1
|
Das A, Gao S, Lal RG, Hicks MH, Oyala PH, Arnold FH. Reaction Discovery Using Spectroscopic Insights from an Enzymatic C-H Amination Intermediate. J Am Chem Soc 2024. [PMID: 39037870 DOI: 10.1021/jacs.4c05761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Engineered hemoproteins can selectively incorporate nitrogen from nitrene precursors like hydroxylamine, O-substituted hydroxylamines, and organic azides into organic molecules. Although iron-nitrenoids are often invoked as the reactive intermediates in these reactions, their innate reactivity and transient nature have made their characterization challenging. Here we characterize an iron-nitrosyl intermediate generated from NH2OH within a protoglobin active site that can undergo nitrogen-group transfer catalysis, using UV-vis, electron paramagnetic resonance (EPR) spectroscopy, and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) techniques. The mechanistic insights gained led to the discovery of aminating reagents─nitrite (NO2-), nitric oxide (NO), and nitroxyl (HNO)─that are new to both nature and synthetic chemistry. Based on the findings, we propose a catalytic cycle for C-H amination inspired by the nitrite reductase pathway. This study highlights the potential of engineered hemoproteins to access natural nitrogen sources for sustainable chemical synthesis and offers a new perspective on the use of biological nitrogen cycle intermediates in biocatalysis.
Collapse
Affiliation(s)
- Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shilong Gao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ravi G Lal
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Madeline H Hicks
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Sarkar A, Bhakta S, Chattopadhyay S, Dey A. Role of distal arginine residue in the mechanism of heme nitrite reductases. Chem Sci 2023; 14:7875-7886. [PMID: 37502318 PMCID: PMC10370594 DOI: 10.1039/d3sc01777j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023] Open
Abstract
Heme nitrite reductases reduce NO2- by 1e-/2H+ to NO or by 6e-/8H+ to NH4+ which are key steps in the global nitrogen cycle. Second-sphere residues, such as arginine (with a guanidine head group), are proposed to play a key role in the reaction by assisting substrate binding and hydrogen bonding and by providing protons to the active site for the reaction. The reactivity of an iron porphyrin with a NO2- covalently attached to a guanidinium arm in its 2nd sphere was investigated to understand the role of arginine residues in the 2nd sphere of heme nitrite reductases. The presence of the guanidinium residue allows the synthetic ferrous porphyrin to reduce NO2- and produce a ferrous nitrosyl species ({FeNO}7), where the required protons are provided by the guanidinium group in the 2nd sphere. However, in the presence of additional proton sources in solution, the reaction of ferrous porphyrin with NO2- results in the formation of ferric porphyrin and the release of NO. Spectroscopic and kinetic data indicated that re-protonation of the guanidine group in the 2nd sphere by an external proton source causes NO to dissociate from a ferric nitrosyl species ({FeNO}6) at rates similar to those observed for enzymatic sites. This re-protonation of the guanidine group mimics the proton recharge mechanism in the active site of NiR. DFT calculations indicated that the lability of the Fe-NO bond in the {FeNO}6 species is derived from the greater binding affinity of anions (e.g. NO2-) to the ferric center relative to neutral NO due to hydrogen bonding and electrostatic interaction of these bound anions with the protonated guanidium group in the 2nd sphere. The reduced {FeNO}7 species, once formed, is not affected significantly by the re-protonation of the guanidine residue. These results provide direct insight into the role of the 2nd sphere arginine residue present in the active sites of heme-based NiRs in determining the fate of NO2- reduction. Specifically, the findings using the synthetic model suggest that rapid re-protonation of these arginine residues may trigger the dissociation of NO from the {FeNO}6, which may also be the case in the protein active site.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| | - Snehadri Bhakta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| | - Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S.C. Mullick Road Kolkata WB 700032 India
| |
Collapse
|
3
|
|
4
|
Amanullah S, Saha P, Nayek A, Ahmed ME, Dey A. Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2nd sphere interactions in catalysis. Chem Soc Rev 2021; 50:3755-3823. [DOI: 10.1039/d0cs01405b] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reduction of oxides and oxoanions of carbon and nitrogen are of great contemporary importance as they are crucial for a sustainable environment.
Collapse
Affiliation(s)
- Sk Amanullah
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Paramita Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhijit Nayek
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Md Estak Ahmed
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Abhishek Dey
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
5
|
Electron self-exchange in hemoglobins revealed by deutero-hemin substitution. J Inorg Biochem 2015; 150:139-47. [DOI: 10.1016/j.jinorgbio.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/11/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022]
|
6
|
Bykov D, Neese F. Six-Electron Reduction of Nitrite to Ammonia by Cytochrome c Nitrite Reductase: Insights from Density Functional Theory Studies. Inorg Chem 2015; 54:9303-16. [DOI: 10.1021/acs.inorgchem.5b01506] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dmytro Bykov
- qLEAP Center
for Theoretical Chemistry, Department of Chemistry, Aarhus University, Gustav
Wieds Vej 10A, DK-8000 Aarhus C, Denmark
| | - Frank Neese
- Max-Planck Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Affiliation(s)
- Luisa B. Maia
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - José J. G. Moura
- REQUIMTE/CQFB, Departamento
de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Heme-bound nitroxyl, hydroxylamine, and ammonia ligands as intermediates in the reaction cycle of cytochrome c nitrite reductase: a theoretical study. J Biol Inorg Chem 2013; 19:97-112. [DOI: 10.1007/s00775-013-1065-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/05/2013] [Indexed: 11/25/2022]
|
9
|
Hanson TE, Campbell BJ, Kalis KM, Campbell MA, Klotz MG. Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate. Front Microbiol 2013; 4:180. [PMID: 23847604 PMCID: PMC3701875 DOI: 10.3389/fmicb.2013.00180] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/15/2013] [Indexed: 11/13/2022] Open
Abstract
The process of nitrate reduction via nitrite controls the fate and bioavailability of mineral nitrogen within ecosystems; i.e., whether it is retained as ammonium (ammonification) or lost as nitrous oxide or dinitrogen (denitrification). Here, we present experimental evidence for a novel pathway of microbial nitrate reduction, the reverse hydroxylamine:ubiquinone reductase module (reverse-HURM) pathway. Instead of a classical ammonia-forming nitrite reductase that performs a 6 electron-transfer process, the pathway is thought to employ two catalytic redox modules operating in sequence: the reverse-HURM reducing nitrite to hydroxylamine followed by a hydroxylamine reductase that converts hydroxylamine to ammonium. Experiments were performed on Nautilia profundicola strain AmH, whose genome sequence led to the reverse-HURM pathway proposal. N. profundicola produced ammonium from nitrate, which was assimilated into biomass. Furthermore, genes encoding the catalysts of the reverse-HURM pathway were preferentially expressed during growth of N. profundicola on nitrate as an electron acceptor relative to cultures grown on polysulfide as an electron acceptor. Finally, nitrate-grown cells of N. profundicola were able to rapidly and stoichiometrically convert high concentrations of hydroxylamine to ammonium in resting cell assays. These experiments are consistent with the reverse-HURM pathway and a free hydroxylamine intermediate, but could not definitively exclude direct nitrite reduction to ammonium by the reverse-HURM with hydroxylamine as an off-pathway product. N. profundicola and related organisms are models for a new pathway of nitrate ammonification that may have global impact due to the wide distribution of these organisms in hypoxic environments and symbiotic or pathogenic associations with animal hosts.
Collapse
Affiliation(s)
- Thomas E Hanson
- School of Marine Science and Policy, University of Delaware Newark, DE, USA ; Delaware Biotechnology Institute, University of Delaware Newark, DE, USA
| | | | | | | | | |
Collapse
|
10
|
Srivastava AP, Hirasawa M, Bhalla M, Chung JS, Allen JP, Johnson MK, Tripathy JN, Rubio LM, Vaccaro B, Subramanian S, Flores E, Zabet-Moghaddam M, Stitle K, Knaff DB. Roles of four conserved basic amino acids in a ferredoxin-dependent cyanobacterial nitrate reductase. Biochemistry 2013; 52:4343-53. [PMID: 23692082 DOI: 10.1021/bi400354n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The roles of four conserved basic amino acids in the reaction catalyzed by the ferredoxin-dependent nitrate reductase from the cyanobacterium Synechococcus sp. PCC 7942 have been investigated using site-directed mutagenesis in combination with measurements of steady-state kinetics, substrate-binding affinities, and spectroscopic properties of the enzyme's two prosthetic groups. Replacement of either Lys58 or Arg70 by glutamine leads to a complete loss of activity, both with the physiological electron donor, reduced ferredoxin, and with a nonphysiological electron donor, reduced methyl viologen. More conservative, charge-maintaining K58R and R70K variants were also completely inactive. Replacement of Lys130 by glutamine produced a variant that retained 26% of the wild-type activity with methyl viologen as the electron donor and 22% of the wild-type activity with ferredoxin as the electron donor, while replacement by arginine produces a variant that retains a significantly higher percentage of the wild-type activity with both electron donors. In contrast, replacement of Arg146 by glutamine had minimal effect on the activity of the enzyme. These results, along with substrate-binding and spectroscopic measurements, are discussed in terms of an in silico structural model for the enzyme.
