1
|
Abstract
The discoveries of myriad non-coding RNA molecules, each transiting through multiple flexible states in cells or virions, present major challenges for structure determination. Advances in high-throughput chemical mapping give new routes for characterizing entire transcriptomes in vivo, but the resulting one-dimensional data generally remain too information-poor to allow accurate de novo structure determination. Multidimensional chemical mapping (MCM) methods seek to address this challenge. Mutate-and-map (M2), RNA interaction groups by mutational profiling (RING-MaP and MaP-2D analysis) and multiplexed •OH cleavage analysis (MOHCA) measure how the chemical reactivities of every nucleotide in an RNA molecule change in response to modifications at every other nucleotide. A growing body of in vitro blind tests and compensatory mutation/rescue experiments indicate that MCM methods give consistently accurate secondary structures and global tertiary structures for ribozymes, ribosomal domains and ligand-bound riboswitch aptamers up to 200 nucleotides in length. Importantly, MCM analyses provide detailed information on structurally heterogeneous RNA states, such as ligand-free riboswitches that are functionally important but difficult to resolve with other approaches. The sequencing requirements of currently available MCM protocols scale at least quadratically with RNA length, precluding general application to transcriptomes or viral genomes at present. We propose a modify-cross-link-map (MXM) expansion to overcome this and other current limitations to resolving the in vivo 'RNA structurome'.
Collapse
|
2
|
Laos AJ, Dean JC, Toa ZSD, Wilk KE, Scholes GD, Curmi PMG, Thordarson P. Cooperative Subunit Refolding of a Light‐Harvesting Protein through a Self‐Chaperone Mechanism. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201607921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alistair J. Laos
- School of Chemistry the Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney 2052 NSW Australia
- School of Physics The University of New South Wales Sydney 2052 NSW Australia
| | - Jacob C. Dean
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Zi S. D. Toa
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Krystyna E. Wilk
- School of Physics The University of New South Wales Sydney 2052 NSW Australia
| | | | - Paul M. G. Curmi
- School of Physics The University of New South Wales Sydney 2052 NSW Australia
| | - Pall Thordarson
- School of Chemistry the Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney 2052 NSW Australia
| |
Collapse
|
3
|
Laos AJ, Dean JC, Toa ZSD, Wilk KE, Scholes GD, Curmi PMG, Thordarson P. Cooperative Subunit Refolding of a Light‐Harvesting Protein through a Self‐Chaperone Mechanism. Angew Chem Int Ed Engl 2017; 56:8384-8388. [DOI: 10.1002/anie.201607921] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/12/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Alistair J. Laos
- School of Chemistry the Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney 2052 NSW Australia
- School of Physics The University of New South Wales Sydney 2052 NSW Australia
| | - Jacob C. Dean
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Zi S. D. Toa
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Krystyna E. Wilk
- School of Physics The University of New South Wales Sydney 2052 NSW Australia
| | | | - Paul M. G. Curmi
- School of Physics The University of New South Wales Sydney 2052 NSW Australia
| | - Pall Thordarson
- School of Chemistry the Australian Centre for NanoMedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology The University of New South Wales Sydney 2052 NSW Australia
| |
Collapse
|
4
|
Hyeon C, Thirumalai D. Generalized iterative annealing model for the action of RNA chaperones. J Chem Phys 2014; 139:121924. [PMID: 24089736 DOI: 10.1063/1.4818594] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As a consequence of the rugged landscape of RNA molecules their folding is described by the kinetic partitioning mechanism according to which only a small fraction (φF) reaches the folded state while the remaining fraction of molecules is kinetically trapped in misfolded intermediates. The transition from the misfolded states to the native state can far exceed biologically relevant time. Thus, RNA folding in vivo is often aided by protein cofactors, called RNA chaperones, that can rescue RNAs from a multitude of misfolded structures. We consider two models, based on chemical kinetics and chemical master equation, for describing assisted folding. In the passive model, applicable for class I substrates, transient interactions of misfolded structures with RNA chaperones alone are sufficient to destabilize the misfolded structures, thus entropically lowering the barrier to folding. For this mechanism to be efficient the intermediate ribonucleoprotein complex between collapsed RNA and protein cofactor should have optimal stability. We also introduce an active model (suitable for stringent substrates with small φF), which accounts for the recent experimental findings on the action of CYT-19 on the group I intron ribozyme, showing that RNA chaperones do not discriminate between the misfolded and the native states. In the active model, the RNA chaperone system utilizes chemical energy of adenosine triphosphate hydrolysis to repeatedly bind and release misfolded and folded RNAs, resulting in substantial increase of yield of the native state. The theory outlined here shows, in accord with experiments, that in the steady state the native state does not form with unit probability.
