1
|
Semeraro P, Giotta L, Talà A, Tufariello M, D'Elia M, Milano F, Alifano P, Valli L. A simple strategy based on ATR-FTIR difference spectroscopy to monitor substrate intake and metabolite release by growing bacteria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123031. [PMID: 37392540 DOI: 10.1016/j.saa.2023.123031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
Attenuated total reflectance Fourier transform infrared (ATR-FTIR) difference spectroscopy has been employed for a variety of applications spanning from reaction mechanisms analysis to interface phenomena assessment. This technique is based on the detection of spectral changes induced by the chemical modification of the original sample. In the present study, we highlight the potential of the ATR-FTIR difference approach in the field of microbial biochemistry and biotechnology, reporting on the identification of main soluble species consumed and released by growing bacteria during the biohydrogen production process. Specifically, the mid-infrared spectrum of a model culture broth, composed of glucose, malt extract and yeast extract, was used as background to acquire the FTIR difference spectrum of the same broth as modified by Enterobacter aerogenes metabolism. The analysis of difference signals revealed that only glucose is degraded during hydrogen evolution in anaerobic conditions, while ethanol and 2,3-butanediol are the main soluble metabolites released with H2. This fast and easy analytical approach can therefore represent a sustainable strategy to screen different bacterial strains and to select raw and waste materials to be employed in the field of biofuel production.
Collapse
Affiliation(s)
- Paola Semeraro
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, Lecce, Italy
| | - Livia Giotta
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, Lecce, Italy.
| | - Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | - Maria Tufariello
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), UOS Lecce, Lecce, Italy
| | - Marcella D'Elia
- Dipartimento di Matematica e Fisica "Ennio De Giorgi", Università del Salento, Lecce, Italy
| | - Francesco Milano
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), UOS Lecce, Lecce, Italy
| | - Pietro Alifano
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy
| | - Ludovico Valli
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di Lecce, Lecce, Italy
| |
Collapse
|
2
|
Seiça AFS, Iqbal MH, Carvalho A, Choe JY, Boulmedais F, Hellwig P. Study of Membrane Protein Monolayers Using Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS): Critical Dependence of Nanostructured Gold Surface Morphology. ACS Sens 2021; 6:2875-2882. [PMID: 34347437 DOI: 10.1021/acssensors.1c00238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Surface-enhanced infrared absorption spectroscopy (SEIRAS) is a powerful tool that allows studying the reactivity of protein monolayers at very low concentrations and independent from the protein size. In this study, we probe the surface's morphology of electroless gold deposition for optimum enhancement using two different types of immobilization adapted to two proteins. Independently from the mode of measurement (i.e., transmission or reflection) or type of protein immobilization (i.e., through electrostatic interactions or nickel-HisTag), the enhancement and reproducibility of protein signals in the infrared spectra critically depended on the gold nanostructured surface morphology deposited on silicon. Just a few seconds deviation from the optimum time in the nanoparticle deposition led to a significantly weaker enhancement. Scanning electron microscopy and atomic force microscopy measurements revealed the evolution of the nanostructured surface when comparing different deposition times. The optimal deposition time led to isolated gold nanostructures on the silicon crystal. Importantly, in the case of the immobilization using nickel-HisTag, the surface morphology is rearranged upon immobilization of linker and the protein. A complex three-dimensional (3D) network of nanoparticles decorated with the protein could be observed leading to the optimal enhancement. The electroless deposition of gold is a simple technique, which can be adapted to flow cells and used in analytical approaches.
