-M-ases may interact with potential drug candidates, setting the stage for the further development of new antibiotics and β-lactamase inhibitors.
Collapse
Affiliation(s)
- Ben A Shurina
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States.,Cell, Molecular, and Structural Biology Program, Miami University, Oxford, OH, United States
| |
Collapse
|
6
|
Structural and Biochemical Characterization of the Novel CTX-M-151 Extended-Spectrum β-Lactamase and Its Inhibition by Avibactam. Antimicrob Agents Chemother 2021; 65:AAC.01757-20. [PMID: 33431411 DOI: 10.1128/aac.01757-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The diazabicyclooctane (DBO) inhibitor avibactam (AVI) reversibly inactivates most serine β-lactamases, including the CTX-M β-lactamases. Currently, more than 230 unique CTX-M members distributed in five clusters with less than 5% amino acid sequence divergence within each group have been described. Recently, a variant named CTX-M-151 was isolated from a Salmonella enterica subsp. enterica serovar Choleraesuis strain in Japan. This variant possesses a low degree of amino acid identity with the other CTX-Ms (63.2% to 69.7% with respect to the mature proteins), and thus it may represent a new subgroup within the family. CTX-M-151 hydrolyzes ceftriaxone better than ceftazidime (k cat/K m values 6,000-fold higher), as observed with CTX-Ms. CTX-M-151 is well inhibited by mechanism-based inhibitors like clavulanic acid (inactivation rate [k inact]/inhibition constant [Ki ] = 0.15 μM-1 · s-1). For AVI, the apparent inhibition constant (Ki app), 0.4 μM, was comparable to that of KPC-2; the acylation rate (k2/K) (37,000 M-1 · s-1) was lower than that for CTX-M-15, while the deacylation rate (k off) (0.0015 s-1) was 2- to 14-fold higher than those of other class A β-lactamases. The structure of the CTX-M-151/AVI complex (1.32 Å) reveals that AVI adopts a chair conformation with hydrogen bonds between the AVI carbamate and Ser70 and Ser237 at the oxyanion hole. Upon acylation, the side chain of Lys73 points toward Ser130, which is associated with the protonation of Glu166, supporting the role of Lys73 in the proton relay pathway and Glu166 as the general base in deacylation. To our knowledge, this is the first chromosomally encoded CTX-M in Salmonella Choleraesuis that shows similar hydrolytic preference toward cefotaxime (CTX) and ceftriaxone (CRO) to that toward ceftazidime (CAZ).
Collapse
|
7
|
Soeung V, Lu S, Hu L, Judge A, Sankaran B, Prasad BVV, Palzkill T. A drug-resistant β-lactamase variant changes the conformation of its active-site proton shuttle to alter substrate specificity and inhibitor potency. J Biol Chem 2020; 295:18239-18255. [PMID: 33109613 PMCID: PMC11843585 DOI: 10.1074/jbc.ra120.016103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Indexed: 11/06/2022] Open
Abstract
Lys234 is one of the residues present in class A β-lactamases that is under selective pressure due to antibiotic use. Located adjacent to proton shuttle residue Ser130, it is suggested to play a role in proton transfer during catalysis of the antibiotics. The mechanism underpinning how substitutions in this position modulate inhibitor efficiency and substrate specificity leading to drug resistance is unclear. The K234R substitution identified in several inhibitor-resistant β-lactamase variants is associated with decreased potency of the inhibitor clavulanic acid, which is used in combination with amoxicillin to overcome β-lactamase-mediated antibiotic resistance. Here we show that for CTX-M-14 β-lactamase, whereas Lys234 is required for hydrolysis of cephalosporins such as cefotaxime, either lysine or arginine is sufficient for hydrolysis of ampicillin. Further, by determining the acylation and deacylation rates for cefotaxime hydrolysis, we show that both rates are fast, and neither is rate-limiting. The K234R substitution causes a 1500-fold decrease in the cefotaxime acylation rate but a 5-fold increase in kcat for ampicillin, suggesting that the K234R enzyme is a good penicillinase but a poor cephalosporinase due to slow acylation. Structural results suggest that the slow acylation by the K234R enzyme is due to a conformational change in Ser130, and this change also leads to decreased inhibition potency of clavulanic acid. Because other inhibitor resistance mutations also act through changes at Ser130 and such changes drastically reduce cephalosporin but not penicillin hydrolysis, we suggest that clavulanic acid paired with an oxyimino-cephalosporin rather than penicillin would impede the evolution of resistance.
Collapse
Affiliation(s)
- Victoria Soeung
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Shuo Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Allison Judge
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - B V Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
8
|
Li P, Liu C, Li B, Ma Q. Structural analysis of the CARB β-lactamase from Vibrio parahaemolyticus facilitates application of the β-lactam/β-lactamase inhibitor therapy. Biochimie 2020; 171-172:213-222. [DOI: 10.1016/j.biochi.2020.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
|
9
|
β-Lactamase of Mycobacterium tuberculosis Shows Dynamics in the Active Site That Increase upon Inhibitor Binding. Antimicrob Agents Chemother 2020; 64:AAC.02025-19. [PMID: 31871087 DOI: 10.1128/aac.02025-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis β-lactamase BlaC is a broad-spectrum β-lactamase that can convert a range of β-lactam antibiotics. Enzymes with low specificity are expected to exhibit active-site flexibility. To probe the motions in BlaC, we studied the dynamic behavior in solution using nuclear magnetic resonance (NMR) spectroscopy. 15N relaxation experiments show that BlaC is mostly rigid on the pico- to nanosecond timescale. Saturation transfer experiments indicate that also on the high-millisecond timescale BlaC is not dynamic. Using relaxation dispersion experiments, clear evidence was obtained for dynamics in the low-millisecond range, with an exchange rate of ca. 860 s-1 The dynamic amide groups are localized in the active site. Upon formation of an adduct with the inhibitor avibactam, extensive line broadening occurs, indicating an increase in magnitude of the active-site dynamics. Furthermore, the rate of the motions increases significantly. Upon reaction with the inhibitor clavulanic acid, similar line broadening is accompanied by duplication of NMR signals, indicative of at least one additional, slower exchange process (exchange rate, k ex, of <100 s-1), while for this inhibitor also loss of pico- to nanosecond timescale rigidity is observed for some amides in the α domain. Possible sources of the observed dynamics, such as motions in the omega loop and rearrangements of active-site residues, are discussed. The increase in dynamics upon ligand binding argues against a model of inhibitor binding through conformational selection. Rather, the induced dynamics may serve to maximize the likelihood of sampling the optimal conformation for hydrolysis of the bound ligand.
Collapse
|
10
|
Langan PS, Sullivan B, Weiss KL, Coates L. Probing the role of the conserved residue Glu166 in a class A β-lactamase using neutron and X-ray protein crystallography. Acta Crystallogr D Struct Biol 2020; 76:118-123. [PMID: 32038042 PMCID: PMC7008513 DOI: 10.1107/s2059798319016334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 11/10/2022] Open
Abstract
The amino-acid sequence of the Toho-1 β-lactamase contains several conserved residues in the active site, including Ser70, Lys73, Ser130 and Glu166, some of which coordinate a catalytic water molecule. This catalytic water molecule is essential in the acylation and deacylation parts of the reaction mechanism through which Toho-1 inactivates specific antibiotics and provides resistance to its expressing bacterial strains. To investigate the function of Glu166 in the acylation part of the catalytic mechanism, neutron and X-ray crystallographic studies were performed on a Glu166Gln mutant. The structure of this class A β-lactamase mutant provides several insights into its previously reported reduced drug-binding kinetic rates. A joint refinement of both X-ray and neutron diffraction data was used to study the effects of the Glu166Gln mutation on the active site of Toho-1. This structure reveals that while the Glu166Gln mutation has a somewhat limited impact on the positions of the conserved amino acids within the active site, it displaces the catalytic water molecule from the active site. These subtle changes offer a structural explanation for the previously observed decreases in the binding of non-β-lactam inhibitors such as the recently developed diazobicyclooctane inhibitor avibactam.
Collapse
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Brendan Sullivan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
11
|
Dynamical Behavior of β-Lactamases and Penicillin- Binding Proteins in Different Functional States and Its Potential Role in Evolution. ENTROPY 2019. [PMCID: PMC7514474 DOI: 10.3390/e21111130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
β-Lactamases are enzymes produced by bacteria to hydrolyze β-lactam-based antibiotics, and pose serious threat to public health through related antibiotic resistance. Class A β-lactamases are structurally and functionally related to penicillin-binding proteins (PBPs). Despite the extensive studies of the structures, catalytic mechanisms and dynamics of both β-lactamases and PBPs, the potentially different dynamical behaviors of these proteins in different functional states still remain elusive in general. In this study, four evolutionarily related proteins, including TEM-1 and TOHO-1 as class A β-lactamases, PBP-A and DD-transpeptidase as two PBPs, are subjected to molecular dynamics simulations and various analyses to characterize their dynamical behaviors in different functional states. Penicillin G and its ring opening product serve as common ligands for these four proteins of interest. The dynamic analyses of overall structures, the active sites with penicillin G, and three catalytically important residues commonly shared by all four proteins reveal unexpected cross similarities between Class A β-lactamases and PBPs. These findings shed light on both the hidden relations among dynamical behaviors of these proteins and the functional and evolutionary relations among class A β-lactamases and PBPs.
Collapse
|
12
|
Langan PS, Vandavasi VG, Cooper CJ, Weiss KL, Ginell SL, Parks JM, Coates L. Substrate Binding Induces Conformational Changes in a Class A β-lactamase That Prime It for Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Venu Gopal Vandavasi
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Connor J. Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephan L. Ginell
- Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jerry M. Parks
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
13
|
Pan X, He Y, Lei J, Huang X, Zhao Y. Crystallographic Snapshots of Class A β-Lactamase Catalysis Reveal Structural Changes That Facilitate β-Lactam Hydrolysis. J Biol Chem 2017; 292:4022-4033. [PMID: 28100776 DOI: 10.1074/jbc.m116.764340] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
β-Lactamases confer resistance to β-lactam-based antibiotics. There is great interest in understanding their mechanisms to enable the development of β-lactamase-specific inhibitors. The mechanism of class A β-lactamases has been studied extensively, revealing Lys-73 and Glu-166 as general bases that assist the catalytic residue Ser-70. However, the specific roles of these two residues within the catalytic cycle remain not fully understood. To help resolve this, we first identified an E166H mutant that is functional but is kinetically slow. We then carried out time-resolved crystallographic study of a full cycle of the catalytic reaction. We obtained structures that represent apo, ES*-acylation, and ES*-deacylation states and analyzed the conformational changes of His-166. The "in" conformation in the apo structure allows His-166 to form a hydrogen bond with Lys-73. The unexpected "flipped-out" conformation of His-166 in the ES*-acylation structure was further examined by molecular dynamics simulations, which suggested deprotonated Lys-73 serving as the general base for acylation. The "revert-in" conformation in the ES*-deacylation structure aligns His-166 toward the water molecule that hydrolyzes the acyl adduct. Finally, when the acyl adduct is fully hydrolyzed, His-166 rotates back to the "in" conformation of the apo-state, restoring the Lys-73/His-166 interaction. Using His-166 as surrogate, our study identifies distinct conformational changes within the active site during catalysis. We suggest that the native Glu-166 executes similar changes in a less constricted way. Taken together, this structural series improves our understanding of β-lactam hydrolysis in this important class of enzymes.
Collapse
Affiliation(s)
- Xuehua Pan
- From the Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,the Shenzhen Research Institute, Hong Kong Polytechnic University, Shenzhen, and
| | - Yunjiao He
- From the Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jinping Lei
- the Department of Chemistry, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuhui Huang
- the Department of Chemistry, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yanxiang Zhao
- From the Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong,
| |
Collapse
|
14
|
Crystal Structure of the Pseudomonas aeruginosa BEL-1 Extended-Spectrum β-Lactamase and Its Complexes with Moxalactam and Imipenem. Antimicrob Agents Chemother 2016; 60:7189-7199. [PMID: 27671060 DOI: 10.1128/aac.00936-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/23/2016] [Indexed: 11/20/2022] Open
Abstract
BEL-1 is an acquired class A extended-spectrum β-lactamase (ESBL) found in Pseudomonas aeruginosa clinical isolates from Belgium which is divergent from other ESBLs (maximum identity of 54% with GES-type enzymes). This enzyme is efficiently inhibited by clavulanate, imipenem, and moxalactam. Crystals of BEL-1 were obtained at pH 5.6, and the structure of native BEL-1 was determined from orthorhombic and monoclinic crystal forms at 1.60-Å and 1.48-Å resolution, respectively. By soaking native BEL-1 crystals, complexes with imipenem (monoclinic form, 1.79-Å resolution) and moxalactam (orthorhombic form, 1.85-Å resolution) were also obtained. In the acyl-enzyme complexes, imipenem and moxalactam differ by the position of the α-substituent and of the carbonyl oxygen (in or out of the oxyanion hole). More surprisingly, the Ω-loop, which includes the catalytically relevant residue Glu166, was found in different conformations in the various subunits, resulting in the Glu166 side chain being rotated out of the active site or even in displacement of its Cα atom up to approximately 10 Å. A BEL-1 variant showing the single Leu162Phe substitution (BEL-2) confers a higher level of resistance to CAZ, CTX, and FEP and shows significantly lower Km values than BEL-1, especially with oxyiminocephalosporins. BEL-1 Leu162 is located at the beginning of the Ω-loop and is surrounded by Phe72, Leu139, and Leu148 (contact distances, 3.5 to 3.9 Å). This small hydrophobic cavity could not reasonably accommodate the bulkier Phe162 found in BEL-2 without altering neighboring residues or the Ω-loop itself, thus likely causing an important alteration of the enzyme kinetic properties.
Collapse
|
15
|
Irajie C, Mohkam M, Nezafat N, Hosseinzadeh S, Aminlari M, Ghasemi Y. In Silico Analysis of Glutaminase from Different Species of Escherichia and Bacillus. IRANIAN JOURNAL OF MEDICAL SCIENCES 2016; 41:406-14. [PMID: 27582590 PMCID: PMC4967485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Glutaminase (EC 3.5.1.2) catalyzes the hydrolytic degradation of L-glutamine to L-glutamic acid and has been introduced for cancer therapy in recent years. The present study was an in silico analysis of glutaminase to further elucidate its structure and physicochemical properties. METHODS Forty glutaminase protein sequences from different species of Escherichia and Bacillus obtained from the UniProt Protein Database were characterized for homology search, physiochemical properties, phylogenetic tree construction, motif, superfamily search, and multiple sequence alignment. RESULTS The sequence level homology was obtained among different groups of glutaminase enzymes, which belonged to superfamily serine-dependent β-lactamases and penicillin-binding proteins. The phylogenetic tree constructed indicated 2 main clusters for the glutaminases. The distribution of common β-lactamase motifs was also observed; however, various non-common motifs were also observed. CONCLUSION Our results showed that the existence of a conserved motif with a signature amino-acid sequence of β-lactamases could be considered for the genetic engineering of glutaminases in view of their potential application in cancer therapy. Nonetheless, further research is needed to improve the stability of glutaminases and decrease their immunogenicity in both medical and food industrial applications.
