1
|
Schelvis JPM, Chen Z, Messina MA, Catalano J. Effect of CO binding to P450 BM3 F393 mutants on electron density distribution in the heme cofactor. J Inorg Biochem 2024; 259:112660. [PMID: 39002177 DOI: 10.1016/j.jinorgbio.2024.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Resonance Raman spectroscopy has been performed on a set of cytochrome P450 BM3 heme domains in which mutation of the highly conserved Phe393 induces significant variation in heme iron reduction potential. In previous work [Chen, Z., Ost, T.W.B., and Schelvis, J.P.M. (2004) Biochemistry 43, 1798-1808], a correlation between heme vinyl conformation and the heme iron reduction potential indicated a steric control by the protein over the distribution of electron density in the reduced heme cofactor. The current study aims to monitor changes in electron density on the ferrous heme cofactor following CO binding. In addition, ferric-NO complexes have been studied to investigate potential changes to the proximal Cys400 thiolate. We find that binding of CO to the ferrous heme domains results in a reorientation of the vinyl groups to a largely out-of-plane conformation, the extent of which correlates with the size of the residue at position 393. We conclude that FeII dπ back bonding to the CO ligand largely takes away the need for conjugation of the vinyl groups with the porphyrin ring to accommodate FeII dπ back bonding to the porphyrin ligand. The ferrous-CO and ferric-NO data are consistent with a small decrease in σ-electron donation from the proximal Cys400 thiolate in the F393A mutant and, to a lesser extent, the F393H mutant, potentially due to a small increase in hydrogen bonding to the proximal ligand. Phe393 seems strategically placed to preserve robust σ-electron donation to the heme iron and to fine-tune its electron density by limiting vinyl group rotation.
Collapse
Affiliation(s)
- Johannes P M Schelvis
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA.
| | - Zhucheng Chen
- School of Life Sciences, Tsinghua University, Beijing, China.
| | - Marisa A Messina
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA.
| | - Jaclyn Catalano
- Department of Chemistry and Biochemistry, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA.
| |
Collapse
|
2
|
Lehnert N, Kim E, Dong HT, Harland JB, Hunt AP, Manickas EC, Oakley KM, Pham J, