1
|
Krysiak S, Burda K. The Effect of Removal of External Proteins PsbO, PsbP and PsbQ on Flash-Induced Molecular Oxygen Evolution and Its Biphasicity in Tobacco PSII. Curr Issues Mol Biol 2024; 46:7187-7218. [PMID: 39057069 PMCID: PMC11276211 DOI: 10.3390/cimb46070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The oxygen evolution within photosystem II (PSII) is one of the most enigmatic processes occurring in nature. It is suggested that external proteins surrounding the oxygen-evolving complex (OEC) not only stabilize it and provide an appropriate ionic environment but also create water channels, which could be involved in triggering the ingress of water and the removal of O2 and protons outside the system. To investigate the influence of these proteins on the rate of oxygen release and the efficiency of OEC function, we developed a measurement protocol for the direct measurement of the kinetics of oxygen release from PSII using a Joliot-type electrode. PSII-enriched tobacco thylakoids were used in the experiments. The results revealed the existence of slow and fast modes of oxygen evolution. This observation is model-independent and requires no specific assumptions about the initial distribution of the OEC states. The gradual removal of exogenous proteins resulted in a slowdown of the rapid phase (~ms) of O2 release and its gradual disappearance while the slow phase (~tens of ms) accelerated. The role of external proteins in regulating the biphasicity and efficiency of oxygen release is discussed based on observed phenomena and current knowledge.
Collapse
Affiliation(s)
| | - Kvetoslava Burda
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| |
Collapse
|
2
|
Shevela D, Kern JF, Govindjee G, Messinger J. Solar energy conversion by photosystem II: principles and structures. PHOTOSYNTHESIS RESEARCH 2023; 156:279-307. [PMID: 36826741 PMCID: PMC10203033 DOI: 10.1007/s11120-022-00991-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/01/2022] [Indexed: 05/23/2023]
Abstract
Photosynthetic water oxidation by Photosystem II (PSII) is a fascinating process because it sustains life on Earth and serves as a blue print for scalable synthetic catalysts required for renewable energy applications. The biophysical, computational, and structural description of this process, which started more than 50 years ago, has made tremendous progress over the past two decades, with its high-resolution crystal structures being available not only of the dark-stable state of PSII, but of all the semi-stable reaction intermediates and even some transient states. Here, we summarize the current knowledge on PSII with emphasis on the basic principles that govern the conversion of light energy to chemical energy in PSII, as well as on the illustration of the molecular structures that enable these reactions. The important remaining questions regarding the mechanism of biological water oxidation are highlighted, and one possible pathway for this fundamental reaction is described at a molecular level.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
| | - Jan F Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden.
- Molecular Biomimetics, Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden.
| |
Collapse
|
3
|
Mattila H, Mishra S, Tyystjärvi T, Tyystjärvi E. Singlet oxygen production by photosystem II is caused by misses of the oxygen evolving complex. THE NEW PHYTOLOGIST 2023; 237:113-125. [PMID: 36161283 PMCID: PMC10092662 DOI: 10.1111/nph.18514] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/10/2022] [Indexed: 06/12/2023]
Abstract
Singlet oxygen (1 O2 ) is a harmful species that functions also as a signaling molecule. In chloroplasts, 1 O2 is produced via charge recombination reactions in photosystem II, but which recombination pathway(s) produce triplet Chl and 1 O2 remains open. Furthermore, the role of 1 O2 in photoinhibition is not clear. We compared temperature dependences of 1 O2 production, photoinhibition, and recombination pathways. 1 O2 production by pumpkin thylakoids increased from -2 to +35°C, ruling out recombination of the primary charge pair as a main contributor. S2 QA - or S2 QB - recombination pathways, in turn, had too steep temperature dependences. Instead, the temperature dependence of 1 O2 production matched that of misses (failures of the oxygen (O2 ) evolving complex to advance an S-state). Photoinhibition in vitro and in vivo (also in Synechocystis), and in the presence or absence of O2 , had the same temperature dependence, but ultraviolet (UV)-radiation-caused photoinhibition showed a weaker temperature response. We suggest that the miss-associated recombination of P680 + QA - is the main producer of 1 O2 . Our results indicate three parallel photoinhibition mechanisms. The manganese mechanism dominates in UV radiation but also functions in white light. Mechanisms that depend on light absorption by Chls, having 1 O2 or long-lived P680 + as damaging agents, dominate in red light.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Sujata Mishra
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Taina Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant BiologyUniversity of TurkuFI‐20014TurkuFinland
| |
Collapse
|
4
|
Han G, Chernev P, Styring S, Messinger J, Mamedov F. Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II. Chem Sci 2022; 13:8667-8678. [PMID: 35974765 PMCID: PMC9337725 DOI: 10.1039/d2sc00854h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Photosynthesis stores solar light as chemical energy and efficiency of this process is highly important. The electrons required for CO2 reduction are extracted from water in a reaction driven by light-induced charge separations in the Photosystem II reaction center and catalyzed by the CaMn4O5-cluster. This cyclic process involves five redox intermediates known as the S0–S4 states. In this study, we quantify the flash-induced turnover efficiency of each S state by electron paramagnetic resonance spectroscopy. Measurements were performed in photosystem II membrane preparations from spinach in the presence of an exogenous electron acceptor at selected temperatures between −10 °C and +20 °C and at flash frequencies of 1.25, 5 and 10 Hz. The results show that at optimal conditions the turnover efficiencies are limited by reactions occurring in the water oxidizing complex, allowing the extraction of their S state dependence and correlating low efficiencies to structural changes and chemical events during the reaction cycle. At temperatures 10 °C and below, the highest efficiency (i.e. lowest miss parameter) was found for the S1 → S2 transition, while the S2 → S3 transition was least efficient (highest miss parameter) over the whole temperature range. These electron paramagnetic resonance results were confirmed by measurements of flash-induced oxygen release patterns in thylakoid membranes and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster that were determined recently by femtosecond X-ray crystallography. Thereby, possible “molecular errors” connected to the e− transfer, H+ transfer, H2O binding and O2 release are identified. Temperature dependence of the transition inefficiencies (misses) for the water oxidation process in photosystem II were studied by EPR spectroscopy and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster.![]()
Collapse
Affiliation(s)
- Guangye Han
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
5
|
Shimada Y, Kitajima-Ihara T, Nagao R, Noguchi T. Role of the O4 Channel in Photosynthetic Water Oxidation as Revealed by Fourier Transform Infrared Difference and Time-Resolved Infrared Analysis of the D1-S169A Mutant. J Phys Chem B 2020; 124:1470-1480. [DOI: 10.1021/acs.jpcb.9b11946] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yuichiro Shimada
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tomomi Kitajima-Ihara
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Ryo Nagao
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
6
|
Shevela D, Ananyev G, Vatland AK, Arnold J, Mamedov F, Eichacker LA, Dismukes GC, Messinger J. 'Birth defects' of photosystem II make it highly susceptible to photodamage during chloroplast biogenesis. PHYSIOLOGIA PLANTARUM 2019; 166:165-180. [PMID: 30693529 DOI: 10.1111/ppl.12932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
High solar flux is known to diminish photosynthetic growth rates, reducing biomass productivity and lowering disease tolerance. Photosystem II (PSII) of plants is susceptible to photodamage (also known as photoinactivation) in strong light, resulting in severe loss of water oxidation capacity and destruction of the water-oxidizing complex (WOC). The repair of damaged PSIIs comes at a high energy cost and requires de novo biosynthesis of damaged PSII subunits, reassembly of the WOC inorganic cofactors and membrane remodeling. Employing membrane-inlet mass spectrometry and O2 -polarography under flashing light conditions, we demonstrate that newly synthesized PSII complexes are far more susceptible to photodamage than are mature PSII complexes. We examined these 'PSII birth defects' in barley seedlings and plastids (etiochloroplasts and chloroplasts) isolated at various times during de-etiolation as chloroplast development begins and matures in synchronization with thylakoid membrane biogenesis and grana membrane formation. We show that the degree of PSII photodamage decreases simultaneously with biogenesis of the PSII turnover efficiency measured by O2 -polarography, and with grana membrane stacking, as determined by electron microscopy. Our data from fluorescence, QB -inhibitor binding, and thermoluminescence studies indicate that the decline of the high-light susceptibility of PSII to photodamage is coincident with appearance of electron transfer capability QA - → QB during de-etiolation. This rate depends in turn on the downstream clearing of electrons upon buildup of the complete linear electron transfer chain and the formation of stacked grana membranes capable of longer-range energy transfer.
Collapse
Affiliation(s)
- Dmitry Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Gennady Ananyev
- The Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ann K Vatland
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Janine Arnold
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, S-75237, Uppsala, Sweden
| | - Lutz A Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - G Charles Dismukes
- The Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, S-75237, Uppsala, Sweden
| |
Collapse
|
7
|
Pham LV, Janna Olmos JD, Chernev P, Kargul J, Messinger J. Unequal misses during the flash-induced advancement of photosystem II: effects of the S state and acceptor side cycles. PHOTOSYNTHESIS RESEARCH 2019; 139:93-106. [PMID: 30191436 PMCID: PMC6373315 DOI: 10.1007/s11120-018-0574-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/03/2018] [Indexed: 05/17/2023]
Abstract
Photosynthetic water oxidation is catalyzed by the oxygen-evolving complex (OEC) in photosystem II (PSII). This process is energetically driven by light-induced charge separation in the reaction center of PSII, which leads to a stepwise accumulation of oxidizing equivalents in the OEC (Si states, i = 0-4) resulting in O2 evolution after each fourth flash, and to the reduction of plastoquinone to plastoquinol on the acceptor side of PSII. However, the Si-state advancement is not perfect, which according to the Kok model is described by miss-hits (misses). These may be caused by redox equilibria or kinetic limitations on the donor (OEC) or the acceptor side. In this study, we investigate the effects of individual S state transitions and of the quinone acceptor side on the miss parameter by analyzing the flash-induced oxygen evolution patterns and the S2, S3 and S0 state lifetimes in thylakoid samples of the extremophilic red alga Cyanidioschyzon merolae. The data are analyzed employing a global fit analysis and the results are compared to the data obtained previously for spinach thylakoids. These two organisms were selected, because the redox potential of QA/QA- in PSII is significantly less negative in C. merolae (Em = - 104 mV) than in spinach (Em = - 163 mV). This significant difference in redox potential was expected to allow the disentanglement of acceptor and donor side effects on the miss parameter. Our data indicate that, at slightly acidic and neutral pH values, the Em of QA-/QA plays only a minor role for the miss parameter. By contrast, the increased energy gap for the backward electron transfer from QA- to Pheo slows down the charge recombination reaction with the S3 and S2 states considerably. In addition, our data support the concept that the S2 → S3 transition is the least efficient step during the oxidation of water to molecular oxygen in the Kok cycle of PSII.
Collapse
Affiliation(s)
- Long Vo Pham
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Julian David Janna Olmos
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Petko Chernev
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden
| | - Joanna Kargul
- Solar Fuels Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland.
| | - Johannes Messinger
- Department of Chemistry - Ångström, Uppsala University, Lägerhyddsvägen 1, 75120, Uppsala, Sweden.
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, 901 87, Umeå, Sweden.
| |
Collapse
|
8
|
Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:873-883. [PMID: 28734933 DOI: 10.1016/j.bbabio.2017.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 01/13/2023]
Abstract
The desert microalga Chlorella ohadii was reported to grow at extreme light intensities with minimal photoinhibition, tolerate frequent de/re-hydrations, yet minimally employs antenna-based non-photochemical quenching for photoprotection. Here we investigate the molecular mechanisms by measuring Photosystem II charge separation yield (chlorophyll variable fluorescence, Fv/Fm) and flash-induced O2 yield to measure the contributions from both linear (PSII-LEF) and cyclic (PSII-CEF) electron flow within PSII. Cells grow increasingly faster at higher light intensities (μE/m2/s) from low (20) to high (200) to extreme (2000) by escalating photoprotection via shifting from PSII-LEF to PSII-CEF. This shifts PSII charge separation from plastoquinone reduction (PSII-LEF) to plastoquinol oxidation (PSII-CEF), here postulated to enable proton gradient and ATP generation that powers photoprotection. Low light-grown cells have unusually small antennae (332 Chl/PSII), use mainly PSII-LEF (95%) and convert 40% of PSII charge separations into O2 (a high O2 quantum yield of 0.06mol/mol PSII/flash). High light-grown cells have smaller antenna and lower PSII-LEF (63%). Extreme light-grown cells have only 42 Chl/PSII (no LHCII antenna), minimal PSII-LEF (10%), and grow faster than any known phototroph (doubling time 1.3h). Adding a synthetic quinone in excess to supplement the PQ pool fully uncouples PSII-CEF from its natural regulation and produces maximum PSII-LEF. Upon dark adaptation PSII-LEF rapidly reverts to PSII-CEF, a transient protection mechanism to conserve water and minimize the cost of antenna biosynthesis. The capacity of the electron acceptor pool (plastoquinone pool), and the characteristic times for exchange of (PQH2)B with PQpool and reoxidation of (PQH2)pool were determined.