Collapse
Affiliation(s)
- Cambyz Irajie
- Department of Public Health and Food Hygiene, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Milad Mohkam
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Hosseinzadeh
- Department of Public Health and Food Hygiene, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mahmood Aminlari
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran,Correspondence: Younes Ghasemi, PhD, PharmD; Department of Pharmaceutical Biotechnology, School of Pharmacy, P.O. Box: 71468-64685, Shiraz, Iran Tel/Fax: +98 71 32426729
| |
Collapse
|
16
|
Avci FG, Altinisik FE, Vardar Ulu D, Ozkirimli Olmez E, Sariyar Akbulut B. An evolutionarily conserved allosteric site modulates beta-lactamase activity. J Enzyme Inhib Med Chem 2016; 31:33-40. [PMID: 27353461 DOI: 10.1080/14756366.2016.1201813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Declining efficiency of antibiotic-inhibitor combinatorial therapies in treating beta-lactamase mediated resistance necessitates novel inhibitor development. Allosteric inhibition offers an alternative to conventional drugs that target the conserved active site. Here, we show that the evolutionarily conserved PWP triad located at the N-terminus of the H10 helix directly interacts with the allosteric site in TEM-1 beta-lactamase and regulates its activity. While point mutations in the PWP triad preserve the overall secondary structures around the allosteric site, they result in a more open and dynamic global structure with decreased chemical stability and increased aggregation propensity. These mutant enzymes with a less compact hydrophobic core around the allosteric site displayed significant activity loss. Detailed sequence and structure conservation analyses revealed that the PWP triad is an evolutionarily conserved motif unique to class A beta-lactamases aligning its allosteric site and hence is an effective potential target for enzyme regulation and selective drug design.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- a Department of Bioengineering , Marmara University , İstanbul , Turkey
| | | | - Didem Vardar Ulu
- b Department of Chemistry , Boston University , Boston , MA , USA , and
| | | | | |
Collapse
|
17
|
Saino H, Sugiyabu T, Ueno G, Yamamoto M, Ishii Y, Miyano M. Crystal Structure of OXA-58 with the Substrate-Binding Cleft in a Closed State: Insights into the Mobility and Stability of the OXA-58 Structure. PLoS One 2015; 10:e0145869. [PMID: 26701320 PMCID: PMC4689445 DOI: 10.1371/journal.pone.0145869] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 12/09/2015] [Indexed: 11/18/2022] Open
Abstract
OXA-58 is a class D β-lactamase from the multi-drug resistant Acinetobacter baumannii. We determined the crystal structure of OXA-58 in a novel crystal, and revealed the structure of the substrate-binding cleft in a closed state, distinct from a previously reported OXA-58 crystal structure with the binding cleft in an open state. In the closed state, the movement of three loops (α3-α4, β6-β7, and β8-α10) forms an arch-like architecture over the binding cleft through interaction between the Phe113 residues of α3-α4 and Met225 of β6-β7. This structure suggests the involvement of these flexible loops in OXA-58 substrate binding. In contrast to the mobile loops, the Ω-loop appeared static, including the conserved loop residues and their hydrogen bonds; the pivotal residue Trp169 within the Ω-loop, ζ-carbamic acid of the modified base catalyst residue Lys86, and nucleophilic residue Ser83. The stability of OXA-58 was enhanced concomitant with an increase in the hydrolytic activity catalyzed by NaHCO3-dependent ζ-carbamic acid formation, with an EC50 of 0.34 mM. The W169A mutant enzyme was significantly thermally unstable even in the presence of 100 mM NaHCO3, whereas the S83A mutant was stabilized with NaHCO3-dependent activation. The ζ-carbamic acid was shown to increase not only OXA-58 hydrolytic activity but also OXA-58 stability through the formation of a hydrogen bond network connected to the Ω-loop with Ser83 and Trp169. Thus, the static Ω-loop is important for OXA-58 stability, whereas the mobile loops of the substrate-binding cleft form the basis for accommodation of the various substituents of β-lactam backbone.
Collapse
Affiliation(s)
- Hiromichi Saino
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
- * E-mail:
| | - Tomohiro Sugiyabu
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
| | - Go Ueno
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Masaki Yamamoto
- Advanced Photon Technology Division, RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Toho University, Ota-ku, Tokyo, Japan
| | - Masashi Miyano
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara-shi, Kanagawa, Japan
| |
Collapse
|
18
|
Vandavasi VG, Weiss KL, Cooper JB, Erskine PT, Tomanicek SJ, Ostermann A, Schrader TE, Ginell SL, Coates L. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography. J Med Chem 2015; 59:474-9. [PMID: 26630115 DOI: 10.1021/acs.jmedchem.5b01215] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic mechanism of class A β-lactamases is often debated due in part to the large number of amino acids that interact with bound β-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type β-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 β-lactamase with the antibiotic cefotaxime. The E166A mutant lacks a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzyme's native machinery.
Collapse
Affiliation(s)
- Venu Gopal Vandavasi
- Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Kevin L Weiss
- Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jonathan B Cooper
- Birkbeck University of London , Malet Street, London WC1E 7HX, United Kingdom
| | - Peter T Erskine
- Birkbeck University of London , Malet Street, London WC1E 7HX, United Kingdom
| | - Stephen J Tomanicek
- Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München , Lichtenbergstr. 1, 85748 Garching, Germany
| | - Tobias E Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH , Lichtenbergstr. 1, 85747 Garching, Germany
| | - Stephan L Ginell
- Structural Biology Center, Argonne National Laboratory , 9700 St. Cass Avenue, Argonne, Illinois 60439, United States
| | - Leighton Coates
- Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
19
|
Ghiglione B, Rodríguez MM, Herman R, Curto L, Dropa M, Bouillenne F, Kerff F, Galleni M, Charlier P, Gutkind G, Sauvage E, Power P. Structural and Kinetic Insights into the "Ceftazidimase" Behavior of the Extended-Spectrum β-Lactamase CTX-M-96. Biochemistry 2015; 54:5072-82. [PMID: 26228623 DOI: 10.1021/acs.biochem.5b00313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Diversification of the CTX-M β-lactamases led to the emergence of variants responsible for decreased susceptibility to ceftazidime, like the Asp240Gly-harboring "ceftazidimases". We solved the crystallographic structure of the Asp240Gly variant CTX-M-96 at 1.2 Å and evaluated the role of Asp240 in the activity toward oxyimino-cephalosporins through simulated models and kinetics. There seem to be subtle changes in the conformation of the active site cavity of CTX-M-96, compared to enzyme variants harboring the Asp240, and these small rearrangements could be due to localized shifts in the environment of the β3 strand. According to the crystallographic evidence, CTX-M-96 presents a "compact" active site, which in spite of its reduced cavity seems to allow the proper interaction with oxyimino-cephalosporins, as suggested by simulated models. The term "ceftazidimases" that is currently applied for the Asp240Gly-harboring CTX-M variants should be used carefully. Structural differences between CTX-M harboring the Asp240Gly mutation (and also probably others like those at Pro167) do not seem to be conclusive to determine the "ceftazidimase" behavior observed in vivo, which is in turn partially supported by the mild improvement in the catalytic efficiency toward ceftazidime by CTX-M-96 and similar enzymes, compared to "parental" Asp240-harboring variants. In addition, it is observed that alterations in OmpF expression could act synergistically with CTX-M-96 for yielding clinical resistance toward ceftazidime. We therefore propose that the observed resistance in vivo is due to the sum of synergic mechanisms, and the term "cefotaximases associated with ceftazidime resistance" could be conveniently used to describe CTX-M harboring the Asp240Gly substitution.
Collapse
Affiliation(s)
| | | | - Raphaël Herman
- ‡Centre d'Ingéniérie des Protéines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | | | - Milena Dropa
- ∥Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Fabrice Bouillenne
- ‡Centre d'Ingéniérie des Protéines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Frédéric Kerff
- ‡Centre d'Ingéniérie des Protéines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Moreno Galleni
- ‡Centre d'Ingéniérie des Protéines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Paulette Charlier
- ‡Centre d'Ingéniérie des Protéines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | | | - Eric Sauvage
- ‡Centre d'Ingéniérie des Protéines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | | |
Collapse
|
20
|
Hecker SJ, Reddy KR, Totrov M, Hirst GC, Lomovskaya O, Griffith DC, King P, Tsivkovski R, Sun D, Sabet M, Tarazi Z, Clifton MC, Atkins K, Raymond A, Potts KT, Abendroth J, Boyer SH, Loutit JS, Morgan EE, Durso S, Dudley MN. Discovery of a Cyclic Boronic Acid β-Lactamase Inhibitor (RPX7009) with Utility vs Class A Serine Carbapenemases. J Med Chem 2015; 58:3682-92. [PMID: 25782055 DOI: 10.1021/acs.jmedchem.5b00127] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The increasing dissemination of carbapenemases in Gram-negative bacteria has threatened the clinical usefulness of the β-lactam class of antimicrobials. A program was initiated to discover a new series of serine β-lactamase inhibitors containing a boronic acid pharmacophore, with the goal of finding a potent inhibitor of serine carbapenemase enzymes that are currently compromising the utility of the carbapenem class of antibacterials. Potential lead structures were screened in silico by modeling into the active sites of key serine β-lactamases. Promising candidate molecules were synthesized and evaluated in biochemical and whole-cell assays. Inhibitors were identified with potent inhibition of serine carbapenemases, particularly the Klebsiella pneumoniae carbapenemase (KPC), with no inhibition of mammalian serine proteases. Studies in vitro and in vivo show that RPX7009 (9f) is a broad-spectrum inhibitor, notably restoring the activity of carbapenems against KPC-producing strains. Combined with a carbapenem, 9f is a promising product for the treatment of multidrug resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Scott J Hecker
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - K Raja Reddy
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Maxim Totrov
- ‡Molsoft L.L.C., 11199 Sorrento Valley Road, San Diego, California 92121, United States
| | - Gavin C Hirst
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Olga Lomovskaya
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - David C Griffith
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Paula King
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Ruslan Tsivkovski
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Dongxu Sun
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Mojgan Sabet
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Ziad Tarazi
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Matthew C Clifton
- §Beryllium, 3 Preston Court, Bedford, Massachusetts 01730, United States
| | - Kateri Atkins
- §Beryllium, 3 Preston Court, Bedford, Massachusetts 01730, United States
| | - Amy Raymond
- §Beryllium, 3 Preston Court, Bedford, Massachusetts 01730, United States
| | - Kristy T Potts
- §Beryllium, 3 Preston Court, Bedford, Massachusetts 01730, United States
| | - Jan Abendroth
- §Beryllium, 3 Preston Court, Bedford, Massachusetts 01730, United States
| | - Serge H Boyer
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Jeffrey S Loutit
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Elizabeth E Morgan
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Stephanie Durso
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| | - Michael N Dudley
- †Rempex Pharmaceuticals, Inc., A Subsidiary of The Medicines Company, 3033 Science Park Rd., Suite 200, San Diego, California 92121, United States
| |
Collapse
|
21
|
Horiyama T, Kanazawa S, Hara T, Izawa M, Sato T, Yamaguchi T, Tsuji M, Maki H. Comparison of the risk of acquiring in vitro resistance to doripenem and tazobactam/piperacillin by CTX-M-15-producing Escherichia coli. J Infect Chemother 2015; 21:381-4. [PMID: 25662788 DOI: 10.1016/j.jiac.2015.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
To compare the risk of acquiring in vitro resistance between doripenem and tazobactam/piperacillin by CTX-M-15-producing Escherichia coli, the in vitro frequency of resistance was determined. Four strains carrying multiple β-lactamases such as blaOXA-1 or blaCTX-M-27 as well as blaCTX-M-15 and blaTEM-1 were used. No resistant colonies appeared on doripenem-containing plates, whereas resistant colonies were obtained from three of four test strains against tazobactam/piperacillin using agar plate containing 8- to 16-fold MIC of each drug. These three acquired tazobactam/piperacillin-resistant strains were not cross-resistant to doripenem, and they showed 1.9- to 3.1-fold higher piperacillin-hydrolysis activity compared to those of each parent strain. The change of each β-lactamase mRNA expression measured by real-time PCR varied among three resistant strains. One of three tazobactam/piperacillin-resistant strains with less susceptibility to ceftazidime overexpressed both blaCTX-M-15 and blaTEM-1, and the other two strains showed higher mRNA expression of either blaTEM-1 or blaOXA-1. These results demonstrate that multiple β-lactamases carried by CTX-M-15-producing E. coli contributed to the resistance to tazobactam/piperacillin. On the other hand, these resistant strains maintained susceptibility to doripenem. The risk of acquiring in vitro resistance to doripenem by CTX-M-15-producing E. coli seems to be lower than that to tazobactam/piperacillin.
Collapse
Affiliation(s)
- Tsukasa Horiyama
- Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan.
| | - Sachi Kanazawa
- Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Takafumi Hara
- Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Masaaki Izawa
- Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Takafumi Sato
- Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Takahiro Yamaguchi
- Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Masakatsu Tsuji
- Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| | - Hideki Maki
- Discovery Research Laboratory for Core Therapeutic Areas, Shionogi & Co., Ltd., Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
22
|
Adamski C, Cardenas AM, Brown NG, Horton LB, Sankaran B, Prasad BVV, Gilbert H, Palzkill T. Molecular basis for the catalytic specificity of the CTX-M extended-spectrum β-lactamases. Biochemistry 2015; 54:447-57. [PMID: 25489790 PMCID: PMC4303298 DOI: 10.1021/bi501195g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/23/2014] [Indexed: 11/29/2022]
Abstract
Extended-spectrum β-lactamases (ESBLs) pose a threat to public health because of their ability to confer resistance to extended-spectrum cephalosporins such as cefotaxime. The CTX-M β-lactamases are the most widespread ESBL enzymes among antibiotic resistant bacteria. Many of the active site residues are conserved between the CTX-M family and non-ESBL β-lactamases such as TEM-1, but the residues Ser237 and Arg276 are specific to the CTX-M family, suggesting that they may help to define the increased specificity for cefotaxime hydrolysis. To test this hypothesis, site-directed mutagenesis of these positions was performed in the CTX-M-14 β-lactamase. Substitutions of Ser237 and Arg276 with their TEM-1 counterparts, Ala237 and Asn276, had a modest effect on cefotaxime hydrolysis, as did removal of the Arg276 side chain in an R276A mutant. The S237A:R276N and S237A:R276A double mutants, however, exhibited 29- and 14-fold losses in catalytic efficiency for cefotaxime hydrolysis, respectively, while the catalytic efficiency for benzylpenicillin hydrolysis was unchanged. Therefore, together, the Ser237 and Arg276 residues are important contributors to the cefotaximase substrate profile of the enzyme. High-resolution crystal structures of the CTX-M-14 S70G, S70G:S237A, and S70G:S237A:R276A variants alone and in complex with cefotaxime show that residues Ser237 and Arg276 in the wild-type enzyme promote the expansion of the active site to accommodate cefotaxime and favor a conformation of cefotaxime that allows optimal contacts between the enzyme and substrate. The conservation of these residues, linked to their effects on structure and catalysis, imply that their coevolution is an important specificity determinant in the CTX-M family.
Collapse
Affiliation(s)
- Carolyn
J. Adamski
- Verna and Marrs McLean
Department of Biochemistry and Molecular Biology, Department of Molecular
Virology and Microbiology, Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United
States
| | - Ana Maria Cardenas
- Verna and Marrs McLean
Department of Biochemistry and Molecular Biology, Department of Molecular
Virology and Microbiology, Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United
States
| | - Nicholas G. Brown
- Verna and Marrs McLean
Department of Biochemistry and Molecular Biology, Department of Molecular
Virology and Microbiology, Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United
States
| | - Lori B. Horton
- Verna and Marrs McLean
Department of Biochemistry and Molecular Biology, Department of Molecular
Virology and Microbiology, Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United
States
| | - Banumathi Sankaran
- Berkeley
Center for Structural Biology, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - B. V. Venkataram Prasad
- Verna and Marrs McLean
Department of Biochemistry and Molecular Biology, Department of Molecular
Virology and Microbiology, Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United
States
| | - Hiram
F. Gilbert
- Verna and Marrs McLean
Department of Biochemistry and Molecular Biology, Department of Molecular
Virology and Microbiology, Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United
States
| | - Timothy Palzkill
- Verna and Marrs McLean
Department of Biochemistry and Molecular Biology, Department of Molecular
Virology and Microbiology, Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United
States
| |
Collapse
|
23
|
Molecular and biochemical characterization of CTX-M-131, a natural Asp240Gly variant derived from CTX-M-2, produced by a Providencia rettgeri clinical strain in São Paulo, Brazil. Antimicrob Agents Chemother 2015; 59:1815-7. [PMID: 25583719 DOI: 10.1128/aac.04116-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTX-M-131 is a natural Asp240Gly variant from the CTX-M-2 group detected in a Providencia rettgeri clinical strain from Brazil. Molecular analysis showed that blaCTX-M-131 was inserted in a complex class 1 integron harbored by a 112-kb plasmid, which has not been previously described as a platform for CTX-M-encoding genes with the Asp240Gly mutation. Steady-state kinetic parameters showed that the enzyme has a typical cefotaximase catalytic profile and an enhanced activity against ceftazidime.
Collapse
|
24
|
Kumar KM, Lavanya P, Anbarasu A, Ramaiah S. Molecular dynamics and molecular docking studies on E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant forms of class A β-lactamases. J Biomol Struct Dyn 2014; 32:1953-68. [PMID: 24261683 DOI: 10.1080/07391102.2013.847804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacterial resistance to β-lactams antibiotics is a serious threat to human health. The most common cause of resistance to the β-lactams is the production of β-lactamase that inactivates β-lactams. Specifically, class A extended-spectrum β-lactamase produced by antibiotic resistant bacteria is capable of hydrolyzing extended-spectrum Cephalosporins and Monobactams. Mutations in class A β-lactamases play a crucial role in substrate and inhibitor specificity. In this present study, the E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant class A β-lactamases are analyzed. Molecular dynamics (MD) simulations are done to understand the consequences of mutations in class A β-lactamases. Root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessibility surface area, hydrogen bond, and essential dynamics analysis results indicate notable loss in stability for mutant class A β-lactamases. MD simulations of native and mutant structures clearly confirm that the substitution of alanine at the position of 166, Asparagine at 274 and 276 causes more flexibility in 3D space. Molecular docking results indicate the mutation in class A β-lactamases which decrease the binding affinity of Cefpirome and Ceftobiprole which are third and fifth generation Cephalosporins, respectively. MD simulation of Ceftobiprole-native and mutant type Class A β-lactamases complexes reveal that E166A/R274N/R276N mutations alter the structure and notable loss in the stability for Ceftobirole-mutant type Class A β-lactamases complexes. Ceftobiprole is currently prescribed for patients with serious bacterial infections; this phenomenon is the probable cause for the effectiveness of Ceftobiprole in controlling bacterial infections.
Collapse
Affiliation(s)
- K M Kumar
- a School of Biosciences and Technology, VIT University , Vellore 632014 , Tamil Nadu , India
| | | | | | | |
Collapse
|
25
|
Crystal structure of the extended-spectrum β-lactamase PER-2 and insights into the role of specific residues in the interaction with β-lactams and β-lactamase inhibitors. Antimicrob Agents Chemother 2014; 58:5994-6002. [PMID: 25070104 DOI: 10.1128/aac.00089-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PER-2 belongs to a small (7 members to date) group of extended-spectrum β-lactamases. It has 88% amino acid identity with PER-1 and both display high catalytic efficiencies toward most β-lactams. In this study, we determined the X-ray structure of PER-2 at 2.20 Å and evaluated the possible role of several residues in the structure and activity toward β-lactams and mechanism-based inhibitors. PER-2 is defined by the presence of a singular trans bond between residues 166 to 167, which generates an inverted Ω loop, an expanded fold of this domain that results in a wide active site cavity that allows for efficient hydrolysis of antibiotics like the oxyimino-cephalosporins, and a series of exclusive interactions between residues not frequently involved in the stabilization of the active site in other class A β-lactamases. PER β-lactamases might be included within a cluster of evolutionarily related enzymes harboring the conserved residues Asp136 and Asn179. Other signature residues that define these enzymes seem to be Gln69, Arg220, Thr237, and probably Arg/Lys240A ("A" indicates an insertion according to Ambler's scheme for residue numbering in PER β-lactamases), with structurally important roles in the stabilization of the active site and proper orientation of catalytic water molecules, among others. We propose, supported by simulated models of PER-2 in combination with different β-lactams, the presence of a hydrogen-bond network connecting Ser70-Gln69-water-Thr237-Arg220 that might be important for the proper activity and inhibition of the enzyme. Therefore, we expect that mutations occurring in these positions will have impacts on the overall hydrolytic behavior.
Collapse
|
26
|
Abstract
Production of extended-spectrum β-lactamases (ESBLs) is the principal mechanism of resistance to oxyimino-cephalosporins evolved by members of the family Enterobacteriaceae. Among the several ESBLs emerged among clinical pathogens, the CTX-M-type enzymes have proved the most successful in terms of promiscuity and diffusion in different epidemiological settings, where they have largely replaced and outnumbered other types of ESBLs. Originated by the capture and mobilization of chromosomal β-lactamase genes of strains of Kluyvera species, the blaCTX-M genes have become associated with a variety of mobile genetic elements that have mediated rapid and efficient inter-replicon and cell-to-cell dissemination involving highly successful enterobacterial lineages (e.g. Escherichia coli ST131 and ST405, or Klebsiella pneumoniae CC11 and ST147) to yield high-risk multiresistant clones that have spread on a global scale. The CTX-Mβ-lactamase lineage exhibits a striking plasticity, with a large number of allelic variants belonging in several sublineages, which can be associated with functional heterogeneity of clinical relevance. This review article provides an update on CTX-M-type ESBLs, with focus on structural and functional diversity, epidemiology and clinical significance.
Collapse
|
27
|
Tomanicek SJ, Standaert RF, Weiss KL, Ostermann A, Schrader TE, Ng JD, Coates L. Neutron and X-ray crystal structures of a perdeuterated enzyme inhibitor complex reveal the catalytic proton network of the Toho-1 β-lactamase for the acylation reaction. J Biol Chem 2012; 288:4715-22. [PMID: 23255594 DOI: 10.1074/jbc.m112.436238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with (11)B, as (10)B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.
Collapse
|
28
|
Chakraborty S, Ásgeirsson B, Rao BJ. A measure of the broad substrate specificity of enzymes based on 'duplicate' catalytic residues. PLoS One 2012; 7:e49313. [PMID: 23166637 PMCID: PMC3500292 DOI: 10.1371/journal.pone.0049313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
The ability of an enzyme to select and act upon a specific class of compounds with unerring precision and efficiency is an essential feature of life. Simultaneously, these enzymes often catalyze the reaction of a range of similar substrates of the same class, and also have promiscuous activities on unrelated substrates. Previously, we have established a methodology to quantify promiscuous activities in a wide range of proteins. In the current work, we quantitatively characterize the active site for the ability to catalyze distinct, yet related, substrates (BRASS). A protein with known structure and active site residues provides the framework for computing ‘duplicate’ residues, each of which results in slightly modified replicas of the active site scaffold. Such spatial congruence is supplemented by Finite difference Poisson Boltzmann analysis which filters out electrostatically unfavorable configurations. The congruent configurations are used to compute an index (BrassIndex), which reflects the broad substrate profile of the active site. We identify an acetylhydrolase and a methyltransferase as having the lowest and highest BrassIndex, respectively, from a set of non-homologous proteins extracted from the Catalytic Site Atlas. The acetylhydrolase, a regulatory enzyme, is known to be highly specific for platelet-activating factor. In the methyltransferase (PDB: 1QAM), various combinations of glycine (Gly38/40/42), asparagine (Asn101/11) and glutamic acid (Glu59/36) residues having similar spatial and electrostatic profiles with the specified scaffold (Gly38, Asn101 and Glu59) exemplifies the broad substrate profile such an active site may provide. ‘Duplicate’ residues identified by relaxing the spatial and/or electrostatic constraints can be the target of directed evolution methodologies, like saturation mutagenesis, for modulating the substrate specificity of proteins.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | | | | |
Collapse
|
29
|
Liang YH, Gao R, Su XD. Structural insights into the broadened substrate profile of the extended-spectrum β-lactamase OXY-1-1 fromKlebsiella oxytoca. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1460-7. [DOI: 10.1107/s090744491203466x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/03/2012] [Indexed: 11/10/2022]
Abstract
Klebsiella oxytocais a pathogen that causes serious infections in hospital patients. It shows resistance to many clinically used β-lactam antibiotics by producing chromosomally encoded OXY-family β-lactamases. Here, the crystal structure of an OXY-family β-lactamase, OXY-1-1, determined at 1.93 Å resolution is reported. The structure shows that the OXY-1-1 β-lactamase has a typical class A β-lactamase fold and exhibits greater similarity to CTX-M-type β-lactamases than to TEM-family or SHV-family β-lactamases. It is also shown that the enzyme provides more space around the active cavity for theR1andR2substituents of β-lactam antibiotics. The half-positive/half-negative distribution of surface electrostatic potential in the substrate-binding pocket indicates the preferred properties of substrates or inhibitors of the enzyme. The results reported here provide a structural basis for the broadened substrate profile of the OXY-family β-lactamases.
Collapse
|
30
|
Chakraborty S. Enumerating pathways of proton abstraction based on a spatial and electrostatic analysis of residues in the catalytic site. PLoS One 2012; 7:e39577. [PMID: 22745790 PMCID: PMC3379984 DOI: 10.1371/journal.pone.0039577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/28/2012] [Indexed: 11/19/2022] Open
Abstract
The pathways of proton abstraction (PA), a key aspect of most catalytic reactions, is often controversial and highly debated. Ultrahigh-resolution diffraction studies, molecular dynamics, quantum mechanics and molecular mechanic simulations are often adopted to gain insights in the PA mechanisms in enzymes. These methods require expertise and effort to setup and can be computationally intensive. We present a push button methodology--Proton abstraction Simulation (PRISM)--to enumerate the possible pathways of PA in a protein with known 3D structure based on the spatial and electrostatic properties of residues in the proximity of a given nucleophilic residue. Proton movements are evaluated in the vicinity of this nucleophilic residue based on distances, potential differences, spatial channels and characteristics of the individual residues (polarity, acidic, basic, etc). Modulating these parameters eliminates their empirical nature and also might reveal pathways that originate from conformational changes. We have validated our method using serine proteases and concurred with the dichotomy in PA in Class A β-lactamases, both of which are hydrolases. The PA mechanism in a transferase has also been corroborated. The source code is made available at www.sanchak.com/prism.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
31
|
Nichols DA, Jaishankar P, Larson W, Smith E, Liu G, Beyrouthy R, Bonnet R, Renslo AR, Chen Y. Structure-based design of potent and ligand-efficient inhibitors of CTX-M class A β-lactamase. J Med Chem 2012; 55:2163-72. [PMID: 22296601 DOI: 10.1021/jm2014138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emergence of CTX-M class A extended-spectrum β-lactamases poses a serious health threat to the public. We have applied structure-based design to improve the potency of a novel noncovalent tetrazole-containing CTX-M inhibitor (K(i) = 21 μM) more than 200-fold via structural modifications targeting two binding hot spots, a hydrophobic shelf formed by Pro167 and a polar site anchored by Asp240. Functional groups contacting each binding hot spot independently in initial designs were later combined to produce analogues with submicromolar potencies, including 6-trifluoromethyl-3H-benzoimidazole-4-carboxylic acid [3-(1H-tetrazol-5-yl)-phenyl]-amide, which had a K(i) value of 89 nM and reduced the MIC of cefotaxime by 64-fold in CTX-M-9 expressing Escherichia coli . The in vitro potency gains were accompanied by improvements in ligand efficiency (from 0.30 to 0.39) and LipE (from 1.37 to 3.86). These new analogues represent the first nM-affinity noncovalent inhibitors of a class A β-lactamase. Their complex crystal structures provide valuable information about ligand binding for future inhibitor design.
Collapse
Affiliation(s)
- Derek A Nichols
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Boulevard, MDC 3522, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Noncovalent complexes of an inactive mutant of CTX-M-9 with the substrate piperacillin and the corresponding product. Antimicrob Agents Chemother 2011; 55:5660-5. [PMID: 21930882 DOI: 10.1128/aac.00245-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the crystal structure of an inactive Ser70Gly mutant of CTX-M-9 in complex with the bulky penicillin piperacillin at precovalent and posthydrolytic stages in the catalytic process. The structures obtained at high resolution were compared with the corresponding structures for the small penicillin benzylpenicillin and the bulky cephalosporin cefotaxime. The findings highlight the key role of the configuration of the carbon adjacent to the acylamino group of the side chain of β-lactams in the precovalent recognition of substrates.
Collapse
|
33
|
Distant and new mutations in CTX-M-1 beta-lactamase affect cefotaxime hydrolysis. Antimicrob Agents Chemother 2011; 55:4361-8. [PMID: 21730121 DOI: 10.1128/aac.00298-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CTX-M β-lactamases are an increasingly prevalent group of extended-spectrum β-lactamases (ESBL). Point mutations in CTX-M β-lactamases are considered critical for enhanced hydrolysis of cefotaxime. In order to clarify the structural determinants of the activity against cefotaxime in CTX-M β-lactamases, screening for random mutations was carried out to search for decreased activity against cefotaxime, with the CTX-M-1 gene as a model. Thirteen single mutants with a considerable reduction in cefotaxime MICs were selected for biochemical and stability studies. The 13 mutated genes of the CTX-M-1 β-lactamase were expressed, and the proteins were purified for kinetic studies against cephalothin and cefotaxime (as the main antibiotics). Some of the positions, such as Val103Asp, Asn104Asp, Asn106Lys, and Pro107Ser, are located in the (103)VNYN(106) loop, which had been described as important in cefotaxime hydrolysis, although this has not been experimentally confirmed. There are four mutations located close to catalytic residues-Thr71Ile, Met135Ile, Arg164His, and Asn244Asp-that may affect the positioning of these residues. We show here that some distant mutations, such as Ala219Val, are critical for cefotaxime hydrolysis and highlight the role of this loop at the top of the active site. Other distant substitutions, such as Val80Ala, Arg191, Ala247Ser, and Val260Leu, are in hydrophobic cores and may affect the dynamics and flexibility of the enzyme. We describe here, in conclusion, new residues involved in cefotaxime hydrolysis in CTX-M β-lactamases, five of which are in positions distant from the catalytic center.
Collapse
|
34
|
Natural and synthetic small boron-containing molecules as potential inhibitors of bacterial and fungal quorum sensing. Chem Rev 2010; 111:209-37. [PMID: 21171664 DOI: 10.1021/cr100093b] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Tomanicek SJ, Wang KK, Weiss KL, Blakeley MP, Cooper J, Chen Y, Coates L. The active site protonation states of perdeuterated Toho-1 β-lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation. FEBS Lett 2010; 585:364-8. [PMID: 21168411 DOI: 10.1016/j.febslet.2010.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/11/2010] [Accepted: 12/13/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Stephen J Tomanicek
- Oak Ridge National Laboratory, Neutron Scattering Science Division, Oak Ridge, TN 37831, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Bebrone C, Lassaux P, Vercheval L, Sohier JS, Jehaes A, Sauvage E, Galleni M. Current challenges in antimicrobial chemotherapy: focus on ß-lactamase inhibition. Drugs 2010; 70:651-79. [PMID: 20394454 DOI: 10.2165/11318430-000000000-00000] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The use of the three classical beta-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam) in combination with beta-lactam antibacterials is currently the most successful strategy to combat beta-lactamase-mediated resistance. However, these inhibitors are efficient in inactivating only class A beta-lactamases and the efficiency of the inhibitor/antibacterial combination can be compromised by several mechanisms, such as the production of naturally resistant class B or class D enzymes, the hyperproduction of AmpC or even the production of evolved inhibitor-resistant class A enzymes. Thus, there is an urgent need for the development of novel inhibitors. For serine active enzymes (classes A, C and D), derivatives of the beta-lactam ring such as 6-beta-halogenopenicillanates, beta-lactam sulfones, penems and oxapenems, monobactams or trinems seem to be potential starting points to design efficient molecules (such as AM-112 and LK-157). Moreover, a promising non-beta-lactam molecule, NXL-104, is now under clinical development. In contrast, an ideal inhibitor of metallo-beta-lactamases (class B) remains to be found, despite the huge number of potential molecules already described (biphenyl tetrazoles, cysteinyl peptides, mercaptocarboxylates, succinic acid derivatives, etc.). The search for such an inhibitor is complicated by the absence of a covalent intermediate in their catalytic mechanisms and the fact that beta-lactam derivatives often behave as substrates rather than as inhibitors. Currently, the most promising broad-spectrum inhibitors of class B enzymes are molecules presenting chelating groups (thiols, carboxylates, etc.) combined with an aromatic group. This review describes all the types of molecules already tested as potential beta-lactamase inhibitors and thus constitutes an update of the current status in beta-lactamase inhibitor discovery.
Collapse
Affiliation(s)
- Carine Bebrone
- Biological Macromolecules, Centre for Protein Engineering, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
37
|
Roles of residues Cys69, Asn104, Phe160, Gly232, Ser237, and Asp240 in extended-spectrum beta-lactamase Toho-1. Antimicrob Agents Chemother 2010; 55:284-90. [PMID: 21078949 DOI: 10.1128/aac.00098-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Toho-1, which is also designated CTX-M-44, is an extended-spectrum class A β-lactamase that has high activity toward cefotaxime. In this study, we investigated the roles of residues suggested to be critical for the substrate specificity expansion of Toho-1 in previous structural analyses. Six amino acid residues were replaced one by one with amino acids that are often observed in the corresponding position of non-extended-spectrum β-lactamases. The mutants produced in Escherichia coli strains were analyzed both for their kinetic properties and their effect on drug susceptibilities. The results indicate that the substitutions of Asn104 and Ser237 have certain effects on expansion of substrate specificity, while those of Cys69 and Phe160 have less effect, and that of Asp240 has no effect on the hydrolysis of any substrates tested. Gly232, which had been assumed to increase the flexibility of the substrate binding site, was revealed not to be critical for the expansion of substrate specificity of this enzyme, although this substitution resulted in deleterious effects on expression and stability of the enzyme.
Collapse
|
38
|
Delmas J, Leyssene D, Dubois D, Birck C, Vazeille E, Robin F, Bonnet R. Structural insights into substrate recognition and product expulsion in CTX-M enzymes. J Mol Biol 2010; 400:108-20. [PMID: 20452359 DOI: 10.1016/j.jmb.2010.04.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 11/25/2022]
Abstract
beta-Lactamase-mediated resistance to beta-lactam antibiotics poses a major threat to our antibiotic armamentarium. Among beta-lactamases, a significant threat comes from enzymes that hydrolyze extended-spectrum cephalosporins such as cefotaxime. Among the enzymes that exhibit this phenotype, the CTX-M family is found worldwide. These enzymes have a small active site, which makes it difficult to explain how they hydrolyze the bulky extended-spectrum cephalosporins into the binding site. We investigated noncovalent substrate recognition and product release in CTX-M enzymes using steered molecular dynamics simulation and X-ray diffraction. An arginine residue located far from the binding site favors the capture and tracking of substrates during entrance into the catalytic pocket. We show that the accommodation of extended-spectrum cephalosporins by CTX-M enzymes induced subtle changes in the active site and established a high density of electrostatic interactions. Interestingly, the product of the catalytic reaction initiates its own release because of steric hindrances and electrostatic repulsions. This suggests that there exists a general mechanism for product release for all members of the beta-lactamase family and probably for most carboxypeptidases.
Collapse
Affiliation(s)
- Julien Delmas
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Clermont-Ferrand F-63003, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Substrate selectivity and a novel role in inhibitor discrimination by residue 237 in the KPC-2 beta-lactamase. Antimicrob Agents Chemother 2010; 54:2867-77. [PMID: 20421396 DOI: 10.1128/aac.00197-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Beta-lactamase-mediated antibiotic resistance continues to challenge the contemporary treatment of serious bacterial infections. The KPC-2 beta-lactamase, a rapidly emerging gram-negative resistance determinant, hydrolyzes all commercially available beta-lactams, including carbapenems and beta-lactamase inhibitors; the amino acid sequence requirements responsible for this versatility are not yet known. To explore the bases of beta-lactamase activity, we conducted site saturation mutagenesis at Ambler position 237. Only the T237S variant of the KPC-2 beta-lactamase expressed in Escherichia coli DH10B maintained MICs equivalent to those of the wild type (WT) against all of the beta-lactams tested, including carbapenems. In contrast, the T237A variant produced in E. coli DH10B exhibited elevated MICs for only ampicillin, piperacillin, and the beta-lactam-beta-lactamase inhibitor combinations. Residue 237 also plays a novel role in inhibitor discrimination, as 11 of 19 variants exhibit a clavulanate-resistant, sulfone-susceptible phenotype. We further showed that the T237S variant displayed substrate kinetics similar to those of the WT KPC-2 enzyme. Consistent with susceptibility testing, the T237A variant demonstrated a lower k(cat)/K(m) for imipenem, cephalothin, and cefotaxime; interestingly, the most dramatic reduction was with cefotaxime. The decreases in catalytic efficiency were driven by both elevated K(m) values and decreased k(cat) values compared to those of the WT enzyme. Moreover, the T237A variant manifested increased K(i)s for clavulanic acid, sulbactam, and tazobactam, while the T237S variant displayed K(i)s similar to those of the WT. To explain these findings, a molecular model of T237A was constructed and this model suggested that (i) the hydroxyl side chain of T237 plays an important role in defining the substrate profile of the KPC-2 beta-lactamase and (ii) hydrogen bonding between the hydroxyl side chain of T237 and the sp(2)-hybridized carboxylate of imipenem may not readily occur in the T237A variant. This stringent requirement for selected cephalosporinase and carbapenemase activity and the important role of T237 in inhibitor discrimination in KPC-2 are central considerations in the future design of beta-lactam antibiotics and inhibitors.
Collapse
|
40
|
The catalytic efficiency (kcat/Km) of the class A β-lactamase Toho-1 correlates with the thermal stability of its catalytic intermediate analog. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:684-91. [DOI: 10.1016/j.bbapap.2009.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/20/2009] [Accepted: 10/26/2009] [Indexed: 11/20/2022]
|
41
|
Abstract
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Robert A. Bonomo
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
42
|
Neutron diffraction studies of a class A beta-lactamase Toho-1 E166A/R274N/R276N triple mutant. J Mol Biol 2009; 396:1070-80. [PMID: 20036259 DOI: 10.1016/j.jmb.2009.12.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/22/2022]
Abstract
beta-Lactam antibiotics have been used effectively over several decades against many types of bacterial infectious diseases. However, the most common cause of resistance to the beta-lactam antibiotics is the production of beta-lactamase enzymes that inactivate beta-lactams by rapidly hydrolyzing the amide group of the beta-lactam ring. Specifically, the class A extended-spectrum beta-lactamases (ESBLs) and inhibitor-resistant enzymes arose that were capable of hydrolyzing penicillins and the expanded-spectrum cephalosporins and monobactams in resistant bacteria, which lead to treatment problems in many clinical settings. A more complete understanding of the mechanism of catalysis of these ESBL enzymes will impact current antibiotic drug discovery efforts. Here, we describe the neutron structure of the class A, CTX-M-type ESBL Toho-1 E166A/R274N/R276N triple mutant in its apo form, which is the first reported neutron structure of a beta-lactamase enzyme. This neutron structure clearly reveals the active-site protonation states and hydrogen-bonding network of the apo Toho-1 ESBL prior to substrate binding and subsequent acylation. The protonation states of the active-site residues Ser70, Lys73, Ser130, and Lys234 in this neutron structure are consistent with the prediction of a proton transfer pathway from Lys73 to Ser130 that is likely dependent on the conformation of Lys73, which has been hypothesized to be coupled to the protonation state of Glu166 during the acylation reaction. Thus, this neutron structure is in agreement with a proposed mechanism for acylation that identifies Glu166 as the general base for catalysis.
Collapse
|
43
|
Shimamura T, Nitanai Y, Uchiyama T, Matsuzawa H. Improvement of crystal quality by surface mutations of beta-lactamase Toho-1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:379-82. [PMID: 19342785 PMCID: PMC2664765 DOI: 10.1107/s1744309109008240] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 03/06/2009] [Indexed: 11/10/2022]
Abstract
The beta-lactamase Toho-1 exhibits a strong tendency to form merohedrally twinned crystals. Here, the crystal quality of Toho-1 was improved by using surface modification to remove a sulfate ion involved in crystal packing. The surface-modified Toho-1 variant (R274N/R276N) was crystallized under similar conditions to those used for wild-type Toho-1. R274N/R276N did not form merohedrally twinned crystals. The crystals diffracted to a significantly higher resolution (approximately 0.97 A) than the wild-type crystals (1.65 A); they belonged to the same space group and had almost identical unit-cell parameters to those of wild-type Toho-1.