Collapse
Affiliation(s)
- Anurag P Srivastava
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nakano S, Takahashi M, Sakamoto A, Morikawa H, Katayanagi K. X-Ray Crystal Structure of a Mutant Assimilatory Nitrite Reductase That Shows Sulfite Reductase-Like Activity. Chem Biodivers 2012; 9:1989-99. [DOI: 10.1002/cbdv.201100442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
12
|
Nakano S, Takahashi M, Sakamoto A, Morikawa H, Katayanagi K. The reductive reaction mechanism of tobacco nitrite reductase derived from a combination of crystal structures and ultraviolet-visible microspectroscopy. Proteins 2012; 80:2035-45. [PMID: 22499059 DOI: 10.1002/prot.24094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/28/2012] [Accepted: 04/05/2012] [Indexed: 11/05/2022]
Abstract
Assimilatory nitrite reductase (aNiR) reduces nitrite to an ammonium ion and has siroheme and a [Fe(4)S(4)] cluster as prosthetic groups. A reaction mechanism for Nii3, an aNiR from tobacco, is proposed based on high resolution X-ray structures and UV-Vis (ultraviolet-visible) microspectroscopy of Nii3-ligand complexes. Analysis of UV-Vis spectral changes in Nii3 crystals with increasing X-ray exposure showed prosthetic group reductions. In Nii3-NO2(-) structures, X-ray irradiation enhanced the progress of the reduction reaction, and cleavage of the N-O bond was observed when X-ray doses were increased. Crystal structures of Nii3 with other bound ligands, such as Nii3-NO and Nii3-NH(2)OH, were also determined. Further, by combining information from these Nii3 ligand-bound structures, including that of Nii3-NO2(-), with UV-Vis microspectral data obtained using different X-ray doses, a reaction mechanism for aNiR was suggested. Cleavage of the two N-O bonds of nitrite was envisaged as a two-step process: first, the N-O bond close to Lys224 was cleaved, followed by cleavage of the N-O bond close to Arg109. X-ray structures also indicated that aNiR-catalyzed nitrite reduction proceeded without the need for conformation changes in active site residues. Geometrical changes in the ligand molecules and the placement of neighboring water molecules appeared to be important to the stability of the active site residue interactions (Arg109, Arg179, and Lys224) and the ligand molecule. These interactions may contribute to the efficiency of aNiR reduction reactions.
Collapse
Affiliation(s)
- Shogo Nakano
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
13
|
Karlinsey JE, Bang IS, Becker LA, Frawley ER, Porwollik S, Robbins HF, Thomas VC, Urbano R, McClelland M, Fang FC. The NsrR regulon in nitrosative stress resistance of Salmonella enterica serovar Typhimurium. Mol Microbiol 2012; 85:1179-93. [PMID: 22831173 DOI: 10.1111/j.1365-2958.2012.08167.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO·) is an important mediator of innate immunity. The facultative intracellular pathogen Salmonella has evolved mechanisms to detoxify and evade the antimicrobial actions of host-derived NO· produced during infection. Expression of the NO·-detoxifying flavohaemoglobin Hmp is controlled by the NO·-sensing transcriptional repressor NsrR and is required for Salmonella virulence. In this study we show that NsrR responds to very low NO· concentrations, suggesting that it plays a primary role in the nitrosative stress response. Additionally, we have defined the NsrR regulon in Salmonella enterica sv. Typhimurium 14028s using transcriptional microarray, qRT-PCR and in silico methods. A novel NsrR-regulated gene designated STM1808 has been identified, along with hmp, hcp-hcr, yeaR-yoaG, ygbA and ytfE. STM1808 and ygbA are important for S. Typhimurium growth during nitrosative stress, and the hcp-hcr locus plays a supportive role in NO· detoxification. ICP-MS analysis of purified STM1808 suggests that it is a zinc metalloprotein, with histidine residues H32 and H82 required for NO· resistance and zinc binding. Moreover, STM1808 and ytfE promote Salmonella growth during systemic infection of mice. Collectively, these findings demonstrate that NsrR-regulated genes in addition to hmp are important for NO· detoxification, nitrosative stress resistance and Salmonella virulence.
Collapse
Affiliation(s)
- Joyce E Karlinsey
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sakakibara Y, Kimura H, Iwamura A, Saitoh T, Ikegami T, Kurisu G, Hase T. A new structural insight into differential interaction of cyanobacterial and plant ferredoxins with nitrite reductase as revealed by NMR and X-ray crystallographic studies. J Biochem 2012; 151:483-92. [PMID: 22427434 DOI: 10.1093/jb/mvs028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ferredoxin (Fd), which plays a pivotal role in photosynthesis as an electron carrier, forms a transient complex with various Fd-dependent enzymes, such as nitrite reductase (NiR), to achieve efficient intermolecular electron transfer. We studied the protein-protein interaction of Fd and NiR by NMR spectroscopy and determined three acidic regions of Fd to be major sites for the interaction with NiR, indicating that the complex is stabilized through electrostatic interaction. During this study, we found Fds from higher plant and cyanobacterium, in spite of their high structural similarities including the above acidic regions, differ remarkably in the interaction with cyanobacterial NiR. In activity assay of NiR, K(m) value for maize Fd (74.6 µM) was 9.6 times larger than that for Leptolyngbya boryana Fd (7.8 µM). The two Fds also showed a similar difference in binding assay to NiR-immobilized resin. Comparative site-specific mutagenesis of two Fds revealed that their discriminative ability for the interaction with NiR is attributed mainly to non-charged residues in the peripheral region of [2Fe-2S] cluster. These non-charged residues are conserved separately between Fds of plant and cyanobacterial origins. Our data highlight that intermolecular force(s) other than electrostatic attraction is(are) also crucial for the molecular interaction between Fd and partner enzyme.
Collapse
Affiliation(s)
- Yukiko Sakakibara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Nakano S, Takahashi M, Sakamoto A, Morikawa H, Katayanagi K. Structure-function relationship of assimilatory nitrite reductases from the leaf and root of tobacco based on high-resolution structures. Protein Sci 2012; 21:383-95. [PMID: 22238192 PMCID: PMC3375439 DOI: 10.1002/pro.2025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/16/2011] [Accepted: 01/03/2012] [Indexed: 01/07/2023]
Abstract
Tobacco expresses four isomers of assimilatory nitrite reductase (aNiR), leaf-type (Nii1 and Nii3), and root-type (Nii2 and Nii4). The high-resolution crystal structures of Nii3 and Nii4, determined at 1.25 and 2.3 Å resolutions, respectively, revealed that both proteins had very similar structures. The Nii3 structure provided detailed geometries for the [4Fe-4S] cluster and the siroheme prosthetic groups. We have generated two types of Nii3 variants: one set focuses on residue Met175 (Nii3-M175G, Nii3-M175E, and Nii3-M175K), a residue that is located on the substrate entrance pathway; the second set targets residue Gln448 (Nii3-Q448K), a residue near the prosthetic groups. Comparison of the structures and kinetics of the Nii3 wild-type (Nii3-WT) and the Met175 variants showed that the hydrophobic side-chain of Met175 facilitated enzyme efficiency (k(cat) /K(m) ). The Nii4-WT has Lys449 at the equivalent position of Gln448 in Nii3-WT. The enzyme activity assay revealed that the turnover number (k(cat) ) and Michaelis constant (K(m) ) of Nii4-WT were lower than those of Nii3-WT. However, the k(cat) /K(m) of Nii4-WT was about 1.4 times higher than that of Nii3-WT. A comparison of the kinetics of the Nii3-Q448K and Nii4-K449Q variants revealed that the change in k(cat) /K(m) was brought about by the difference in Residue 448 (defined as Gln448 in Nii3 and Lys449 in Nii4). By combining detailed crystal structures with enzyme kinetics, we have proposed that Nii3 is the low-affinity and Nii4 is the high-affinity aNiR.