Collapse
|
9
|
Shevela D, Arnold J, Reisinger V, Berends HM, Kmiec K, Koroidov S, Bue AK, Messinger J, Eichacker LA. Biogenesis of water splitting by photosystem II during de-etiolation of barley (Hordeum vulgare L.). PLANT, CELL & ENVIRONMENT 2016; 39:1524-1536. [PMID: 26836813 DOI: 10.1111/pce.12719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 06/05/2023]
Abstract
Etioplasts lack thylakoid membranes and photosystem complexes. Light triggers differentiation of etioplasts into mature chloroplasts, and photosystem complexes assemble in parallel with thylakoid membrane development. Plastids isolated at various time points of de-etiolation are ideal to study the kinetic biogenesis of photosystem complexes during chloroplast development. Here, we investigated the chronology of photosystem II (PSII) biogenesis by monitoring assembly status of chlorophyll-binding protein complexes and development of water splitting via O2 production in plastids (etiochloroplasts) isolated during de-etiolation of barley (Hordeum vulgare L.). Assembly of PSII monomers, dimers and complexes binding outer light-harvesting antenna [PSII-light-harvesting complex II (LHCII) supercomplexes] was identified after 1, 2 and 4 h of de-etiolation, respectively. Water splitting was detected in parallel with assembly of PSII monomers, and its development correlated with an increase of bound Mn in the samples. After 4 h of de-etiolation, etiochloroplasts revealed the same water-splitting efficiency as mature chloroplasts. We conclude that the capability of PSII to split water during de-etiolation precedes assembly of the PSII-LHCII supercomplexes. Taken together, data show a rapid establishment of water-splitting activity during etioplast-to-chloroplast transition and emphasize that assembly of the functional water-splitting site of PSII is not the rate-limiting step in the formation of photoactive thylakoid membranes.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Janine Arnold
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Veronika Reisinger
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Hans-Martin Berends
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Karol Kmiec
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Sergey Koroidov
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, 94305, USA
| | - Ann Kristin Bue
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| | - Johannes Messinger
- Department of Chemistry, Chemical Biological Centre, Umeå University, S-90187, Umeå, Sweden
| | - Lutz A Eichacker
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036, Stavanger, Norway
| |
Collapse
|
10
|
Ananyev G, Gates C, Dismukes GC. The Oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1380-1391. [PMID: 27117512 DOI: 10.1016/j.bbabio.2016.04.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/07/2023]
Abstract
We have measured flash-induced oxygen quantum yields (O2-QYs) and primary charge separation (Chl variable fluorescence yield, Fv/Fm) in vivo among phylogenetically diverse microalgae and cyanobacteria. Higher O2-QYs can be attained in cells by releasing constraints on charge transfer at the Photosystem II (PSII) acceptor side by adding membrane-permeable benzoquinone (BQ) derivatives that oxidize plastosemiquinone QB(-) and QBH2. This method allows uncoupling PSII turnover from its natural regulation in living cells, without artifacts of isolating PSII complexes. This approach reveals different extents of regulation across species, controlled at the QB(-) acceptor site. Arthrospira maxima is confirmed as the most efficient PSII-WOC (water oxidizing complex) and exhibits the least regulation of flux. Thermosynechococcus elongatus exhibits an O2-QY of 30%, suggesting strong downregulation. WOC cycle simulations with the most accurate model (VZAD) show that a light-driven backward transition (net addition of an electron to the WOC, distinct from recombination) occurs in up to 25% of native PSIIs in the S2 and S3 states, while adding BQ prevents backward transitions and increases the lifetime of S2 and S3 by 10-fold. Backward transitions occur in PSIIs that have plastosemiquinone radicals in the QB site and are postulated to be physiologically regulated pathways for storing light energy as proton gradient through direct PSII-cyclic electron flow (PSII-CEF). PSII-CEF is independent of classical PSI/cyt-b6f-CEF and provides an alternative proton translocation pathway for energy conversion. PSII-CEF enables variable fluxes between linear and cyclic electron pathways, thus accommodating species-dependent needs for redox and ion-gradient energy sources powered by a single photosystem.
Collapse
Affiliation(s)
- Gennady Ananyev
- The Waksman Institute of Microbiology and the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States
| | - Colin Gates
- The Waksman Institute of Microbiology and the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States
| | - G Charles Dismukes
- The Waksman Institute of Microbiology and the Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States.
| |
Collapse
|
11
|
Pham LV, Messinger J. Probing S-state advancements and recombination pathways in photosystem II with a global fit program for flash-induced oxygen evolution pattern. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:848-59. [PMID: 27033305 DOI: 10.1016/j.bbabio.2016.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/30/2016] [Accepted: 03/12/2016] [Indexed: 12/22/2022]
Abstract
The oxygen-evolving complex (OEC) in photosystem II catalyzes the oxidation of water to molecular oxygen. Four decades ago, measurements of flash-induced oxygen evolution have shown that the OEC steps through oxidation states S(0), S(1), S(2), S(3) and S(4) before O(2) is released and the S(0) state is reformed. The light-induced transitions between these states involve misses and double hits. While it is widely accepted that the miss parameter is S state dependent and may be further modulated by the oxidation state of the acceptor side, the traditional way of analyzing each flash-induced oxygen evolution pattern (FIOP) individually did not allow using enough free parameters to thoroughly test this proposal. Furthermore, this approach does not allow assessing whether the presently known recombination processes in photosystem II fully explain all measured oxygen yields during Si state lifetime measurements. Here we present a global fit program that simultaneously fits all flash-induced oxygen yields of a standard FIOP (2 Hz flash frequency) and of 11-18 FIOPs each obtained while probing the S(0), S(2) and S(3) state lifetimes in spinach thylakoids at neutral pH. This comprehensive data treatment demonstrates the presence of a very slow phase of S(2) decay, in addition to the commonly discussed fast and slow reduction of S(2) by YD and QB(-), respectively. Our data support previous suggestions that the S(0)→S(1) and S(1)→S(2) transitions involve low or no misses, while high misses occur in the S(2)→S(3) or S(3)→S(0) transitions.
Collapse
Affiliation(s)
- Long Vo Pham
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Johannes Messinger
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden.
| |
Collapse
|
12
|
Estimation of the driving force for dioxygen formation in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:23-33. [DOI: 10.1016/j.bbabio.2015.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/10/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
|
13
|
Substrate water exchange in photosystem II core complexes of the extremophilic red alga Cyanidioschyzon merolae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1257-62. [DOI: 10.1016/j.bbabio.2014.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
|
14
|
Noguchi T. Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:35-45. [PMID: 24998309 DOI: 10.1016/j.bbabio.2014.06.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 01/15/2023]
Abstract
Photosynthetic water oxidation, which provides the electrons necessary for CO₂ reduction and releases O₂ and protons, is performed at the Mn₄CaO₅ cluster in photosystem II (PSII). In this review, studies that assessed the mechanism of water oxidation using infrared spectroscopy are summarized focusing on electron and proton transfer dynamics. Structural changes in proteins and water molecules between intermediates known as Si states (i=0-3) were detected using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Electron flow in PSII and proton release from substrate water were monitored using the infrared changes in ferricyanide as an exogenous electron acceptor and Mes buffer as a proton acceptor. Time-resolved infrared (TRIR) spectroscopy provided information on the dynamics of proton-coupled electron transfer during the S-state transitions. In particular, a drastic proton movement during the lag phase (~200μs) before electron transfer in the S3→S0 transition was detected directly by monitoring the infrared absorption of a polarizable proton in a hydrogen bond network. Furthermore, the proton release pathways in the PSII proteins were analyzed by FTIR difference measurements in combination with site-directed mutagenesis, isotopic substitutions, and quantum chemical calculations. Therefore, infrared spectroscopy is a powerful tool for understanding the molecular mechanism of photosynthetic water oxidation. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Takumi Noguchi
- Division of Material Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
| |
Collapse
|
15
|
Pham LV, Messinger J. Electrochemically produced hydrogen peroxide affects Joliot-type oxygen-evolution measurements of photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1411-6. [PMID: 24486444 DOI: 10.1016/j.bbabio.2014.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 11/19/2022]
Abstract
The main technique employed to characterize the efficiency of water-splitting in photosynthetic preparations in terms of miss and double hit parameters and for the determination of Si (i=2,3,0) state lifetimes is the measurement of flash-induced oxygen oscillation pattern on bare platinum (Joliot-type) electrodes. We demonstrate here that this technique is not innocent. Polarization of the electrode against an Ag/AgCl electrode leads to a time-dependent formation of hydrogen peroxide by two-electron reduction of dissolved oxygen continuously supplied by the flow buffer. While the miss and double hit parameters are almost unaffected by H₂O₂, a time dependent reduction of S1 to S₋₁ occurs over a time period of 20 min. The S1 reduction can be largely prevented by adding catalase or by removing O₂ from the flow buffer with N₂. Importantly, we demonstrate that even at the shortest possible polarization times (40s in our set up) the S₂ and S₀ decays are significantly accelerated by the side reaction with H₂O₂. The removal of hydrogen peroxide leads to unperturbed S₂ state data that reveal three instead of the traditionally reported two phases of decay. In addition, even under the best conditions (catalase+N₂; 40s polarization) about 4% of S₋₁ state is observed in well dark-adapted samples, likely indicating limitations of the equal fit approach. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.