Collapse
Affiliation(s)
- Ana F. S. Seiça
- Laboratory of Bioelectrochemistry and Spectroscopy, UMR 7140 University of Strasbourg CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Muhammad Haseeb Iqbal
- University of Strasbourg, CNRS, Institut Charles Sadron, UPR 222, 67034 Strasbourg, France
| | - Alain Carvalho
- University of Strasbourg, CNRS, Institut Charles Sadron, UPR 222, 67034 Strasbourg, France
| | - Jun-yong Choe
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina 27834, United States
| | - Fouzia Boulmedais
- University of Strasbourg, CNRS, Institut Charles Sadron, UPR 222, 67034 Strasbourg, France
| | - Petra Hellwig
- Laboratory of Bioelectrochemistry and Spectroscopy, UMR 7140 University of Strasbourg CNRS, 4 Rue Blaise Pascal, 67081 Strasbourg, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 4 Rue Blaise Pascal, 67081 Strasbourg, France
| |
Collapse
|
3
|
Silveira CM, Zuccarello L, Barbosa C, Caserta G, Zebger I, Hildebrandt P, Todorovic S. Molecular Details on Multiple Cofactor Containing Redox Metalloproteins Revealed by Infrared and Resonance Raman Spectroscopies. Molecules 2021; 26:4852. [PMID: 34443440 PMCID: PMC8398457 DOI: 10.3390/molecules26164852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Vibrational spectroscopy and in particular, resonance Raman (RR) spectroscopy, can provide molecular details on metalloproteins containing multiple cofactors, which are often challenging for other spectroscopies. Due to distinct spectroscopic fingerprints, RR spectroscopy has a unique capacity to monitor simultaneously and independently different metal cofactors that can have particular roles in metalloproteins. These include e.g., (i) different types of hemes, for instance hemes c, a and a3 in caa3-type oxygen reductases, (ii) distinct spin populations, such as electron transfer (ET) low-spin (LS) and catalytic high-spin (HS) hemes in nitrite reductases, (iii) different types of Fe-S clusters, such as 3Fe-4S and 4Fe-4S centers in di-cluster ferredoxins, and (iv) bi-metallic center and ET Fe-S clusters in hydrogenases. IR spectroscopy can provide unmatched molecular details on specific enzymes like hydrogenases that possess catalytic centers coordinated by CO and CN- ligands, which exhibit spectrally well separated IR bands. This article reviews the work on metalloproteins for which vibrational spectroscopy has ensured advances in understanding structural and mechanistic properties, including multiple heme-containing proteins, such as nitrite reductases that house a notable total of 28 hemes in a functional unit, respiratory chain complexes, and hydrogenases that carry out the most fundamental functions in cells.
Collapse
Affiliation(s)
- Célia M. Silveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| | - Lidia Zuccarello
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| | - Catarina Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| | - Giorgio Caserta
- Institut fur Chemie, Sekr. PC14, Technische Universitat Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (I.Z.); (P.H.)
| | - Ingo Zebger
- Institut fur Chemie, Sekr. PC14, Technische Universitat Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (I.Z.); (P.H.)
| | - Peter Hildebrandt
- Institut fur Chemie, Sekr. PC14, Technische Universitat Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany; (G.C.); (I.Z.); (P.H.)
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; (C.M.S.); (L.Z.); (C.B.)
| |
Collapse
|
4
|
Calisto F, Pereira MM. The Ion-Translocating NrfD-Like Subunit of Energy-Transducing Membrane Complexes. Front Chem 2021; 9:663706. [PMID: 33928068 PMCID: PMC8076601 DOI: 10.3389/fchem.2021.663706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Several energy-transducing microbial enzymes have their peripheral subunits connected to the membrane through an integral membrane protein, that interacts with quinones but does not have redox cofactors, the so-called NrfD-like subunit. The periplasmic nitrite reductase (NrfABCD) was the first complex recognized to have a membrane subunit with these characteristics and consequently provided the family's name: NrfD. Sequence analyses indicate that NrfD homologs are present in many diverse enzymes, such as polysulfide reductase (PsrABC), respiratory alternative complex III (ACIII), dimethyl sulfoxide (DMSO) reductase (DmsABC), tetrathionate reductase (TtrABC), sulfur reductase complex (SreABC), sulfite dehydrogenase (SoeABC), quinone reductase complex (QrcABCD), nine-heme cytochrome complex (NhcABCD), group-2 [NiFe] hydrogenase (Hyd-2), dissimilatory sulfite-reductase complex (DsrMKJOP), arsenate reductase (ArrC) and multiheme cytochrome c sulfite reductase (MccACD). The molecular structure of ACIII subunit C (ActC) and Psr subunit C (PsrC), NrfD-like subunits, revealed the existence of ion-conducting pathways. We performed thorough primary structural analyses and built structural models of the NrfD-like subunits. We observed that all these subunits are constituted by two structural repeats composed of four-helix bundles, possibly harboring ion-conducting pathways and containing a quinone/quinol binding site. NrfD-like subunits may be the ion-pumping module of several enzymes. Our data impact on the discussion of functional implications of the NrfD-like subunit-containing complexes, namely in their ability to transduce energy.
Collapse
Affiliation(s)
- Filipa Calisto
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universdade de Lisboa, Lisboa, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica-António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universdade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
6
|
Abstract
Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and a H+ across the cytoplasmic membrane of Escherichia coli (galactoside/H+ symport). One of the most important aspects of the mechanism is the relationship between protonation and binding of the cargo galactopyranoside. In this regard, it has been shown that protonation is required for binding. Furthermore when galactoside affinity is measured as a function of pH, an apparent pK (pKapp) of ∼10.5 is obtained. Strikingly, when Glu325, a residue long known to be involved in coupling between H+ and sugar translocation, is replaced with a neutral side chain, the pH effect is abolished, and high-affinity binding is observed until LacY is destabilized at alkaline pH. In this paper, infrared spectroscopy is used to identify Glu325 in situ. Moreover, it is demonstrated that this residue exhibits a pKa of 10.5 ± 0.1 that is insensitive to the presence of galactopyranoside. Thus, it is apparent that protonation of Glu325 specifically is required for effective sugar binding to LacY.
Collapse
|
7
|
Furutani Y, Shimizu H, Asai Y, Oiki S, Kandori H. Specific interactions between alkali metal cations and the KcsA channel studied using ATR-FTIR spectroscopy. Biophys Physicobiol 2015; 12:37-45. [PMID: 27493853 PMCID: PMC4736833 DOI: 10.2142/biophysico.12.0_37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/21/2015] [Indexed: 01/20/2023] Open
Abstract
The X-ray structure of KcsA, a eubacterial potassium channel, displays a selectivity filter composed of four parallel peptide strands. The backbone carbonyl oxygen atoms of these strands solvate multiple K(+) ions. KcsA structures show different distributions of ions within the selectivity filter in solutions containing different cations. To assess the interactions of cations with the selectivity filter, we used attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Ion-exchange-induced ATR-FTIR difference spectra were obtained by subtracting the spectrum of KcsA soaked in K(+) solution from that obtained in Li(+), Na(+), Rb(+), and Cs(+) solutions. Large spectral changes in the amide-I and -II regions were observed upon replacing K(+) with smaller-sized cations Li(+) and Na(+) but not with larger-sized cations Rb(+) and Cs(+). These results strongly suggest that the selectivity filter carbonyls coordinating Rb(+) or Cs(+) adopt a conformation similar to those coordinating K(+) (cage configuration), but those coordinating Li(+) or Na(+) adopt a conformation (plane configuration) considerably different from those coordinating K(+). We have identified a cation-type sensitive amide-I band at 1681 cm(-1) and an insensitive amide-I band at 1659 cm(-1). The bands at 1650, 1639, and 1627 cm(-1) observed for Na(+)-coordinating carbonyls were almost identical to those observed in Li(+) solution, suggesting that KcsA forms a similar filter structure in Li(+) and Na(+) solutions. Thus, we conclude that the filter structure adopts a collapsed conformation in Li(+) solution that is similar to that in Na(+) solution but is in clear contrast to the X-ray crystal structure of KcsA with Li(+).
Collapse
Affiliation(s)
- Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan; Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Hirofumi Shimizu
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1193, Japan
| | - Yusuke Asai
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1193, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
8
|
Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc Natl Acad Sci U S A 2014; 111:15735-40. [PMID: 25331896 DOI: 10.1073/pnas.1413855111] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mitochondria, four respiratory-chain complexes drive oxidative phosphorylation by sustaining a proton-motive force across the inner membrane that is used to synthesize ATP. The question of how the densely packed proteins of the inner membrane are organized to optimize structure and function has returned to prominence with the characterization of respiratory-chain supercomplexes. Supercomplexes are increasingly accepted structural entities, but their functional and catalytic advantages are disputed. Notably, substrate "channeling" between the enzymes in supercomplexes has been proposed to confer a kinetic advantage, relative to the rate provided by a freely accessible, common substrate pool. Here, we focus on the mitochondrial ubiquinone/ubiquinol pool. We formulate and test three conceptually simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important, and on whether the ubiquinone pool is partitioned between pathways. Our spectroscopic and kinetic experiments demonstrate how the metabolic pathways for NADH and succinate oxidation communicate and catalyze via a single, universally accessible ubiquinone/ubiquinol pool that is not partitioned or channeled. We reevaluate the major piece of contrary evidence from flux control analysis and find that the conclusion of substrate channeling arises from the particular behavior of a single inhibitor; we explain why different inhibitors behave differently and show that a robust flux control analysis provides no evidence for channeling. Finally, we discuss how the formation of respiratory-chain supercomplexes may confer alternative advantages on energy-converting membranes.
Collapse
|
9
|
Kandori H, Furutani Y, Murata T. Infrared spectroscopic studies on the V-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:134-41. [PMID: 25111748 DOI: 10.1016/j.bbabio.2014.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/27/2022]
Abstract
V-ATPase is an ATP-driven rotary motor that vectorially transports ions. Together with F-ATPase, a homologous protein, several models on the ion transport have been proposed, but their molecular mechanisms are yet unknown. V-ATPase from Enterococcus hirae forms a large supramolecular protein complex (total molecular weight: ~700,000) and physiologically transports Na⁺ and Li⁺ across a hydrophobic lipid bilayer. Stabilization of these cations in the binding site has been discussed on the basis of X-ray crystal structures of a membrane-embedded domain, the K-ring (Na⁺ and Li⁺ bound forms). Sodium or lithium ion binding-induced difference FTIR spectra of the intact E. hirae V-ATPase have been measured in aqueous solution at physiological temperature. The results suggest that sodium or lithium ion binding induces the deprotonation of Glu139, a hydrogen-bonding change in the tyrosine residue and rigid α-helical structures. Identical difference FTIR spectra between the entire V-ATPase complex and K-ring strongly suggest that protein interaction with the I subunit does not cause large structural changes in the K-ring. This result supports the previously proposed Na⁺ transport mechanism by V-ATPase stating that a flip-flop movement of a carboxylate group of Glu139 without large conformational changes in the K-ring accelerates the replacement of a Na⁺ ion in the binding site. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
| | - Yuji Furutani
- Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan; Department of Structural Molecular Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Takeshi Murata
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| |
Collapse
|
10
|
Hellwig P. Infrared spectroscopic markers of quinones in proteins from the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:126-33. [PMID: 25026472 DOI: 10.1016/j.bbabio.2014.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023]
Abstract
In bioenergetic systems quinones play a central part in the coupling of electron and proton transfer. The specific function of each quinone binding site is based on the protein-quinone interaction that can be described by means of reaction induced FTIR difference spectroscopy, induced for example by light or electrochemically. The identification of sites in enzymes from the respiratory chain is presented together with the analysis of the accommodation of different types of quinones to the same enzyme and the possibility to monitor the interaction with inhibitors. Reaction induced FTIR difference spectroscopy is shown to give an essential information on the general geometry of quinone binding sites, the conformation of the ring and of the substituents as well as essential structural information on the identity of the amino-acid residues lining this site. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, Chimie de la matière complexe, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg, France.
| |
Collapse
|
11
|
Lee DW, El Khoury Y, Francia F, Zambelli B, Ciurli S, Venturoli G, Hellwig P, Daldal F. Zinc inhibition of bacterial cytochrome bc(1) reveals the role of cytochrome b E295 in proton release at the Q(o) site. Biochemistry 2011; 50:4263-72. [PMID: 21500804 DOI: 10.1021/bi200230e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cytochrome (cyt) bc(1) complex (cyt bc(1)) plays a major role in the electrogenic extrusion of protons across the membrane responsible for the proton motive force to produce ATP. Proton-coupled electron transfer underlying the catalysis of cyt bc(1) is generally accepted, but the molecular basis of coupling and associated proton efflux pathway(s) remains unclear. Herein we studied Zn(2+)-induced inhibition of Rhodobacter capsulatus cyt bc(1) using enzyme kinetics, isothermal titration calorimetry (ITC), and electrochemically induced Fourier transform infrared (FTIR) difference spectroscopy with the purpose of understanding the Zn(2+) binding mechanism and its inhibitory effect on cyt bc(1) function. Analogous studies were conducted with a mutant of cyt b, E295, a residue previously proposed to bind Zn(2+) on the basis of extended X-ray absorption fine-structure spectroscopy. ITC analysis indicated that mutation of E295 to valine, a noncoordinating residue, results in a decrease in Zn(2+) binding affinity. The kinetic study showed that wild-type cyt bc(1) and its E295V mutant have similar levels of apparent K(m) values for decylbenzohydroquinone as a substrate (4.9 ± 0.2 and 3.1 ± 0.4 μM, respectively), whereas their K(I) values for Zn(2+) are 8.3 and 38.5 μM, respectively. The calorimetry-based K(D) values for the high-affinity site of cyt bc(1) are on the same order of magnitude as the K(I) values derived from the kinetic analysis. Furthermore, the FTIR signal of protonated acidic residues was perturbed in the presence of Zn(2+), whereas the E295V mutant exhibited no significant change in electrochemically induced FTIR difference spectra measured in the presence and absence of Zn(2+). Our overall results indicate that the proton-active E295 residue near the Q(o) site of cyt bc(1) can bind directly to Zn(2+), resulting in a decrease in the electron transferring activity without changing drastically the redox potentials of the cofactors of the enzyme. We conclude that E295 is involved in proton efflux coupled to electron transfer at the Q(o) site of cyt bc(1).
Collapse
Affiliation(s)
- Dong-Woo Lee
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dai Y, Zheng Y, Swain GM, Proshlyakov DA. Equilibrium and kinetic behavior of Fe(CN)6(3-/4-) and cytochrome c in direct electrochemistry using a film electrode thin-layer transmission cell. Anal Chem 2010; 83:542-8. [PMID: 21166441 DOI: 10.1021/ac102113v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report on the design and performance of a thin-layer electrochemical cell optimized for use with optically transparent film electrodes in combination with UV/vis and IR transmission spectroscopic measurements. The cell allows for measurements under both aerobic and anaerobic conditions. The direct, unmediated electron transfer, as assessed by the current transient, and the corresponding optical response observed for the Fe(CN)(6)(3-/4-) couple were in good agreement with theoretical predictions for voltammetry and optical absorption by an analyte confined in a thin layer. Chronoamperometric and spectroscopic measurements of Fe(CN)(6)(3-/4-) on gold mesh electrode revealed fast kinetics strongly influenced by the electrolyte concentration. Maximal apparent rates exceeding 2 s(-1) in 1 M KCl were observed optically. The direct kinetic and thermodynamic behavior of cytochrome c was compared with several electrode materials using the cell. The results showed heme ligand-dependent changes in the protein-electrode interactions. Mid-UV/visible spectral changes upon redox transitions in native cytochrome c and its cyanide derivative, as well as dissociation of the ferrous cytochrome c-CN complex, are reported.
