1
|
Milovanovic D, Jahn R. Organization and dynamics of SNARE proteins in the presynaptic membrane. Front Physiol 2015; 6:89. [PMID: 25852575 PMCID: PMC4365744 DOI: 10.3389/fphys.2015.00089] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/05/2015] [Indexed: 01/19/2023] Open
Abstract
Our view of the lateral organization of lipids and proteins in the plasma membrane has evolved substantially in the last few decades. It is widely accepted that many, if not all, plasma membrane proteins and lipids are organized in specific domains. These domains vary widely in size, composition, and stability, and they represent platforms governing diverse cell functions. The presynaptic plasma membrane is a well-studied example of a membrane which undergoes rearrangements, especially during exo- and endocytosis. Many proteins and lipids involved in presynaptic function are known, and major efforts have been made to understand their spatial organization and dynamics. Here, we focus on the mechanisms underlying the organization of SNAREs, the key proteins of the fusion machinery, in distinct domains, and we discuss the functional significance of these clusters.
Collapse
Affiliation(s)
- Dragomir Milovanovic
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry Göttingen, Germany
| |
Collapse
|
2
|
Free energy of WALP23 dimer association in DMPC, DPPC, and DOPC bilayers. Chem Phys Lipids 2013; 169:95-105. [DOI: 10.1016/j.chemphyslip.2013.02.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/30/2013] [Accepted: 02/01/2013] [Indexed: 11/23/2022]
|
3
|
Yarrow F. An AFM study of solid-phase bilayers of unsaturated PC lipids and the lateral distribution of the transmembrane model peptide WALP23 in these bilayers. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2011; 40:825-33. [PMID: 21461794 PMCID: PMC3115065 DOI: 10.1007/s00249-011-0696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 10/29/2022]
Abstract
An altered lipid packing can have a large influence on the properties of the membrane and the lateral distribution of proteins and/or peptides that are associated with the bilayer. Here, it is shown by contact-mode atomic force microscopy that the surface topography of solid-phase bilayers of PC lipids with an unsaturated cis bond in their acyl chains shows surfaces with a large number of line-type packing defects, in contrast to the much smoother surfaces observed for saturated PC lipids. Di-n:1-PC (n = 20, 22, 24) and (16:0,18:1)-PC (POPC) were used. Next, the influence of an altered lipid environment on the lateral distribution of the single α-helical model peptide WALP23 was studied by incorporating the peptide in the bilayers of di-n:1-PC (n = 20, 22, 24) and (16:0,18:1)-PC unsaturated lipids. The presence of WALP23 leads to an increase in the number of packing defects but does not lead to the formation of the striated domains that were previously observed in bilayers of saturated PC lipids and WALP. This is ascribed to the less efficient lateral lipid packing of the unsaturated lipids, while the increase in packing defects is probably an indirect effect of the peptide. Finally, the fact that an altered lipid packing affects the distribution of WALP23 is also confirmed in an additional experiment where the solvent TFE (2,2,2-trifluorethanol) is added to bilayers of di-16:0-PC/WALP23. At 3.5 vol% TFE, the previous striated ordering of the peptide is abolished and replaced by loose lines.
Collapse
Affiliation(s)
- F Yarrow
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, The Netherlands.
| |
Collapse
|
4
|
Yarrow F, Kuipers BWM. AFM study of the thermotropic behaviour of supported DPPC bilayers with and without the model peptide WALP23. Chem Phys Lipids 2010; 164:9-15. [PMID: 20932964 DOI: 10.1016/j.chemphyslip.2010.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 09/02/2010] [Accepted: 09/27/2010] [Indexed: 10/19/2022]
Abstract
Temperature-controlled Atomic Force Microscopy (TC-AFM) in Contact Mode is used here to directly image the mechanisms by which melting and crystallization of supported, hydrated DPPC bilayers proceed in the presence and absence of the model peptide WALP23. Melting from the gel L(β)' to the liquid-crystalline L(α) phase starts at pre-existing line-type packing defects (grain boundaries) in absence of the peptide. The exact transition temperature is shown to be influenced by the magnitude of the force exerted by the AFM probe on the bilayer, but is higher than the main transition temperature of non-supported DPPC vesicles in all cases due to bilayer-substrate interactions. Cooling of the fluid L(α) bilayer shows the formation of the line-type defects at the borders between different gel-phase regions that originate from different nuclei. The number of these defects depends directly on the rate of cooling through the transition, as predicted by classical nucleation theory. The presence of the transmembrane, synthetic model peptide WALP23 is known to give rise to heterogeneity in the bilayer as microdomains with a striped appearance are formed in the DPPC bilayer. This striated phase consists of alternating lines of lipids and peptide. It is shown here that melting starts with the peptide-associated lipids in the domains, whose melting temperature is lowered by 0.8-2.0°C compared to the remaining, peptide-free parts of the bilayer. The stabilization of the fluid phase is ascribed to adaptations of the lipids to the shorter peptide. The lipids not associated with the peptide melt at the same temperature as those in the pure DPPC supported bilayer.