Collapse
Affiliation(s)
- Long Vo Pham
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden
| | - Johannes Messinger
- Department of Chemistry, Chemistry Biology Center (KBC), Umeå University, Linnaeus väg 6, SE-901 87 Umeå, Sweden.
| |
Collapse
|
16
|
Shevela D, Nöring B, Koroidov S, Shutova T, Samuelsson G, Messinger J. Efficiency of photosynthetic water oxidation at ambient and depleted levels of inorganic carbon. PHOTOSYNTHESIS RESEARCH 2013; 117:401-12. [PMID: 23828399 DOI: 10.1007/s11120-013-9875-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 06/20/2013] [Indexed: 05/09/2023]
Abstract
Over 40 years ago, Joliot et al. (Photochem Photobiol 10:309-329, 1969) designed and employed an elegant and highly sensitive electrochemical technique capable of measuring O2 evolved by photosystem II (PSII) in response to trains of single turn-over light flashes. The measurement and analysis of flash-induced oxygen evolution patterns (FIOPs) has since proven to be a powerful method for probing the turnover efficiency of PSII. Stemler et al. (Proc Natl Acad Sci USA 71(12):4679-4683, 1974), in Govindjee's lab, were the first to study the effect of "bicarbonate" on FIOPs by adding the competitive inhibitor acetate. Here, we extend this earlier work by performing FIOPs experiments at various, strictly controlled inorganic carbon (Ci) levels without addition of any inhibitors. For this, we placed a Joliot-type bare platinum electrode inside a N2-filled glove-box (containing 10-20 ppm CO2) and reduced the Ci concentration simply by washing the samples in Ci-depleted media. FIOPs of spinach thylakoids were recorded either at 20-times reduced levels of Ci or at ambient Ci conditions (390 ppm CO2). Numerical analysis of the FIOPs within an extended Kok model reveals that under Ci-depleted conditions the miss probability is discernibly larger (by 2-3 %) than at ambient conditions, and that the addition of 5 mM HCO3 (-) to the Ci-depleted thylakoids largely restores the original miss parameter. Since a "mild" Ci-depletion procedure was employed, we discuss our data with respect to a possible function of free or weakly bound HCO3 (-) at the water-splitting side of PSII.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Department of Chemistry, Chemical Biological Centre, University of Umeå, 90187, Umeå, Sweden,
| | | | | | | | | | | |
Collapse
|
17
|
Cox N, Messinger J. Reflections on substrate water and dioxygen formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1020-30. [PMID: 23380392 DOI: 10.1016/j.bbabio.2013.01.013] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
This brief article aims at presenting a concise summary of all experimental findings regarding substrate water-binding to the Mn4CaO5 cluster in photosystem II. Mass spectrometric and spectroscopic results are interpreted in light of recent structural information of the water oxidizing complex obtained by X-ray crystallography, spectroscopy and theoretical modeling. Within this framework current proposals for the mechanism of photosynthetic water-oxidation are evaluated. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany
| | | |
Collapse
|
18
|
Suzuki H, Sugiura M, Noguchi T. Determination of the Miss Probabilities of Individual S-State Transitions during Photosynthetic Water Oxidation by Monitoring Electron Flow in Photosystem II Using FTIR Spectroscopy. Biochemistry 2012; 51:6776-85. [DOI: 10.1021/bi300708a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hiroyuki Suzuki
- Division of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Miwa Sugiura
- Cell-Free Science and Technology
Research Center, Ehime University, Matsuyama,
Ehime 790-8577, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8, Honcho, Kawagchi,
Saitama 332-0012, Japan
| | - Takumi Noguchi
- Division of Material Science,
Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
19
|
Han G, Mamedov F, Styring S. Misses during water oxidation in photosystem II are S state-dependent. J Biol Chem 2012; 287:13422-9. [PMID: 22374999 DOI: 10.1074/jbc.m112.342543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The period of four oscillation of the S state intermediates of the water oxidizing complex in Photosystem II (PSII) is commonly analyzed by the Kok parameters. The important miss factor determines the efficiency for each S transition. Commonly, an equal miss factor has been used in the analysis. We have used EPR signals which probe all S states in the same sample during S cycle advancement. This allows, for the first time, to measure directly the miss parameter for each S state transition. Experiments were performed in PSII membrane preparations from spinach in the presence of electron acceptor at 1 °C and 20 °C. The data show that the miss parameter is different in different transitions and shows different temperature dependence. We found no misses at 1 °C and 10% misses at 20 °C during the S(1)→S(2) transition. The highest miss factor was found in the S(2)→S(3) transition which decreased from 23% to 16% with increasing temperature. For the S(3)→S(0) transition the miss parameter was found to be 7% at 1 °C and decreased to 3% at 20 °C. For the S(0)→S(1) transition the miss parameter was found to be approximately 10% at both temperatures. The contribution from the acceptor side in the form of recombination reactions as well as from the donor side of PSII to the uneven misses is discussed. It is suggested that the different transition efficiency in each S transition partly reflects the chemistry at the CaMn(4)O(5) cluster. That consequently contributes to the uneven misses during S cycle turnover in PSII.