Collapse
Affiliation(s)
- Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, South Korea
| | | |
Collapse
|
5
|
Pyle AM. Coordinating the party: assembly factors and ribogenesis. Mol Cell 2013; 52:469-70. [PMID: 24267447 DOI: 10.1016/j.molcel.2013.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using hydroxyl-radical footprinting to map the structures of RNA molecules in whole cells, Soper et al. (2013) determine the specific role of assembly factors during the final stages of ribosomal subunit assembly and visualize structural features of intermediate states.
Collapse
Affiliation(s)
- Anna Marie Pyle
- Howard Hughes Medical Institute, Yale University, New Haven, CT 06520, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Abstract
RNA folding is an essential aspect underlying RNA-mediated cellular processes. Many RNAs, including large, multi-domain ribozymes, are capable of folding to the native, functional state without assistance of a protein cofactor in vitro. In the cell, trans-acting factors, such as proteins, are however known to modulate the structure and thus the fate of an RNA. DEAD-box proteins, including Mss116p, were recently found to assist folding of group I and group II introns in vitro and in vivo. The underlying mechanism(s) have been studied extensively to explore the contribution of ATP hydrolysis and duplex unwinding in helicase-stimulated intron splicing. Here we summarize the ongoing efforts to understand the novel role of DEAD-box proteins in RNA folding.
Collapse
Affiliation(s)
- Nora Sachsenmaier
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | |
Collapse
|
7
|
Kladwang W, Das R. A mutate-and-map strategy for inferring base pairs in structured nucleic acids: proof of concept on a DNA/RNA helix. Biochemistry 2010; 49:7414-6. [PMID: 20677780 DOI: 10.1021/bi101123g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We propose a rapid chemical strategy for identifying base pairs in structured nucleic acid systems. The approach goes beyond traditional chemical mapping approaches by monitoring perturbations of each residue's chemical accessibility in response to systematic mutagenesis of residues that are distant in sequence but nearby in three dimensions. As a proof of concept, we present high-throughput dimethyl sulfate accessibility data for a chimeric DNA/RNA system in which every possible sequence variation and deletion in a 20 bp region has been synthesized and tested. The data demonstrate that 88% of the system's base pairs can be robustly inferred, with A/A and T/C DNA/RNA mismatches giving the strongest signals. These results point to the feasibility of rapid base pair inference in larger and more complex nucleic acid systems with unknown structure.
Collapse
Affiliation(s)
- Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, California 94035, USA
| | | |
Collapse
|
8
|
Garcia I, Uhlenbeck OC. Differential RNA-dependent ATPase activities of four rRNA processing yeast DEAD-box proteins. Biochemistry 2008; 47:12562-73. [PMID: 18975973 PMCID: PMC2649780 DOI: 10.1021/bi8016119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
S. cerevisiae ribosome biogenesis is a highly ordered and dynamic process that involves over 100 accessory proteins, including 18 DExD/H-box proteins that act at discrete steps in the pathway. Although often termed RNA helicases, the biochemical functions of individual DExD/H-box proteins appear to vary considerably. Four DExD/H-box proteins, Dbp3p, Dbp4p, Rok1p, and Rrp3p, involved in yeast ribosome assembly were expressed in E. coli, and all were found to be active RNA-dependent ATPases with k(cat) values ranging from 13 to 170 min(-1) and K(M)(ATP) values ranging from 0.24 to 2.3 mM. All four proteins are activated by single-stranded oligonucleotides, but they require different chain lengths for maximal ATPase activity, ranging from 10 to >40 residues. None of the four proteins shows significant specificity for yeast rRNA, compared to nonspecific control RNAs since these large RNAs contain multiple binding sites that appear to be catalytically similar. This systematic comparison of four members of the DExD/H-box family demonstrates a range of biochemical properties and lays the foundation for relating the activities of proteins to their biological functions.