Collapse
Affiliation(s)
- F Yarrow
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Science Faculty, Utrecht University, P.O. Box 80000, 3508 TA, Utrecht, The Netherlands.
| | | |
Collapse
|
5
|
Monticelli L, Tieleman DP, Fuchs PF. Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations. Biophys J 2010; 99:1455-64. [PMID: 20816057 PMCID: PMC2931731 DOI: 10.1016/j.bpj.2010.05.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 05/17/2010] [Accepted: 05/21/2010] [Indexed: 01/11/2023] Open
Abstract
Orientation, dynamics, and packing of transmembrane helical peptides are important determinants of membrane protein structure, dynamics, and function. Because it is difficult to investigate these aspects by studying real membrane proteins, model transmembrane helical peptides are widely used. NMR experiments provide information on both orientation and dynamics of peptides, but they require that motional models be interpreted. Different motional models yield different interpretations of quadrupolar splittings (QS) in terms of helix orientation and dynamics. Here, we use coarse-grained (CG) molecular dynamics (MD) simulations to investigate the behavior of a well-known model transmembrane peptide, WALP23, under different hydrophobic matching/mismatching conditions. We compare experimental (2)H-NMR QS (directly measured in experiments), as well as helix tilt angle and azimuthal rotation (not directly measured), with CG MD simulation results. For QS, the agreement is significantly better than previously obtained with atomistic simulations, indicating that equilibrium sampling is more important than atomistic details for reproducing experimental QS. Calculations of helix orientation confirm that the interpretation of QS depends on the motional model used. Our simulations suggest that WALP23 can form dimers, which are more stable in an antiparallel arrangement. The origin of the preference for the antiparallel orientation lies not only in electrostatic interactions but also in better surface complementarity. In most cases, a mixture of monomers and antiparallel dimers provides better agreement with NMR data compared to the monomer and the parallel dimer. CG MD simulations allow predictions of helix orientation and dynamics and interpretation of QS data without requiring any assumption about the motional model.
Collapse
Affiliation(s)
- Luca Monticelli
- INSERM UMR-S 665, DSIMB, Paris, France
- Université Paris Diderot, UFR, Sciences du Vivant, Paris, France
- Institut National de Transfusion Sanguine, Paris, France
| | - D. Peter Tieleman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Patrick F.J. Fuchs
- INSERM UMR-S 665, DSIMB, Paris, France
- Université Paris Diderot, UFR, Sciences du Vivant, Paris, France
- Institut National de Transfusion Sanguine, Paris, France
| |
Collapse
|
6
|
Holt A, Rougier L, Réat V, Jolibois F, Saurel O, Czaplicki J, Killian JA, Milon A. Order parameters of a transmembrane helix in a fluid bilayer: case study of a WALP peptide. Biophys J 2010; 98:1864-72. [PMID: 20441750 PMCID: PMC2862159 DOI: 10.1016/j.bpj.2010.01.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 01/19/2023] Open
Abstract
A new solid-state NMR-based strategy is established for the precise and efficient analysis of orientation and dynamics of transmembrane peptides in fluid bilayers. For this purpose, several dynamically averaged anisotropic constraints, including (13)C and (15)N chemical shift anisotropies and (13)C-(15)N dipolar couplings, were determined from two different triple-isotope-labeled WALP23 peptides ((2)H, (13)C, and (15)N) and combined with previously published quadrupolar splittings of the same peptide. Chemical shift anisotropy tensor orientations were determined with quantum chemistry. The complete set of experimental constraints was analyzed using a generalized, four-parameter dynamic model of the peptide motion, including tilt and rotation angle and two associated order parameters. A tilt angle of 21 degrees was determined for WALP23 in dimyristoylphosphatidylcholine, which is much larger than the tilt angle of 5.5 degrees previously determined from (2)H NMR experiments. This approach provided a realistic value for the tilt angle of WALP23 peptide in the presence of hydrophobic mismatch, and can be applied to any transmembrane helical peptide. The influence of the experimental data set on the solution space is discussed, as are potential sources of error.
Collapse
Affiliation(s)
- Andrea Holt
- Utrecht University, Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht, The Netherlands
| | - Léa Rougier
- Université de Toulouse-Université Paul Sabatier, IPBS, Toulouse, France
- Université de Toulouse-Institut National des Sciences Appliquées-Université Paul Sabatier, LPCNO, Toulouse France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Valérie Réat
- Université de Toulouse-Université Paul Sabatier, IPBS, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Franck Jolibois
- Université de Toulouse-Institut National des Sciences Appliquées-Université Paul Sabatier, LPCNO, Toulouse France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Olivier Saurel
- Université de Toulouse-Université Paul Sabatier, IPBS, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - Jerzy Czaplicki
- Université de Toulouse-Université Paul Sabatier, IPBS, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| | - J. Antoinette Killian
- Utrecht University, Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht, The Netherlands
| | - Alain Milon
- Université de Toulouse-Université Paul Sabatier, IPBS, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
| |
Collapse
|
7
|
Abstract
Membrane-active peptides or protein segments play an important role in many biological processes at the cellular interface to the environment. They are involved, e.g., in cellular fusion or host defense, where they can cause not only merging but also the destabilization of cell membranes. Many factors determine how these typically amphipathic peptides interact with the lipid bilayer. For example, the peptide orientation in the membrane determines which parts of the peptide are exposed to the hydrophobic bilayer interior or to the polar lipid/water interface. As another example, oligomerization is required for many activities such as pore formation. Peptides have been often classified according to a single characteristic mode of interaction with the bilayer, but over the years a more versatile picture has emerged. It appears that any single peptide can adopt several different alignments and/or oligomeric states in response to changes in the environment. For instance, many antimicrobial peptides adopt a surface-parallel alignment at low concentration, but they tilt obliquely into or even fully insert transmembrane into the bilayer above a critical peptide-to-lipid ratio, often in the form of oligomeric pores. Similar changes in peptide orientation or oligomeric state have been observed as a function of, e.g., temperature, lipid composition, pH, or induced by a synergistic partner peptide. Such transitions between peptide states can be regarded as the result of a re-adjustment in the balance between peptide-peptide and peptide-lipid interactions, as the environment conditions are changed. Though often studied in model membrane systems, such rich variety of peptide states is even more likely to occur in native biomembranes with their diverse compositions and physicochemical properties. The ability to undergo transitions between different states thus plays a fundamental role for the biological activities of membrane-active peptides.
Collapse
Affiliation(s)
- Stephan L Grage
- Karlsruhe Institute of Technology, Institute for Biological Interfaces (IBG-2), Institute of Organic Chemistry, Karlsruhe, Germany
| | | | | |
Collapse
|
8
|
Ramadurai S, Holt A, Krasnikov V, van den Bogaart G, Killian JA, Poolman B. Lateral diffusion of membrane proteins. J Am Chem Soc 2009; 131:12650-6. [PMID: 19673517 DOI: 10.1021/ja902853g] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We measured the lateral mobility of integral membrane proteins reconstituted in giant unilamellar vesicles (GUVs), using fluorescence correlation spectroscopy. Receptor, channel, and transporter proteins with 1-36 transmembrane segments (lateral radii ranging from 0.5 to 4 nm) and a alpha-helical peptide (radius of 0.5 nm) were fluorescently labeled and incorporated into GUVs. At low protein-to-lipid ratios (i.e., 10-100 proteins per microm(2) of membrane surface), the diffusion coefficient D displayed a weak dependence on the hydrodynamic radius (R) of the proteins [D scaled with ln(1/R)], consistent with the Saffman-Delbruck model. At higher protein-to lipid ratios (up to 3000 microm(-2)), the lateral diffusion coefficient of the molecules decreased linearly with increasing the protein concentration in the membrane. The implications of our findings for protein mobility in biological membranes (protein crowding of approximately 25,000 microm(-2)) and use of diffusion measurements for protein geometry (size, oligomerization) determinations are discussed.