Collapse
Affiliation(s)
- Guangye Han
- Photochemistry and Molecular Science, the Department of Chemistry-Ångström, Box 523, Uppsala University, 751 20 Uppsala, Sweden
| | | | | |
Collapse
|
20
|
Chen G, Han G, Göransson E, Mamedov F, Styring S. Stability of the S3 and S2 State Intermediates in Photosystem II Directly Probed by EPR Spectroscopy. Biochemistry 2011; 51:138-48. [PMID: 22112168 DOI: 10.1021/bi200627j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guiying Chen
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Guangye Han
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Erik Göransson
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| |
Collapse
|
21
|
Su JH, Messinger J. Is Mn-Bound Substrate Water Protonated in the S(2) State of Photosystem II? APPLIED MAGNETIC RESONANCE 2010; 37:123-136. [PMID: 19960065 PMCID: PMC2784071 DOI: 10.1007/s00723-009-0051-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 06/23/2009] [Indexed: 05/28/2023]
Abstract
In spite of great progress in resolving the geometric structure of the water-splitting Mn(4)O(x)Ca cluster in photosystem II, the binding sites and modes of the two substrate water molecules are still insufficiently characterized. While time-resolved membrane-inlet mass spectrometry measurements indicate that both substrate water molecules are bound to the oxygen-evolving complex (OEC) in the S(2) and S(3) states (Hendry and Wydrzynski in Biochemistry 41:13328-13334, 2002), it is not known (1) if they are both Mn-bound, (2) if they are terminal or bridging ligands, and (3) in what protonation state they are bound in the different oxidation states S(i) (i = 0, 1, 2, 3, 4) of the OEC. By employing (17)O hyperfine sublevel correlation (HYSCORE) spectroscopy we recently demonstrated that in the S(2) state there is only one (type of) Mn-bound oxygen that is water exchangeable. We therefore tentatively identified this oxygen as one substrate 'water' molecule, and on the basis of the finding that it has a hyperfine interaction of about 10 MHz with the electron spin of the Mn(4)O(x)Ca cluster, we suggest that it is bound as a Mn-O-Mn bridge within a bis-mu(2) oxo-bridged unit (Su et al. in J Am Chem Soc 130:786-787, 2008). Employing pulse electron paramagnetic resonance, (1)H/(2)H Mims electron-nuclear double resonance and (2)H-HYSCORE spectroscopies together with (1)H/(2)H-exchange here, we test this hypothesis by probing the protonation state of this exchangeable oxygen. We conclude that this oxygen is fully deprotonated. This result is discussed in the light of earlier reports in the literature.
Collapse
Affiliation(s)
- Ji-Hu Su
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
| | - Johannes Messinger
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
- Department of Chemistry, Chemical Biological Center (KBC), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
22
|
Renger G, Hanssum B. Oxygen detection in biological systems. PHOTOSYNTHESIS RESEARCH 2009; 102:487-98. [PMID: 19543804 DOI: 10.1007/s11120-009-9434-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 05/06/2009] [Indexed: 05/12/2023]
Abstract
This article presents a brief description of analytical tools for monitoring evolution and consumption of molecular dioxygen in biological organisms. Based on its nature as a gas and its physical and chemical properties of the ground state ³Σ(g)O₂; different approaches have been developed for quantitative determinations: (i) manometry, (ii) formation of titratable sediments, (iii) solid state electrodes, (iv) EPR oximetry, (v) luminescence quenching, (vi) biological sensoring, (vii) mass spectrometry and (viii) amperometry. Among these methods mass spectrometry and amperometry are of special relevance for studies on the mechanisms of photosynthetic dioxygen evolution. Mass spectrometry is described in the article of Beckman et al. in this special issue. Therefore, the major part of this contribution focuses on amperometric methods that are currently widely used. Two different types of electrodes are described: (i) Clark-type electrode and (ii) Joliot-type electrode. The complementary advantages of both systems are outlined. A more detailed description comprises the potential of the Joliot-type electrode for mechanistic studies on the reactivity of the different redox states of the water oxidizing complex (WOC).
Collapse
Affiliation(s)
- Gernot Renger
- Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Technische Universität Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | | |
Collapse
|
23
|
Sugiura M, Rappaport F, Hillier W, Dorlet P, Ohno Y, Hayashi H, Boussac A. Evidence that D1-His332 in photosystem II from Thermosynechococcus elongatus interacts with the S3-state and not with the S2-state. Biochemistry 2009; 48:7856-66. [PMID: 19624137 DOI: 10.1021/bi901067b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxygen evolution by Photosystem II (PSII) is catalyzed by a Mn(4)Ca cluster. Thus far, from the crystallographic three-dimensional (3D) structures, seven amino acid residues have been identified as possible ligands of the Mn(4)Ca cluster. Among them, there is only one histidine, His332, which belongs to the D1 polypeptide. The relationships of the D1-His332 amino acid with kinetics and thermodynamic properties of the Mn(4)Ca cluster in the S(2)- and S(3)-states of the catalytic cycle were investigated in purified PSII from Thermosynechococcus elongatus. This was done by examining site-directed D1-His332Gln and D1-His332Ser mutants by a variety of spectroscopic techniques such as time-resolved UV-visible absorption change spectroscopy, cw- and pulse-EPR, thermoluminescence, and measurement of substrate water exchange. Both mutants grew photo-autotrophically and active PSII could be purified. On the basis of the parameters assessed in this work, the D1-His332(Gln, Ser) mutations had no effect in the S(2)-state. Electron spin-echo envelope modulation (ESEEM) spectroscopy also showed that possible interactions between the nuclear spin of the nitrogen(s) of D1-His332 with the electronic spin S = 1/2 of the Mn(4)Ca cluster in the S(2)-state were not detectable and that the D1-His332Ser mutation did not affect the detected hyperfine couplings. In contrast, the following changes were observed in the S(3)-state of the D1-His332 mutants: (1) The redox potential of the S(3)/S(2) couple was slightly increased by < or = 20 meV, (2) The S(3)-EPR spectrum was slightly modified, (3) The D1-His332Gln mutation resulted in a approximately 3 fold decrease of the slow (tightly bound) exchange rate and a approximately 2 fold increase of the fast exchange rate of the water substrate molecules. All these results suggest that the D1-His332 would be more involved in S(3) than in S(2). This could be one element of the conformational changes put forward in the S(2) to S(3) transition.
Collapse
Affiliation(s)
- Miwa Sugiura
- Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama Ehime, 790-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Jablonsky J, Susila P, Lazar D. Impact of dimeric organization of enzyme on its function: the case of photosynthetic water splitting. ACTA ACUST UNITED AC 2008; 24:2755-9. [PMID: 18845578 DOI: 10.1093/bioinformatics/btn530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION It is a question of whether the supramolecular organization of the protein complex has an impact on its function, or not. In the case of the photosystem II (PSII), water splitting might be influenced by cooperation of the PSIIs. Since PSII is the source of the atmospheric oxygen and because better understanding of the water splitting may contribute to the effective use of water as an alternative energy source, possible cooperation should be analyzed and discussed. RESULTS We suggest that the dimeric organization of the PSII induces cooperation in the water splitting. We show that the model of monomeric PSII is unable to produce the oxygen after the second short flash (associated with the double turnover of the PSII), in contrast to the experimental data and model of dimeric PSII with considered cooperation. On the basis of this fact and partially from the support from other studies, we concluded that the double turnover of the PSII induced by short flashes might be caused by the cooperation in the water splitting. We further discuss a possibility that the known pathway of the electron transport through the PSII might be incomplete and besides D1-Y161, other cofactor which is able to oxidize the special chlorophyll pair (P680) must be considered in the monomeric PSII to explain the oxygen production after the second short flash. AVAILABILITY Commented SBML codes (.XML files) of the monomeric and dimeric PSII models will be available (at the time of publication) in the BioModels database (www.ebi.ac.uk/biomodels).