Collapse
Affiliation(s)
| | | | | | | | - Katsuo Katayanagi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima UniversityHigashi-Hiroshima 739-8526, Japan
| |
Collapse
|
16
|
Sturms R, DiSpirito AA, Fulton DB, Hargrove MS. Hydroxylamine Reduction to Ammonium by Plant and Cyanobacterial Hemoglobins. Biochemistry 2011; 50:10829-35. [DOI: 10.1021/bi201425f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan Sturms
- Department of Biochemistry,
Biophysics, and Molecular
Biology, Iowa State University, Ames, Iowa
50011, United States
| | - Alan A. DiSpirito
- Department of Biochemistry,
Biophysics, and Molecular
Biology, Iowa State University, Ames, Iowa
50011, United States
| | - D. Bruce Fulton
- Department of Biochemistry,
Biophysics, and Molecular
Biology, Iowa State University, Ames, Iowa
50011, United States
| | - Mark S. Hargrove
- Department of Biochemistry,
Biophysics, and Molecular
Biology, Iowa State University, Ames, Iowa
50011, United States
| |
Collapse
|
17
|
Kherraz K, Kherraz K, Kameli A. Homology modeling of Ferredoxin-nitrite reductase from Arabidopsis thaliana. Bioinformation 2011; 6:115-9. [PMID: 21584187 PMCID: PMC3089885 DOI: 10.6026/97320630006115] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/24/2010] [Indexed: 12/02/2022] Open
Abstract
UNLABELLED Nitrogen is one of the major growth-limiting nutrients for plants: The main source of nitrogen in most of the higher plants is nitrate taken up through roots. Nitrate can be reduced both in the chloroplasts (photosynthetic tissues) and in proplastes (nonphotosynthetic tissues) such as roots. Ferredoxin-nitrite reductase (NiR) catalyses the reduction of nitrite to ammonium in the second step of the nitrate- assimilation pathway. Homology model of Ferredoxin-nitrite reductase has been constructed using the X-ray structure (PDB code: 2akj) a s a template and MODELLER 9v5 software. The resulting model assessed by PROCHECK, PROSAII and RMSD that showed the final refined model is reliable: has 81% of amino acid sequence identity with template, 0.2Å as RMSD and has (-10.37) as Z-scores, the Ramachandran plot analysis showed that conformations for 99.5 % of amino acid residues are within the most favored regions. The model could prove useful in further functional characterization of this protein. ABBREVIATIONS PDB - Protein Data Bank, NMR - Nuclear Magnetic Resonance, NiR - Nitrite Reductase, RMSD - Root Mean Squared Deviation, Fd - ferredoxin.
Collapse
Affiliation(s)
- Karim Kherraz
- Biology department, Ecole Normale Superieure, ENS-Kouba, PB 92, Algiers, Algeria
| | - Khaled Kherraz
- Biology department, Ecole Normale Superieure, ENS-Kouba, PB 92, Algiers, Algeria
| | - Abdelkrim Kameli
- Biology department, Ecole Normale Superieure, ENS-Kouba, PB 92, Algiers, Algeria
| |
Collapse
|
18
|
Hirasawa M, Tripathy JN, Sommer F, Somasundaram R, Chung JS, Nestander M, Kruthiventi M, Zabet-Moghaddam M, Johnson MK, Merchant SS, Allen JP, Knaff DB. Enzymatic properties of the ferredoxin-dependent nitrite reductase from Chlamydomonas reinhardtii. Evidence for hydroxylamine as a late intermediate in ammonia production. PHOTOSYNTHESIS RESEARCH 2010; 103:67-77. [PMID: 20039132 PMCID: PMC2833264 DOI: 10.1007/s11120-009-9512-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/26/2009] [Indexed: 05/26/2023]
Abstract
The ferredoxin-dependent nitrite reductase from the green alga Chlamydomonas reinhardtii has been cloned, expressed in Escherichia coli as a His-tagged recombinant protein, and purified to homogeneity. The spectra, kinetic properties and substrate-binding parameters of the C. reinhardtii enzyme are quite similar to those of the ferredoxin-dependent spinach chloroplast nitrite reductase. Computer modeling, based on the published structure of spinach nitrite reductase, predicts that the structure of C. reinhardtii nitrite reductase will be similar to that of the spinach enzyme. Chemical modification studies and the ionic-strength dependence of the enzyme's ability to interact with ferredoxin are consistent with the involvement of arginine and lysine residues on C. reinhardtii nitrite reductase in electrostatically-stabilized binding to ferredoxin. The C. reinhardtii enzyme has been used to demonstrate that hydroxylamine can serve as an electron-accepting substrate for the enzyme and that the product of hydroxylamine reduction is ammonia, providing the first experimental evidence for the hypothesis that hydroxylamine, bound to the enzyme, can serve as a late intermediate during the reduction of nitrite to ammonia catalyzed by the enzyme.