Collapse
Affiliation(s)
- Sivaramakrishnan Ramadurai
- Department of Biochemistry, Groningen Biomolecular science and Biotechnology Institute & Zernike Institute of Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
9
|
Holt A, Killian JA. Orientation and dynamics of transmembrane peptides: the power of simple models. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:609-21. [PMID: 20020122 PMCID: PMC2841270 DOI: 10.1007/s00249-009-0567-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 11/17/2009] [Accepted: 11/19/2009] [Indexed: 02/02/2023]
Abstract
In this review we discuss recent insights obtained from well-characterized model systems into the factors that determine the orientation and tilt angles of transmembrane peptides in lipid bilayers. We will compare tilt angles of synthetic peptides with those of natural peptides and proteins, and we will discuss how tilt can be modulated by hydrophobic mismatch between the thickness of the bilayer and the length of the membrane spanning part of the peptide or protein. In particular, we will focus on results obtained on tryptophan-flanked model peptides (WALP peptides) as a case study to illustrate possible consequences of hydrophobic mismatch in molecular detail and to highlight the importance of peptide dynamics for the experimental determination of tilt angles. We will conclude with discussing some future prospects and challenges concerning the use of simple peptide/lipid model systems as a tool to understand membrane structure and function.
Collapse
Affiliation(s)
- Andrea Holt
- Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, 3584CH Utrecht, The Netherlands.
| | | |
Collapse
|
10
|
Scarpelli F, Drescher M, Rutters-Meijneke T, Holt A, Rijkers DTS, Killian JA, Huber M. Aggregation of Transmembrane Peptides Studied by Spin-Label EPR. J Phys Chem B 2009; 113:12257-64. [DOI: 10.1021/jp901371h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesco Scarpelli
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, Chemical Biology & Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands, and Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Malte Drescher
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, Chemical Biology & Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands, and Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Tania Rutters-Meijneke
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, Chemical Biology & Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands, and Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Andrea Holt
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, Chemical Biology & Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands, and Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Dirk T. S. Rijkers
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, Chemical Biology & Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands, and Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - J. Antoinette Killian
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, Chemical Biology & Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands, and Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Martina Huber
- Department of Molecular Physics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands, Chemical Biology & Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands, and Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
11
|
De Almeida RFM, Loura LMS, Prieto M, Watts A, Fedorov A, Barrantes FJ. Structure and dynamics of the γM4 transmembrane domain of the acetylcholine receptor in lipid bilayers: insights into receptor assembly and function. Mol Membr Biol 2009; 23:305-15. [PMID: 16923724 DOI: 10.1080/09687860600703613] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A 28-mer peptide (gammaM4) corresponding to the fourth transmembrane segment of the nicotinic acetylcholine receptor (AChR) gamma-subunit, with a single tryptophan residue (Trp6), was reconstituted into lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), loaded with either high or low amounts of cholesterol, i.e., in the conjugated liquid-ordered and liquid-disordered phases, respectively, at room temperature. By making use of the Trp intrinsic fluorescence, both steady-state and time-resolved fluorescence techniques were employed, namely, red-edge excitation shift effect, decay-associated spectra (DAS), and time-resolved anisotropy. The results obtained here, together with previous studies on the same reconstituted peptide, indicate that: (i) Trp6 is strongly anchored in the bilayer with a defined transverse location; (ii) the modifications in the measured DAS are related to the complex result of a self-quenching process on the decay parameters; (iii) the wobbling movement of the indole moiety of Trp6 is fast but severely restricted in amplitude; and, (iv) in the liquid-ordered phase, the bilayer properties and the tilt angle of the peptide enhance peptide-peptide interactions, with the formation of peptide rich patches and possibly some anti-parallel helix-helix aggregates, showing different dynamics from that of the peptide in the liquid-disordered phase where the peptide is randomly distributed.
Collapse
Affiliation(s)
- Rodrigo F M De Almeida
- Centro de Química e Bioquímica, Faculdade de Ciências de Lisboa, Campo Grande, Lisboa, Portugal.