Collapse
Affiliation(s)
- Jiri Jablonsky
- Laboratory of Biophysics, Faculty of Science, Palacky University, Tr. Svobody 26, 771 46 Olomouc, Czech Republic
| | | | | |
Collapse
|
25
|
Renger G, Renger T. Photosystem II: The machinery of photosynthetic water splitting. PHOTOSYNTHESIS RESEARCH 2008; 98:53-80. [PMID: 18830685 DOI: 10.1007/s11120-008-9345-7] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 07/29/2008] [Indexed: 05/26/2023]
Abstract
This review summarizes our current state of knowledge on the structural organization and functional pattern of photosynthetic water splitting in the multimeric Photosystem II (PS II) complex, which acts as a light-driven water: plastoquinone-oxidoreductase. The overall process comprises three types of reaction sequences: (1) photon absorption and excited singlet state trapping by charge separation leading to the ion radical pair [Formula: see text] formation, (2) oxidative water splitting into four protons and molecular dioxygen at the water oxidizing complex (WOC) with P680+* as driving force and tyrosine Y(Z) as intermediary redox carrier, and (3) reduction of plastoquinone to plastoquinol at the special Q(B) binding site with Q(A)-* acting as reductant. Based on recent progress in structure analysis and using new theoretical approaches the mechanism of reaction sequence (1) is discussed with special emphasis on the excited energy transfer pathways and the sequence of charge transfer steps: [Formula: see text] where (1)(RC-PC)* denotes the excited singlet state (1)P680* of the reaction centre pigment complex. The structure of the catalytic Mn(4)O(X)Ca cluster of the WOC and the four step reaction sequence leading to oxidative water splitting are described and problems arising for the electronic configuration, in particular for the nature of redox state S(3), are discussed. The unravelling of the mode of O-O bond formation is of key relevance for understanding the mechanism of the process. This problem is not yet solved. A multistate model is proposed for S(3) and the functional role of proton shifts and hydrogen bond network(s) is emphasized. Analogously, the structure of the Q(B) site for PQ reduction to PQH(2) and the energetic and kinetics of the two step redox reaction sequence are described. Furthermore, the relevance of the protein dynamics and the role of water molecules for its flexibility are briefly outlined. We end this review by presenting future perspectives on the water oxidation process.
Collapse
Affiliation(s)
- Gernot Renger
- Max Volmer Laboratory for Biophysical Chemistry, Berlin Institute of Technology, Berlin, Germany.
| | | |
Collapse
|
26
|
Nöring B, Shevela D, Renger G, Messinger J. Effects of methanol on the Si-state transitions in photosynthetic water-splitting. PHOTOSYNTHESIS RESEARCH 2008; 98:251-260. [PMID: 18819015 DOI: 10.1007/s11120-008-9364-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 09/04/2008] [Indexed: 05/26/2023]
Abstract
From a chemical point of view methanol is one of the closest analogues of water. Consistent with this idea EPR spectroscopy studies have shown that methanol binds at-or at least very close to-the Mn(4)O(x)Ca cluster of photosystem II (PSII). In contrast, Clark-type oxygen rate measurements demonstrate that the O(2) evolving activity of PSII is surprisingly unaffected by methanol concentrations of up to 10%. Here we study for the first time in detail the effect of methanol on photosynthetic water-splitting by employing a Joliot-type bare platinum electrode. We demonstrate a linear dependence of the miss parameter for S( i ) state advancement on the methanol concentrations in the range of 0-10% (v/v). This finding is consistent with the idea that methanol binds in PSII with similar affinity as water to one or both substrate binding sites at the Mn(4)O(x)Ca cluster. The possibility is discussed that the two substrate water molecules bind at different stages of the cycle, one during the S(4) --> S(0) and the other during the S(2) --> S(3) transition.
Collapse
Affiliation(s)
- Birgit Nöring
- Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
27
|
Evidence for intermediate S-states as initial phase in the process of oxygen-evolving complex oxidation. Biophys J 2008; 94:2725-36. [PMID: 18178650 DOI: 10.1529/biophysj.107.122861] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have analyzed flash-induced period-four damped oscillation of oxygen evolution and chlorophyll fluorescence with the aid of a kinetic model of photosystem II. We have shown that, for simulation of the period-four oscillatory behavior of oxygen evolution, it is essential to consider the so-called intermediate S-state as an initial phase of each of the S(n)-S(n+1), (n = 0, 1, 2, 3) transitions. The intermediate S-states are defined as [S(n)Y(Z)(ox)]-states (n = 0, 1, 2, 3) and are formed with rate constant k(iSn) approximately 1.5 x 10(6) s(-1), which was determined from comparison of theoretical predictions with experimental data. The assumed intermediate S-states shift the equilibrium in reaction P680(+)Y(Z)<-->P680Y(Z)(ox) more to the right and we suggest that kinetics of the intermediate S-states reflects a relaxation process associated with changes of the redox equilibrium in the above reaction. The oxygen oscillation is simulated without the miss and double-hit parameters, if the intermediate S-states, which are not the source of the misses or the double-hits, are included in the simulation. Furthermore, we have shown that the intermediate S-states, together with S(2)Q(A)(-) charge recombination, are prerequisites for the simulation of the period-four oscillatory behavior of the chlorophyll fluorescence.
Collapse
|
28
|
Shevela D, Klimov V, Messinger J. Interactions of photosystem II with bicarbonate, formate and acetate. PHOTOSYNTHESIS RESEARCH 2007; 94:247-64. [PMID: 17653834 DOI: 10.1007/s11120-007-9200-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 05/16/2007] [Indexed: 05/16/2023]
Abstract
In this study, we probe the effects of bicarbonate (hydrogencarbonate), BC, removal from photosystem II in spinach thylakoids by measuring flash-induced oxygen evolution patterns (FIOPs) with a Joliot-type electrode. For this we compared three commonly employed methods: (1) washing in BC-free medium, (2) formate addition, and (3) acetate addition. Washing of the samples with buffers depleted of BC and CO2 by bubbling with argon (Method 1) under our conditions leads to an increase in the double hit parameter of the first flash (beta 1), while the miss parameter and the overall activity remain unchanged. In contrast, addition of 40-50 mM formate or acetate results in a significant increase in the miss parameter and to an approximately 50% (formate) and approximately 10% (acetate) inhibition of the overall oxygen evolution activity, but not to an increased beta 1 parameter. All described effects could be reversed by washing with formate/acetate free buffer and/or addition of 2-10 mM bicarbonate. The redox potential of the water-oxidizing complex (WOC) in samples treated by Method 1 is compared to samples containing 2 mM bicarbonate in two ways: (1) The lifetimes of the S0, S2, and S3 states were measured, and no differences were found between the two sample types. (2) The S1, S0, S(-1), and S(-2) states were probed by incubation with small concentrations of NH2OH. These experiments displayed a subtle, yet highly reproducible difference in the apparent Si/S(-i) state distribution which is shown to arise from the interaction of BC with PSII in the already reduced states of the WOC. These data are discussed in detail by also taking into account the CO2 concentrations present in the buffers after argon bubbling and during the measurements. These values were measured by membrane-inlet mass spectrometry (MIMS).