Collapse
Affiliation(s)
- Ivelitza Garcia
- Department of Biochemistry Molecular Biology, and Cellular Biology, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208
| | - Olke C. Uhlenbeck
- Department of Biochemistry Molecular Biology, and Cellular Biology, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208
| |
Collapse
|
9
|
Duncan CDS, Weeks KM. SHAPE analysis of long-range interactions reveals extensive and thermodynamically preferred misfolding in a fragile group I intron RNA. Biochemistry 2008; 47:8504-13. [PMID: 18642882 DOI: 10.1021/bi800207b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most functional RNAs require proteins to facilitate formation of their active structures. In the case of the yeast bI3 group I intron, splicing requires binding by two proteins, the intron-encoded bI3 maturase and the nuclear encoded Mrs1. Here, we use selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry coupled with analysis of point mutants to map long-range interactions in this RNA. This analysis reveals two critical features of the free RNA state. First, the catalytic intron is separated from the flanking exons via a stable anchoring helix. This anchoring helix creates an autonomous structural domain for the intron and functions to prevent misfolding with the flanking exons. Second, the thermodynamically most stable structure for the free RNA is not consistent with the catalytically active conformation as phylogenetically conserved elements form stable, non-native structures. These results highlight a fragile bI3 RNA for which binding by protein cofactors functions to promote extensive secondary structure rearrangements that are an obligatory prerequisite for forming the catalytically active tertiary structure.
Collapse
Affiliation(s)
- Caia D S Duncan
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA.
| | | |
Collapse
|
10
|
Ameres SL, Shcherbakov D, Nikonova E, Piendl W, Schroeder R, Semrad K. RNA chaperone activity of L1 ribosomal proteins: phylogenetic conservation and splicing inhibition. Nucleic Acids Res 2007; 35:3752-63. [PMID: 17517772 PMCID: PMC1920258 DOI: 10.1093/nar/gkm318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RNA chaperone activity is defined as the ability of proteins to either prevent RNA from misfolding or to open up misfolded RNA conformations. One-third of all large ribosomal subunit proteins from E. coli display this activity, with L1 exhibiting one of the highest activities. Here, we demonstrate via the use of in vitro trans- and cis-splicing assays that the RNA chaperone activity of L1 is conserved in all three domains of life. However, thermophilic archaeal L1 proteins do not display RNA chaperone activity under the experimental conditions tested here. Furthermore, L1 does not exhibit RNA chaperone activity when in complexes with its cognate rRNA or mRNA substrates. The evolutionary conservation of the RNA chaperone activity among L1 proteins suggests a functional requirement during ribosome assembly, at least in bacteria, mesophilic archaea and eukarya. Surprisingly, rather than facilitating catalysis, the thermophilic archaeal L1 protein from Methanococcus jannaschii (MjaL1) completely inhibits splicing of the group I thymidylate synthase intron from phage T4. Mutational analysis of MjaL1 excludes the possibility that the inhibitory effect is due to stronger RNA binding. To our knowledge, MjaL1 is the first example of a protein that inhibits group I intron splicing.
Collapse
Affiliation(s)
- Stefan L. Ameres
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Dmitry Shcherbakov
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Ekaterina Nikonova
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Wolfgang Piendl
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Renée Schroeder
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Katharina Semrad
- Max F. Perutz Laboratories, Department of Biochemistry, University of Vienna, Dr Bohrgasse 9/5, A-1030 Vienna, Austria, Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria and Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- *To whom correspondence should be addressed. +43-1-4277-54694+43-1-4277-9522
| |
Collapse
|
11
|
Bokinsky G, Nivón LG, Liu S, Chai G, Hong M, Weeks KM, Zhuang X. Two distinct binding modes of a protein cofactor with its target RNA. J Mol Biol 2006; 361:771-84. [PMID: 16872630 PMCID: PMC2633024 DOI: 10.1016/j.jmb.2006.06.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 06/18/2006] [Accepted: 06/19/2006] [Indexed: 11/16/2022]
Abstract
Like most cellular RNA enzymes, the bI5 group I intron requires binding by a protein cofactor to fold correctly. Here, we use single-molecule approaches to monitor the structural dynamics of the bI5 RNA in real time as it assembles with its CBP2 protein cofactor. These experiments show that CBP2 binds to the target RNA in two distinct modes with apparently opposite effects: a "non-specific" mode that forms rapidly and induces large conformational fluctuations in the RNA, and a "specific" mode that forms slowly and stabilizes the native RNA structure. The bI5 RNA folds though multiple pathways toward the native state, typically traversing dynamic intermediate states induced by non-specific binding of CBP2. These results suggest that the protein cofactor-assisted RNA folding involves sequential non-specific and specific protein-RNA interactions. The non-specific interaction potentially increases the local concentration of CBP2 and the number of conformational states accessible to the RNA, which may promote the formation of specific RNA-protein interactions.