| | | | | | | | | | | |
Collapse
|
12
|
Holt A, de Almeida RFM, Nyholm TKM, Loura LMS, Daily AE, Staffhorst RWHM, Rijkers DTS, Koeppe RE, Prieto M, Killian JA. Is there a preferential interaction between cholesterol and tryptophan residues in membrane proteins? Biochemistry 2008; 47:2638-49. [PMID: 18215073 DOI: 10.1021/bi702235k] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, several indications have been found that suggest a preferential interaction between cholesterol and tryptophan residues located near the membrane-water interface. The aim of this study was to investigate by direct methods how tryptophan and cholesterol interact with each other and what the possible consequences are for membrane organization. For this purpose, we used cholesterol-containing model membranes of dimyristoylphosphatidylcholine (DMPC) in which a transmembrane model peptide with flanking tryptophans [acetyl-GWW(LA)8LWWA-amide], called WALP23, was incorporated to mimic interfacial tryptophans of membrane proteins. These model systems were studied with two complementary methods. (1) Steady-state and time-resolved Förster resonance energy transfer (FRET) experiments employing the fluorescent cholesterol analogue dehydroergosterol (DHE) in combination with a competition experiment with cholesterol were used to obtain information about the distribution of cholesterol in the bilayer in the presence of WALP23. The results were consistent with a random distribution of cholesterol which indicates that cholesterol and interfacial tryptophans are not preferentially located next to each other in these bilayer systems. (2) Solid-state 2H NMR experiments employing either deuterated cholesterol or indole ring-deuterated WALP23 peptides were performed to study the orientation and dynamics of both molecules. The results showed that the quadrupolar splittings of labeled cholesterol were not affected by an interaction with tryptophan-flanked peptides and, vice versa, that the quadrupolar splittings of labeled indole rings in WALP23 are not significantly influenced by addition of cholesterol to the bilayer. Therefore, both NMR and fluorescence spectroscopy results independently show that, at least in the model systems studied here, there is no evidence for a preferential interaction between cholesterol and tryptophans located at the bilayer interface.
Collapse
Affiliation(s)
- Andrea Holt
- Chemical Biology and Organic Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Soto P, Baumketner A, Shea JE. Aggregation of polyalanine in a hydrophobic environment. J Chem Phys 2007; 124:134904. [PMID: 16613474 DOI: 10.1063/1.2179803] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dimerization of polyalanine peptides in a hydrophobic environment was explored using replica exchange molecular dynamics simulations. A nonpolar solvent (cyclohexane) was used to mimic, among other hydrophobic environments, the hydrophobic interior of a membrane in which the peptides are fully embedded. Our simulations reveal that while the polyalanine monomer preferentially adopts a beta-hairpin conformation, dimeric phases exist in an equilibrium between random coil, alpha-helical, beta-sheet, and beta-hairpin states. A thermodynamic characterization of the dimeric phases reveals that electric dipole-dipole interactions and optimal side-chain packing stabilize alpha-helical conformations, while hydrogen bond interactions favor beta-sheet conformations. Possible pathways leading to the formation of alpha-helical and beta-sheet dimers are discussed.
Collapse
Affiliation(s)
- Patricia Soto
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
14
|
de Kruijff B, Killian JA, Ganchev DN, Rinia HA, Sparr E. Striated domains: self-organizing ordered assemblies of transmembrane α-helical peptides and lipids in bilayers. Biol Chem 2006; 387:235-41. [PMID: 16542143 DOI: 10.1515/bc.2006.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review summarizes the knowledge on striated domains, which are ordered assemblies of transmembrane peptides and lipids under gel-state conditions. The structure, mechanism of function and utility of this system as a model for domain formation is described, resulting in a molecular description of the domains and a discussion on the relevance of these insights for the function/formation and structure of similar domains in biological membranes.
Collapse
Affiliation(s)
- Ben de Kruijff
- Department of Biochemistry of Membranes, Institute of Biomembranes, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
15
|
Subczynski WK, Wisniewska A, Kusumi A, McElhaney RN. Effects of pH-induced variations of the charge of the transmembrane α-helical peptide Ac-K2(LA)12K2-amide on the organization and dynamics of the host dimyristoylphosphatidylcholine bilayer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1720:99-109. [PMID: 16472557 DOI: 10.1016/j.bbamem.2005.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
The effects of the transmembrane alpha-helical peptide Ac-K(2)(LA)(12)K(2)-amide ((LA)(12)) on the phase transition and dynamics of saturated dimyristoylphosphatidylcholine (DMPC) membranes were investigated at different pH using conventional and saturation-recovery EPR observations of phosphatidylcholine spin labels. At a peptide-to-DMPC ratio of 1/10, the main phase-transition temperature of the DMPC bilayer is decreased by 4.0 degrees C when measured at pH 7.0, by 1.6 degrees C when measured at pH 9.5, and not affected when measured at pH 11.5. This reversible pH effect is due to the subsequent neutralization of the positive charges of lysine side chains at both ends of (LA)(12). Apparent pK(a)s of the lysine side chain amino groups of (LA)(12) in DMPC bilayer are 8.6 and approximately 10.9, as compared with the pK(a) value of 10.5 for these groups when lysine is dissolved in water. Saturation-recovery curves as a function of oxygen concentration using phosphatidylcholine spin labels in DMPC bilayer containing (LA)(12) are always mono-exponential when measured at pH 7.0 and 9.5. This observation is consistent with the hypothesis that the lipid exchange rates among the bulk, boundary, and (LA)(12)-rich regions are faster than 0.5 micros, the electron spin-lattice relaxation time in the presence of molecular oxygen, suggesting that stable oligomers of (LA)(12) do not form. Neutralization of one lysine side chain positive charge on each end of the peptide significantly decreases the ordering effect of (LA)(12) on the lipid hydrocarbon chains, while its effect on the reorientational motion of terminal groups of lipid hydrocarbon chains is rather moderate. It does not affect the local diffusion-solubility product of oxygen measured in the DMPC-(LA)(12) membrane interior.