Collapse
Affiliation(s)
- Yingrui Dai
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, USA
| | | | | | | |
Collapse
|
13
|
Maréchal A, Kido Y, Kita K, Moore AL, Rich PR. Three redox states of Trypanosoma brucei alternative oxidase identified by infrared spectroscopy and electrochemistry. J Biol Chem 2009; 284:31827-33. [PMID: 19767647 DOI: 10.1074/jbc.m109.059980] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm(-1) that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water.
Collapse
Affiliation(s)
- Amandine Maréchal
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
14
|
Hielscher R, Wenz T, Hunte C, Hellwig P. Monitoring the redox and protonation dependent contributions of cardiolipin in electrochemically induced FTIR difference spectra of the cytochrome bc(1) complex from yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:617-25. [PMID: 19413949 DOI: 10.1016/j.bbabio.2009.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
Abstract
Biochemical studies have shown that cardiolipin is essential for the integrity and activity of the cytochrome bc(1) complex and many other membrane proteins. Recently the direct involvement of a bound cardiolipin molecule (CL) for proton uptake at center N, the site of quinone reduction, was suggested on the basis of a crystallographic study. In the study presented here, we probe the low frequency infrared spectroscopy region as a technique suitable to detect the involvement of the lipids in redox induced reactions of the protein. First the individual infrared spectroscopic features of lipids, typically present in the yeast membrane, have been monitored for different pH values in micelles and vesicles. The pK(a) values for cardiolipin molecule have been observed at 4.7+/-0.3 and 7.9+/-1.3, respectively. Lipid contributions in the electrochemically induced FTIR spectra of the bc(1) complex from yeast have been identified by comparing the spectra of the as isolated form, with samples where the lipids were digested by lipase-A(2). Overall, a noteworthy perturbation in the spectral region typical for the protein backbone can be reported. Interestingly, signals at 1159, 1113, 1039 and 980 cm(-1) have shifted, indicating the perturbation of the protonation state of cardiolipin coupled to the reduction of the hemes. Additional shifts are found and are proposed to reflect lipids reorganizing due to a change in their direct environment upon the redox reaction of the hemes. In addition a small shift in the alpha band from 559 to 556 nm can be seen after lipid depletion, reflecting the interaction with heme b(H) and heme c. Thus, our work highlights the role of lipids in enzyme reactivity and structure.
Collapse
Affiliation(s)
- Ruth Hielscher
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, F-67070 Strasbourg, France
| | | | | | | |
Collapse
|
15
|
Giotta L, Giancane G, Mastrogiacomo D, Basova T, Metrangolo P, Valli L. Phenol chemisorption onto phthalocyanine thin layers probed by ATR-FTIR difference spectroscopy. Phys Chem Chem Phys 2009; 11:2161-5. [DOI: 10.1039/b814571g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
|
17
|
Kleinschroth T, Anderka O, Ritter M, Stocker A, Link TA, Ludwig B, Hellwig P. Characterization of mutations in crucial residues around the Qo binding site of the cytochrome bc1 complex from Paracoccus denitrificans. FEBS J 2008; 275:4773-85. [DOI: 10.1111/j.1742-4658.2008.06611.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Wraight CA, Vakkasoglu AS, Poluektov Y, Mattis AJ, Nihan D, Lipshutz BH. The 2-methoxy group of ubiquinone is essential for function of the acceptor quinones in reaction centers from Rba. sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:631-6. [DOI: 10.1016/j.bbabio.2008.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/15/2008] [Indexed: 11/25/2022]
|
19
|
Okubo T, Noguchi T. Selective detection of the structural changes upon photoreactions of several redox cofactors in photosystem II by means of light-induced ATR-FTIR difference spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 66:863-8. [PMID: 16872888 DOI: 10.1016/j.saa.2006.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Revised: 04/08/2006] [Accepted: 05/02/2006] [Indexed: 05/11/2023]
Abstract
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was applied for the first time to detect the structural changes upon photoreactions of redox cofactors in photosystem II (PSII). The PSII-enriched membranes from spinach were adsorbed on the surface of a silicon prism, and FTIR measurements of various redox cofactors were performed for the same sample but under different conditions by exchanging buffers in a flow cell. Light-induced FTIR difference spectra upon redox reactions of the oxygen-evolving Mn cluster, the primary quinone electron acceptor QA, the redox-active tyrosine YD, the primary electron acceptor pheophytin, and the primary electron donor chlorophyll P680 were successively recorded in buffers including different redox reagents and inhibitors. All of these cofactors remained active in the PSII membranes on the silicon surface, and the resultant spectra were basically identical to those previously recorded by the conventional transmission method. These ATR-FTIR measurements enable accurate comparison between reactions of different active sites in a single PSII sample. The present results demonstrated that the ATR-FTIR spectroscopy is a useful technique for investigation of the reaction mechanism of PSII.