Collapse
Affiliation(s)
- Tatsuro Shimamura
- RIKEN SPring-8 Center, Harima Institute, Kouto, Sayo, Hyogo 679-5148, Japan.
| | | | | | | |
Collapse
|
44
|
Chen Y, Shoichet BK. Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat Chem Biol 2009; 5:358-64. [PMID: 19305397 DOI: 10.1038/nchembio.155] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/13/2009] [Indexed: 12/18/2022]
Abstract
Fragment screens have successfully identified new scaffolds in drug discovery, often with relatively high hit rates (5%) using small screening libraries (1,000-10,000 compounds). This raises two questions: would other noteworthy chemotypes be found were one to screen all commercially available fragments (>300,000), and does the success rate imply low specificity of fragments? We used molecular docking to screen large libraries of fragments against CTX-M beta-lactamase. We identified ten millimolar-range inhibitors from the 69 compounds tested. The docking poses corresponded closely to the crystallographic structures subsequently determined. Notably, these initial low-affinity hits showed little specificity between CTX-M and an unrelated beta-lactamase, AmpC, which is unusual among beta-lactamase inhibitors. This is consistent with the idea that the high hit rates among fragments correlate to a low initial specificity. As the inhibitors were progressed, both specificity and affinity rose together, yielding to our knowledge the first micromolar-range noncovalent inhibitors against a class A beta-lactamase.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | | |
Collapse
|
45
|
Urbach C, Evrard C, Pudzaitis V, Fastrez J, Soumillion P, Declercq JP. Structure of PBP-A from Thermosynechococcus elongatus, a Penicillin-Binding Protein Closely Related to Class A β-Lactamases. J Mol Biol 2009; 386:109-20. [PMID: 19100272 DOI: 10.1016/j.jmb.2008.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 12/01/2008] [Accepted: 12/02/2008] [Indexed: 10/21/2022]
|
46
|
Marciano DC, Pennington JM, Wang X, Wang J, Chen Y, Thomas VL, Shoichet BK, Palzkill T. Genetic and structural characterization of an L201P global suppressor substitution in TEM-1 beta-lactamase. J Mol Biol 2008; 384:151-64. [PMID: 18822298 PMCID: PMC2644635 DOI: 10.1016/j.jmb.2008.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 09/08/2008] [Indexed: 01/07/2023]
Abstract
TEM-1 beta-lactamase confers bacterial resistance to penicillin antibiotics and has acquired mutations that permit the enzyme to hydrolyze extended-spectrum cephalosporins or to avoid inactivation by beta-lactamase inhibitors. However, many of these substitutions have been shown to reduce activity against penicillin antibiotics and/or result in loss of stability for the enzyme. In order to gain more information concerning the tradeoffs associated with active site substitutions, a genetic selection was used to find second site mutations that partially restore ampicillin resistance levels conferred by an R244A active site TEM-1 beta-lactamase mutant. An L201P substitution distant from the active site that enhanced ampicillin resistance levels and increased protein expression levels of the R244A TEM-1 mutant was identified. The L201P substitution also increases the ampicillin resistance levels and restores expression levels of a poorly expressed TEM-1 mutant with a core-disrupting substitution. In vitro thermal denaturation of purified protein indicated that the L201P mutation increases the T(m) value of the TEM-1 enzyme. The X-ray structure of the L201P TEM-1 mutant was determined to gain insight into the increase in enzyme stability. The proline substitution occurs at the N-terminus of an alpha-helix and may stabilize the enzyme by reducing the helix dipole, as well as by lowering the conformational entropy cost of folding due to the reduced number of conformations available in the unfolded state. Collectively, the data suggest that L201P promotes tolerance of some deleterious TEM-1 mutations by enhancing the protein stability of these mutants.
Collapse
Affiliation(s)
- David C. Marciano
- Department of Molecular Virology and Microbiology, BCM, Houston, Texas 77030
| | | | - Xiaohu Wang
- Department of Pharmacology, BCM, Houston, Texas 77030
| | - Jian Wang
- Program in Structural and Computational Biology and Molecular Biophysics, BCM, Houston, Texas 77030
| | - Yu Chen
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94158-2330
| | - Veena L. Thomas
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94158-2330
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA 94158-2330
| | - Timothy Palzkill
- Department of Molecular Virology and Microbiology, BCM, Houston, Texas 77030.,Department of Pharmacology, BCM, Houston, Texas 77030.,Program in Structural and Computational Biology and Molecular Biophysics, BCM, Houston, Texas 77030
| |
Collapse
|
47
|
Harada S, Ishii Y, Yamaguchi K. Extended-spectrum β-Lactamases: Implications for the Clinical Laboratory and Therapy. Ann Lab Med 2008; 28:401-12. [DOI: 10.3343/kjlm.2008.28.6.401] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Sohei Harada
- Department of Microbiology and Infectious Diseases, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
- Division of Infectious Diseases2, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Diseases, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Keizo Yamaguchi
- Department of Microbiology and Infectious Diseases, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
48
|
Celenza G, Luzi C, Aschi M, Segatore B, Setacci D, Pellegrini C, Forcella C, Amicosante G, Perilli M. Natural D240G Toho-1 mutant conferring resistance to ceftazidime: biochemical characterization of CTX-M-43. J Antimicrob Chemother 2008; 62:991-7. [DOI: 10.1093/jac/dkn339] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
49
|
Brown G, Singer A, Proudfoot M, Skarina T, Kim Y, Chang C, Dementieva I, Kuznetsova E, Gonzalez CF, Joachimiak A, Savchenko A, Yakunin AF. Functional and structural characterization of four glutaminases from Escherichia coli and Bacillus subtilis. Biochemistry 2008; 47:5724-35. [PMID: 18459799 DOI: 10.1021/bi800097h] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutaminases belong to the large superfamily of serine-dependent beta-lactamases and penicillin-binding proteins, and they catalyze the hydrolytic deamidation of L-glutamine to L-glutamate. In this work, we purified and biochemically characterized four predicted glutaminases from Escherichia coli (YbaS and YneH) and Bacillus subtilis (YlaM and YbgJ). The proteins demonstrated strict specificity to L-glutamine and did not hydrolyze D-glutamine or L-asparagine. In each organism, one glutaminase showed higher affinity to glutamine ( E. coli YbaS and B. subtilis YlaM; K m 7.3 and 7.6 mM, respectively) than the second glutaminase ( E. coli YneH and B. subtilis YbgJ; K m 27.6 and 30.6 mM, respectively). The crystal structures of the E. coli YbaS and the B. subtilis YbgJ revealed the presence of a classical beta-lactamase-like fold and conservation of several key catalytic residues of beta-lactamases (Ser74, Lys77, Asn126, Lys268, and Ser269 in YbgJ). Alanine replacement mutagenesis demonstrated that most of the conserved residues located in the putative glutaminase catalytic site are essential for activity. The crystal structure of the YbgJ complex with the glutaminase inhibitor 6-diazo-5-oxo- l-norleucine revealed the presence of a covalent bond between the inhibitor and the hydroxyl oxygen of Ser74, providing evidence that Ser74 is the primary catalytic nucleophile and that the glutaminase reaction proceeds through formation of an enzyme-glutamyl intermediate. Growth experiments with the E. coli glutaminase deletion strains revealed that YneH is involved in the assimilation of l-glutamine as a sole source of carbon and nitrogen and suggested that both glutaminases (YbaS and YneH) also contribute to acid resistance in E. coli.
Collapse
Affiliation(s)
- Greg Brown
- Banting and Best Department of Medical Research, Ontario Centre for Structural Proteomics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mansour TS, Bradford PA, Venkatesan AM. Recent Developments in β-Lactamases and Inhibitors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00015-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|