Collapse
Affiliation(s)
- Witold K Subczynski
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, 53226, USA.
| | | | | | | |
Collapse
|
16
|
Sparr E, Ash WL, Nazarov PV, Rijkers DTS, Hemminga MA, Tieleman DP, Killian JA. Self-association of transmembrane alpha-helices in model membranes: importance of helix orientation and role of hydrophobic mismatch. J Biol Chem 2005; 280:39324-31. [PMID: 16169846 DOI: 10.1074/jbc.m502810200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Interactions between transmembrane helices play a key role in almost all cellular processes involving membrane proteins. We have investigated helix-helix interactions in lipid bilayers with synthetic tryptophan-flanked peptides that mimic the membrane spanning parts of membrane proteins. The peptides were functionalized with pyrene to allow the self-association of the helices to be monitored by pyrene fluorescence and Trp-pyrene fluorescence resonance energy transfer (FRET). Specific labeling of peptides at either their N or C terminus has shown that helix-helix association occurs almost exclusively between antiparallel helices. Furthermore, computer modeling suggested that antiparallel association arises primarily from the electrostatic interactions between alpha-helix backbone atoms. We propose that such interactions may provide a force for the preferentially antiparallel association of helices in polytopic membrane proteins. Helix-helix association was also found to depend on the lipid environment. In bilayers of dioleoylphosphatidylcholine, in which the hydrophobic length of the peptides approximately matched the bilayer thickness, association between the helices was found to require peptide/lipid ratios exceeding 1/25. Self-association of the helices was promoted by either increasing or decreasing the bilayer thickness, and by adding cholesterol. These results indicate that helix-helix association in membrane proteins can be promoted by unfavorable protein-lipid interactions.
Collapse
Affiliation(s)
- Emma Sparr
- Department of Biochemistry of Membranes, Institute of Biomembranes and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
17
|
Contera SA, Lemaître V, de Planque MRR, Watts A, Ryan JF. Unfolding and extraction of a transmembrane alpha-helical peptide: dynamic force spectroscopy and molecular dynamics simulations. Biophys J 2005; 89:3129-40. [PMID: 16085762 PMCID: PMC1366810 DOI: 10.1529/biophysj.105.061721] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An atomic force microscope (AFM) was used to visualize CWALP(19)23 peptides ((+)H(3)N-ACAGAWWLALALALALALALWWA-COO(-)) inserted in gel-phase DPPC and DSPC bilayers. The peptides assemble in stable linear structures and domains. A model for the organization of the peptides is given from AFM images and a 20 ns molecular dynamics (MD) simulation. Gold-coated AFM cantilevers were used to extract single peptides from the bilayer through covalent bonding to the cystein residue. Experimental and simulated force curves show two distinct force maxima. In the simulations these two maxima correspond to the extraction of the two pairs of tryptophan residues from the membrane. Unfolding of the peptide precedes extraction of the second distal set of tryptophans. To probe the energies involved, AFM force curves were obtained from 10 to 10(4) nm/s and MD force curves were simulated with 10(8)-10(11) nm/s pulling velocities (V). The velocity relationship with the force, F, was fitted to two fluctuation adhesive potential models. The first assumes the pulling produces a constant bias in the potential and predicts an F approximately ln (V) relationship. The second takes into account the ramped bias that the linker feels as it is being driven out of the adhesion complex and scales as F approximately (ln V)2/3.
Collapse
Affiliation(s)
- Sonia Antoranz Contera
- Bionanotechnology IRC, Physics Department, University of Oxford, Oxford OX1 3PU, United Kingdom.
| | | | | | | | | |
Collapse
|
18
|
|