Collapse
Affiliation(s)
- Dmitriy Shevela
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
29
|
Sveshnikov D, Funk C, Schröder WP. The PsbP-like protein (sll1418) of Synechocystis sp. PCC 6803 stabilises the donor side of Photosystem II. PHOTOSYNTHESIS RESEARCH 2007; 93:101-9. [PMID: 17516145 DOI: 10.1007/s11120-007-9171-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 04/12/2007] [Indexed: 05/15/2023]
Abstract
The PsbP-like protein of the cyanobacterium Synechocystis sp. PCC 6803 is a peripheral component of Photosystem II, located at the lumenal side of the thylakoid membrane. Removal of this protein leads to decreased competitive potential of a PsbP-like deletion mutant when grown in a mixture with wild-type cells. Flash-induced oxygen evolution traces of the mutant show a higher probability of misses, correlated with increased amplitudes of the S-states decay in the dark. Thermoluminescence emission traces demonstrate a changed charge recombination pattern in the mutant, the S(3)Q(B)(-) couple becoming the major species instead of the S(2)Q(B)(-). Our data suggest a possible role of the PsbP-like protein in stabilisation of the charge separation in Photosystem II of cyanobacteria through interaction with the Mn cluster.
Collapse
|
30
|
Renger G. Oxidative photosynthetic water splitting: energetics, kinetics and mechanism. PHOTOSYNTHESIS RESEARCH 2007; 92:407-25. [PMID: 17647091 DOI: 10.1007/s11120-007-9185-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 04/19/2007] [Indexed: 05/16/2023]
Abstract
This minireview is an attempt to summarize our current knowledge on oxidative water splitting in photosynthesis. Based on the extended Kok model (Kok, Forbush, McGloin (1970) Photochem Photobiol 11:457-476) as a framework, the energetics and kinetics of two different types of reactions comprising the overall process are discussed: (i) P680+* reduction by the redox active tyrosine YZ of polypeptide D1 and (ii) Yz (ox) induced oxidation of the four step sequence in the water oxidizing complex (WOC) leading to the formation of molecular oxygen. The mode of coupling between electron transport (ET) and proton transfer (PT) is of key mechanistic relevance for the redox turnover of YZ and the reactions within the WOC. The peculiar energetics of the oxidation steps in the WOC assure that redox state S1 is thermodynamically most stable. This is a general feature in all oxygen evolving photosynthetic organisms and assumed to be of physiological relevance. The reaction coordinate of oxidative water splitting is discussed on the basis of the available information about the Gibbs energy differences between the individual redox states Si+1 and Si and the data reported for the activation energies of the individual oxidation steps in the WOC. Finally, an attempt is made to cast our current state of knowledge into a mechanism of oxidative water splitting with special emphasis on the formation of the essential O-O bond and on the active role of the protein in tuning the local proton activity that depends on time and redox state Si. The O-O linkage is assumed to take place at the level of a complexed peroxide.
Collapse
Affiliation(s)
- Gernot Renger
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
31
|
Krivanek R, Kern J, Zouni A, Dau H, Haumann M. Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:520-7. [PMID: 17397795 DOI: 10.1016/j.bbabio.2007.02.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 02/13/2007] [Accepted: 02/19/2007] [Indexed: 11/25/2022]
Abstract
The recent crystallographic structure at 3.0 A resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone Q(B). The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O(2) evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of Q(A) and Q(B) were found in the crystallized PSII. We propose that the extra quinones are located in the Q(B) cavity and serve as a PSII intrinsic pool of electron acceptors.
Collapse
Affiliation(s)
- Roland Krivanek
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Renger G, Kühn P. Reaction pattern and mechanism of light induced oxidative water splitting in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:458-71. [PMID: 17428439 DOI: 10.1016/j.bbabio.2006.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 12/08/2006] [Accepted: 12/13/2006] [Indexed: 11/18/2022]
Abstract
This mini review is an attempt to briefly summarize our current knowledge on light driven oxidative water splitting in photosynthesis. The reaction leading to molecular oxygen and four protons via photosynthesis comprises thermodynamic and kinetic constraints that require a balanced fine tuning of the reaction coordinates. The mode of coupling between electron (ET) and proton transfer (PT) reactions is shown to be of key mechanistic relevance for the redox turnover of Y(Z) and the reactions within the WOC. The WOC is characterized by peculiar energetics of its oxidation steps in the WOC. In all oxygen evolving photosynthetic organisms the redox state S(1) is thermodynamically most stable and therefore this general feature is assumed to be of physiological relevance. Available information on the Gibbs energy differences between the individual redox states S(i+1) and S(i) and on the activation energies of their oxidative transitions are used to construct a general reaction coordinate of oxidative water splitting in photosystem II (PS II). Finally, an attempt is presented to cast our current state of knowledge into a mechanism of oxidative water splitting with special emphasis on the formation of the essential O-O bond and the active role of the protein environment in tuning the local proton activity that depends on time and redox state S(i). The O-O linkage is assumed to take place within a multistate equilibrium at the redox level of S(3), comprising both redox isomerism and proton tautomerism. It is proposed that one state, S(3)(P), attains an electronic configuration and nuclear geometry that corresponds with a hydrogen bonded peroxide which acts as the entatic state for the generation of complexed molecular oxygen through S(3)(P) oxidation by Y(Z)(ox).
Collapse
Affiliation(s)
- Gernot Renger
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Strasse des 17.Juni 135, D-10623 Berlin, Germany.
| | | |
Collapse
|
33
|
Shevela D, Nöring B, Eckert HJ, Messinger J, Renger G. Characterization of the water oxidizing complex of photosystem II of the Chl d-containing cyanobacterium Acaryochloris marina via its reactivity towards endogenous electron donors and acceptors. Phys Chem Chem Phys 2006; 8:3460-6. [PMID: 16855726 DOI: 10.1039/b604389e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acaroychloris (A.) marina is a unique oxygen evolving organism that contains a large amount of chlorophyll d (Chl d) and only very few Chl a molecules. This feature raises questions on the nature of the photoactive pigment, which supports light-induced oxidative water splitting in Photosystem II (PS II). In this study, flash-induced oxygen evolution patterns (FIOPs) were measured to address the question whether the S(i) state transition probabilities and/or the redox-potentials of the water oxidizing complex (WOC) in its different S(i) states are altered in A. marina cells compared to that of spinach thylakoids. The analysis of the obtained data within the framework of different versions of the Kok model reveals that in light activated A. marina cells the miss probability is similar compared to spinach thylakoids. This finding indicates that the redox-potentials and kinetics within the WOC, of the reaction center (P680) and of Y(Z) are virtually the same for both organisms. This conclusion is strongly supported by lifetime measurements of the S(2) and S(3) states. Virtually identical time constants were obtained for the slow phase of deactivation. Kinetic differences in the fast phase of S(2) and S(3) decay between A. marina cells and spinach thylakoids reflect a shift of the E(m) of Y(D)/Y(D)(ox) to lower values in the former compared to the latter organisms, as revealed by the observation of an opposite change in the kinetics of S(0) oxidation to S(1) by Y(D)(ox). A slightly increased double hit probability in A. marina cells is indicative of a faster Q(A)(-) to Q(B) electron transfer in these cells compared to spinach thylakoids.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 32-34, D-45470, Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
34
|
Kaminskaya O, Kern J, Shuvalov VA, Renger G. Extinction coefficients of cytochromes b559 and c550 of Thermosynechococcus elongatus and Cyt b559/PS II stoichiometry of higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:333-41. [PMID: 15950926 DOI: 10.1016/j.bbabio.2005.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/21/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
"Reduced minus oxidized" difference extinction coefficients Deltavarepsilon in the alpha-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1+/-1.0 mM(-1) cm(-1) and 27.0+/-1.0 mM(-1) cm(-1) were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from -250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with E(m) values at pH 6.5 of 244+/-11 mV and -94+/-21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the alpha-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the Q(B) site and the microenvironment of the heme group of Cyt b559 are discussed.