Collapse
Affiliation(s)
- Masakazu Hirasawa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, 79409-1061, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Hirasawa M, Tripathy JN, Somasundaram R, Johnson MK, Bhalla M, Allen JP, Knaff DB. The interaction of spinach nitrite reductase with ferredoxin: a site-directed mutation study. MOLECULAR PLANT 2009; 2:407-15. [PMID: 19825625 PMCID: PMC2902899 DOI: 10.1093/mp/ssn098] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A series of site-directed mutants of the ferredoxin-dependent spinach nitrite reductase has been characterized and several amino acids have been identified that appear to be involved in the interaction of the enzyme with ferredoxin. In a complementary study, binding constants to nitrite reductase and steady-state kinetic parameters of site-directed mutants of ferredoxin were determined in an attempt to identify ferredoxin amino acids involved in the interaction with nitrite reductase. The results have been interpreted in terms of an in-silico docking model for the 1:1 complex of ferredoxin with nitrite reductase.
Collapse
Affiliation(s)
- Masakazu Hirasawa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Jatindra N. Tripathy
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | | | | - Megha Bhalla
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - James P. Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - David B. Knaff
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
- Institute for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409-1061, USA
- To whom correspondence should be addressed. E-mail
| |
Collapse
|
20
|
Sétif P, Hirasawa M, Cassan N, Lagoutte B, Tripathy JN, Knaff DB. New Insights into the Catalytic Cycle of Plant Nitrite Reductase. Electron Transfer Kinetics and Charge Storage. Biochemistry 2009; 48:2828-38. [DOI: 10.1021/bi802096f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pierre Sétif
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Masakazu Hirasawa
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Nicolas Cassan
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Bernard Lagoutte
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - Jatindra N. Tripathy
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| | - David B. Knaff
- CEA, iBiTecS, F-91191 Gif sur Yvette, France, CNRS, URA 2096, F-91191 Gif sur Yvette, France, and Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061
| |
Collapse
|
21
|
Tripathy JN, Hirasawa M, Kim SK, Setterdahl AT, Allen JP, Knaff DB. The role of tryptophan in the ferredoxin-dependent nitrite reductase of spinach. PHOTOSYNTHESIS RESEARCH 2007; 94:1-12. [PMID: 17611813 DOI: 10.1007/s11120-007-9198-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Accepted: 05/15/2007] [Indexed: 05/16/2023]
Abstract
A system has been developed for expressing a His-tagged form of the ferredoxin-dependent nitrite reductase of spinach in Escherichia coli. The catalytic and spectral properties of the His-tagged, recombinant enzyme are similar, but not identical, to those previously observed for nitrite reductase isolated directly from spinach leaf. A detailed comparison of the spectral, catalytic and fluorescence properties of nitrite reductase variants, in which each of the enzyme's eight tryptophan residues has been replaced using site-directed mutagenesis by either aromatic or non-aromatic amino acids, has been used to examine possible roles for tryptophan residues in the reduction of nitrite to ammonia catalyzed by the enzyme.