Collapse
Affiliation(s)
- Tatsunori Okubo
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | | |
Collapse
|
20
|
Klingen AR, Palsdottir H, Hunte C, Ullmann GM. Redox-linked protonation state changes in cytochrome bc1 identified by Poisson–Boltzmann electrostatics calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:204-21. [PMID: 17349966 DOI: 10.1016/j.bbabio.2007.01.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 11/16/2022]
Abstract
Cytochrome bc(1) is a major component of biological energy conversion that exploits an energetically favourable redox reaction to generate a transmembrane proton gradient. Since the mechanistic details of the coupling of redox and protonation reactions in the active sites are largely unresolved, we have identified residues that undergo redox-linked protonation state changes. Structure-based Poisson-Boltzmann/Monte Carlo titration calculations have been performed for completely reduced and completely oxidised cytochrome bc(1). Different crystallographically observed conformations of Glu272 and surrounding residues of the cytochrome b subunit in cytochrome bc(1) from Saccharomyces cerevisiae have been considered in the calculations. Coenzyme Q (CoQ) has been modelled into the CoQ oxidation site (Q(o)-site). Our results indicate that both conformational and protonation state changes of Glu272 of cytochrome b may contribute to the postulated gating of CoQ oxidation. The Rieske iron-sulphur cluster could be shown to undergo redox-linked protonation state changes of its histidine ligands in the structural context of the CoQ-bound Q(o)-site. The proton acceptor role of the CoQ ligands in the CoQ reduction site (Q(i)-site) is supported by our results. A modified path for proton uptake towards the Q(i)-site features a cluster of conserved lysine residues in the cytochrome b (Lys228) and cytochrome c(1) subunits (Lys288, Lys289, Lys296). The cardiolipin molecule bound close to the Q(i)-site stabilises protons in this cluster of lysine residues.
Collapse
Affiliation(s)
- Astrid R Klingen
- Structural Biology/Bioinformatics Group, University of Bayreuth, Germany
| | | | | | | |
Collapse
|
21
|
Rich PR, Iwaki M. Methods to probe protein transitions with ATR infrared spectroscopy. MOLECULAR BIOSYSTEMS 2007; 3:398-407. [PMID: 17533453 DOI: 10.1039/b702328f] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe techniques that can be used in conjunction with modern attenuated total reflection (ATR) infrared micro-prisms to allow proteins to be manipulated cyclically between different states whilst simultaneously monitoring both mid-IR and UV/visible/near IR changes. These methods provide increased flexibility of the types of changes that can be induced in proteins in comparison to transmission methods. Quantitative measurements can be made of vibrational changes associated with conversion between stable catalytic reaction intermediates, ligand binding and oxidation-reduction. Both hydrophobic and soluble proteins can be analysed and the ability to induce transitions repetitively allows IR difference spectra to be acquired at a signal/noise sufficient to resolve changes due to specific cofactors or amino acids. Such spectra can often be interpreted at the atomic level by standard IR methods of comparisons with model compounds, by isotope and mutation effects and, increasingly, by ab initio simulations. Combination of such analyses with atomic 3D structural models derived from X-ray and NMR studies can lead to a deeper understanding of molecular mechanisms of enzymatic reactions.