Collapse
Affiliation(s)
- Olga Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russia
| | | | | | | |
Collapse
|
35
|
Shinkarev VP. Flash-induced oxygen evolution in photosynthesis: simple solution for the extended S-state model that includes misses, double-hits, inactivation, and backward-transitions. Biophys J 2005; 88:412-21. [PMID: 15475587 PMCID: PMC1305018 DOI: 10.1529/biophysj.104.050898] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 09/29/2004] [Indexed: 11/18/2022] Open
Abstract
Flash-induced oxygen evolution in higher plants, algae, and cyanobacteria exhibits damped period-four oscillations. To explain such oscillations, Kok suggested a simple phenomenological S-state model, in which damping is due to empirical misses and double-hits. Here we developed an analytical solution for the extended Kok model that includes misses, double-hits, inactivation, and backward-transitions. The solution of the classic Kok model (with misses and double-hits only) can be obtained as a particular case of this solution. Simple equations describing the flash-number dependence of individual S-states and oxygen evolution in both cases are almost identical and, therefore, the classic Kok model does not have a significant advantage in its simplicity over the extended version considered in this article. Developed equations significantly simplify the fitting of experimental data via standard nonlinear regression analysis and make unnecessary the use of many previously developed methods for finding parameters of the model. The extended Kok model considered here can provide additional insight into the effect of dark relaxation between flashes and inactivation.
Collapse
Affiliation(s)
- Vladimir P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
36
|
Renger G. Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1655:195-204. [PMID: 15100032 DOI: 10.1016/j.bbabio.2003.07.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2003] [Revised: 07/23/2003] [Accepted: 07/23/2003] [Indexed: 11/29/2022]
Abstract
This minireview addresses questions on the mechanism of oxidative water cleavage with special emphasis on the coupling of electron (ET) and proton transfer (PT) of each individual redox step of the reaction sequence and on the mode of O-O bond formation. The following topics are discussed: (1) the multiphasic kinetics of Y(Z)(ox) formation by P680(+*) originate from three different types of rate limitations: (i) nonadiabatic electron transfer for the "fast" ns reaction, (ii) local "dielectric" relaxation for the "slow" ns reaction, and (iii) "large-scale" proton shift for the micros kinetics; (2) the ET/PT-coupling mode of the individual redox transitions within the water oxidizing complex (WOC) driven by Y(Z)(ox) is assumed to depend on the redox state S(i): the oxidation steps of S(0) and S(1) comprise separate ET and PT pathways while those of S(2) and S(3) take place via proton-coupled electron transfer (PCET) analogous to Jerry Babcock's hydrogen atom abstractor model [Biochim. Biophys. Acta, 1458 (2000) 199]; (3) S(3) is postulated to be a multistate redox level of the WOC with fast dynamic equilibria of both redox isomerism and proton tautomerism. The primary event in the essential O-O bond formation is the population of a state S(3)(P) characterized by an electronic configuration and nuclear geometry that corresponds with a complexed hydrogen peroxide; (4) the peroxidic type S(3)(P) is the entatic state for formation of complexed molecular oxygen through S(3) oxidation by Y(Z)(ox); and (5) the protein matrix itself is proposed to exert catalytic activity by functioning as "PCET director". The WOC is envisaged as a supermolecule that is especially tailored for oxidative water cleavage and acts as a molecular machine.
Collapse
Affiliation(s)
- G Renger
- Max-Volmer-Laboratory of the Institute of Chemistry, Technical University Berlin, PC 14, Strasse des 17 Juni 135, D-10623 Berlin, Germany.
| |
Collapse
|
37
|
Boussac A, Rappaport F, Carrier P, Verbavatz JM, Gobin R, Kirilovsky D, Rutherford AW, Sugiura M. Biosynthetic Ca2+/Sr2+ Exchange in the Photosystem II Oxygen-evolving Enzyme of Thermosynechococcus elongatus. J Biol Chem 2004; 279:22809-19. [PMID: 14990562 DOI: 10.1074/jbc.m401677200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The thermophilic cyanobacterium, Thermosynechococcus elongatus, has been grown in the presence of Sr2+ instead of Ca2+ with the aim of biosynthetically replacing the Ca2+ of the oxygen-evolving enzyme with Sr2+. Not only were the cells able to grow normally with Sr2+, they actively accumulated the ion to levels higher than those of Ca2+ in the normal cultures. A protocol was developed to purify a fully active Sr(2+)-containing photosystem II (PSII). The modified enzyme contained a normal polypeptide profile and 1 strontium/4 manganese, indicating that the normal enzyme contains 1 calcium/4 manganese. The Sr(2+)- and Ca(2+)-containing enzymes were compared using EPR spectroscopy, UV-visible absorption spectroscopy, and O2 polarography. The Ca2+/Sr2+ exchange resulted in the modification of the EPR spectrum of the manganese cluster and a slower turnover of the redox cycle (the so-called S-state cycle), resulting in diminished O2 evolution activity under continuous saturating light: all features reported previously by biochemical Ca2+/Sr2+ exchange in plant PSII. This allays doubts that these changes could be because of secondary effects induced by the biochemical treatments themselves. In addition, the Sr(2+)-containing PSII has other kinetics modifications: 1) it has an increased stability of the S3 redox state; 2) it shows an increase in the rate of electron donation from TyrD, the redox-active tyrosine of the D2 protein, to the oxygen-evolving complex in the S3-state forming S2; 3) the rate of oxidation of the S0-state to the S1-state by TyrD* is increased; and 4) the release of O2 is slowed down to an extent similar to that seen for the slowdown of the S3TyrZ* to S0TyrZ transition, consistent with the latter constituting the limiting step of the water oxidation mechanism in Sr(2+)-substituted enzyme as well as in the normal enzyme. The replacement of Ca2+ by Sr2+ appears to have multiple effects on kinetics properties of the enzyme that may be explained by S-state-dependent shifts in the redox properties of both the manganese complex and TyrZ as well as structural effects.
Collapse
Affiliation(s)
- Alain Boussac
- Service de Bioénergétique, DBJC, URA CNRS 2096, CEA Saclay, 91191 Gif sur Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kühn P, Eckert HJ, Eichler HJ, Renger G. Analysis of the P680+˙ reduction pattern and its temperature dependence in oxygen-evolving PS II core complexes from thermophilic cyanobacteria and higher plants. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407656g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|