Collapse
Affiliation(s)
- Gregory Bokinsky
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Adilakshmi T, Ramaswamy P, Woodson SA. Protein-independent Folding Pathway of the 16S rRNA 5′ Domain. J Mol Biol 2005; 351:508-19. [PMID: 16023137 DOI: 10.1016/j.jmb.2005.06.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/01/2005] [Accepted: 06/07/2005] [Indexed: 11/21/2022]
Abstract
Evolution of the ribosome from an RNA catalyst suggests that the intrinsic folding pathway of the rRNA dictates the hierarchy of ribosome assembly. To address this possibility, we probed the tertiary folding pathway of the 5' domain of the Escherichia coli 16S rRNA at 20 ms intervals using X-ray-dependent hydroxyl radical footprinting. Comparison with crystallographic structures and footprinting reactions on native 30S ribosomes showed that the RNA formed all of the predicted tertiary interactions in the absence of proteins. In 20 mM MgCl2, many tertiary interactions appeared within 20 ms. By contrast, interactions between H6, H15 and H17 near the spur of the 30S ribosome evolved over several minutes, likely due to mispairing of a central helix junction. The kinetic folding pathway of the RNA corresponded to the expected order of protein binding, suggesting that the RNA folding pathway forms the basis for early steps of ribosome assembly.
Collapse
Affiliation(s)
- Tadepalli Adilakshmi
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-7865, USA
| | | | | |
Collapse
|
13
|
Woodson SA. Structure and assembly of group I introns. Curr Opin Struct Biol 2005; 15:324-30. [PMID: 15922592 DOI: 10.1016/j.sbi.2005.05.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/21/2005] [Accepted: 05/09/2005] [Indexed: 11/29/2022]
Abstract
Self-splicing group I introns have served as a model for RNA catalysis and folding for over two decades. New three-dimensional structures now bring the details into view. Revelations include an unanticipated turn in the RNA backbone around the guanosine-binding pocket. Two metal ions in the active site coordinate the substrate and phosphates from all three helical domains.
Collapse
Affiliation(s)
- Sarah A Woodson
- TC Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218-2685, USA.
| |
Collapse
|
14
|
Buchmueller KL, Weeks KM. Tris-borate is a poor counterion for RNA: a cautionary tale for RNA folding studies. Nucleic Acids Res 2004; 32:e184. [PMID: 15601995 PMCID: PMC545480 DOI: 10.1093/nar/gnh182] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Native polyacrylamide gel electrophoresis is a powerful approach for visualizing RNA folding states and folding intermediates. Tris-borate has a high-buffering capacity and is therefore widely used in electrophoresis-based investigations of RNA structure and folding. However, the effectiveness of Tris-borate as a counterion for RNA has not been systematically investigated. In a recirculated Hepes/KCl buffer, the catalytic core of the bI5 group I intron RNA undergoes a conformational collapse characterized by a bulk transition midpoint, or Mg1/2, of approximately 3 mM, consistent with extensive independent biochemical experiments. In contrast, in Tris-borate, RNA collapse has a much smaller apparent Mg1/2, equal to 0.1 mM, because in this buffer the RNA undergoes a different, large amplitude, folding transition at low Mg2+ concentrations. Analysis of structural neighbors using a short-lived, RNA-tethered, photocrosslinker indicates that the global RNA structure eventually converges in the two buffer systems, as the divalent ion concentration approaches approximately 1 mM Mg2+. The weak capacity of Tris-borate to stabilize RNA folding may reflect relatively unfavorable interactions between the bulky Tris-borate ion and RNA or partial coordination of RNA functional groups by borate. Under some conditions, Tris-borate is a poor counterion for RNA and its use merits careful evaluation in RNA folding studies.
Collapse
Affiliation(s)
- Karen L Buchmueller
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | |
Collapse
|