Collapse
Affiliation(s)
- Jatindra N Tripathy
- Department of Chemistry and Biochemistry, Texas Tech University, 1 Circle Drive, Lubbock, TX 79409-1061, USA
| | | | | | | | | | | |
Collapse
|
22
|
Rodionov DA, Dubchak IL, Arkin AP, Alm EJ, Gelfand MS. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLoS Comput Biol 2005; 1:e55. [PMID: 16261196 PMCID: PMC1274295 DOI: 10.1371/journal.pcbi.0010055] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 09/29/2005] [Indexed: 12/30/2022] Open
Abstract
Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR, and NnrR; two-component systems NarXL and NarQP; NO-responsive activator NorR; and nitrite-sensitive repressor NsrR. Using comparative genomics approaches, we predict DNA-binding motifs for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA recognition motif. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria, including Clostridia, Thermotogales, and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides' metabolism, not only in most gamma- and beta-proteobacteria (including well-studied species such as Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding motif. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon also includes two nitrite-responsive loci, nipAB (hcp-hcr) and nipC (dnrN), thus confirming the identity of the effector, i.e. nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the result, we demonstrate considerable interconnection between various nitrogen-oxides-responsive regulatory systems for the denitrification and NO detoxification genes and evolutionary plasticity of this transcriptional network. Comparative genomics is the analysis and comparison of genomes from different species. More then 100 complete genomes of bacteria are now available. Comparative analysis of binding sites for transcriptional regulators is a powerful approach for functional gene annotation. Knowledge of transcriptional regulatory networks is essential for understanding cellular processes in bacteria. The global nitrogen cycle includes interconversion of nitrogen oxides between a number of redox states. Despite the importance of bacterial nitrogen oxides' metabolism for ecology and medicine, our understanding of their regulation is limited. In this study, the researchers have applied comparative genomic approaches to describe a regulatory network of genes involved in the nitrogen oxides' metabolism in bacteria. The described regulatory network involves five nitric oxide−responsive transcription factors with different DNA recognition motifs. Different combinations of these regulators appear to regulate expression of dozens of genes involved in nitric oxide detoxification and denitrification. The reconstructed network demonstrates considerable interconnection and evolutionary plasticity. Not only are genes shuffled between regulons in different genomes, but there is also considerable interaction between regulators. Overall, the system seems to be quite conserved; however, many regulatory interactions in the identified core regulatory network are taxon-specific. This study demonstrates the power of comparative genomics in the analysis of complex regulatory networks and their evolution.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | |
Collapse
|
23
|
Schnell R, Sandalova T, Hellman U, Lindqvist Y, Schneider G. Siroheme- and [Fe4-S4]-dependent NirA from Mycobacterium tuberculosis Is a Sulfite Reductase with a Covalent Cys-Tyr Bond in the Active Site. J Biol Chem 2005; 280:27319-28. [PMID: 15917234 DOI: 10.1074/jbc.m502560200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nirA gene of Mycobacterium tuberculosis is up-regulated in the persistent state of the bacteria, suggesting that it is a potential target for the development of antituberculosis agents particularly active against the pathogen in its dormant phase. This gene encodes a ferredoxin-dependent sulfite reductase, and the structure of the enzyme has been determined using x-ray crystallography. The enzyme is a monomer comprising 555 amino acids and contains a [Fe4-S4] cluster and a siroheme cofactor. The molecule is built up of three domains with an alpha/beta fold. The first domain consists of two ferredoxin-like subdomains, related by a pseudo-2-fold symmetry axis passing through the whole molecule. The other two domains, which provide much of the binding interactions with the cofactors, have a common fold that is unique to the sulfite/nitrite reductase family. The domains form a trilobal structure, with the cofactors and the active site located at the interface of all three domains in the center of the molecule. NirA contains an unusual covalent bond between the side chains of Tyr69 and Cys161 in the active site, in close proximity to the siroheme cofactor. Removal of this covalent bond by site-directed mutagenesis impairs catalytic activity, suggesting that it is important for the enzymatic reaction. These residues are part of a sequence fingerprint, able to distinguish between ferredoxin-dependent sulfite and nitrite reductases. Comparison of NirA with the structure of the truncated NADPH-dependent sulfite reductase from Escherichia coli suggests a binding site for the external electron donor ferredoxin close to the [Fe4-S4] cluster.
Collapse
Affiliation(s)
- Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm S-171 77, Sweden
| | | | | | | | | |
Collapse
|