Collapse
Affiliation(s)
- Peter R Rich
- Glynn Laboratory of Bioenergetics, Department of Biology, University College London, Gower Street, London, U.K.
| | | |
Collapse
|
22
|
Shinkarev VP, Crofts AR, Wraight CA. Spectral analysis of the bc(1) complex components in situ: beyond the traditional difference approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1757:67-77. [PMID: 16386703 DOI: 10.1016/j.bbabio.2005.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
The cytochrome (cyt) bc(1) complex (ubiquinol: cytochrome c oxidoreductase) is the central enzyme of mitochondrial and bacterial electron-transport chains. It is rich in prosthetic groups, many of which have significant but overlapping absorption bands in the visible spectrum. The kinetics of the cytochrome components of the bc(1) complex are traditionally followed by using the difference of absorbance changes at two or more different wavelengths. This difference-wavelength (DW) approach has been used extensively in the development and testing of the Q-cycle mechanism of the bc(1) complex in Rhodobacter sphaeroides chromatophores. However, the DW approach does not fully compensate for spectral interference from other components, which can significantly distort both amplitudes and kinetics. Mechanistic elaboration of cyt bc(1) turnover requires an approach that overcomes this limitation. Here, we compare the traditional DW approach to a least squares (LS) analysis of electron transport, based on newly determined difference spectra of all individual components of cyclic electron transport in chromatophores. Multiple sets of kinetic traces, measured at different wavelengths in the absence and presence of specific inhibitors, were analyzed by both LS and DW approaches. Comparison of the two methods showed that the DW approach did not adequately correct for the spectral overlap among the components, and was generally unreliable when amplitude changes for a component of interest were small. In particular, it was unable to correct for extraneous contributions to the amplitudes and kinetics of cyt b(L). From LS analysis of the chromophoric components (RC, c(tot), b(H) and b(L)), we show that while the Q-cycle model remains firmly grounded, quantitative reevaluation of rates, amplitudes, delays, etc., of individual components is necessary. We conclude that further exploration of mechanisms of the bc(1) complex, will require LS deconvolution for reliable measurement of the kinetics of individual components of the complex in situ.
Collapse
Affiliation(s)
- Vladimir P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana -- Champaign, 156 Davenport Hall, 607 South Mathews Avenue, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
23
|
Mulkidjanian AY. Ubiquinol oxidation in the cytochrome bc1 complex: Reaction mechanism and prevention of short-circuiting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:5-34. [PMID: 16005845 DOI: 10.1016/j.bbabio.2005.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 12/01/2004] [Accepted: 03/22/2005] [Indexed: 11/26/2022]
Abstract
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, Max-von-Laue-Str. 3, D-60438 Frankfurt-am-Main, Germany.
| |
Collapse
|
24
|
Rich PR. The quinone chemistry of bc complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1658:165-71. [PMID: 15282188 DOI: 10.1016/j.bbabio.2004.04.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 04/27/2004] [Accepted: 04/27/2004] [Indexed: 10/26/2022]
Abstract
The quinone chemistry that gives rise to the rather unusual strict bifurcation of electron transfer at the Q(o) site of the cytochrome bc complexes remains controversial. In this article, I review recent ideas and propose a "logic-gated" binding mechanism that combines classical quinone electrochemistry with specific hydrogen bonding requirements and results in a reversible reaction that minimizes unwanted side-reactions that could otherwise undermine the efficiency of the Q-cycle proton/electron coupling mechanism.
Collapse
Affiliation(s)
- Peter R Rich
- The Glynn Laboratory of Bioenergetics, Department of Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|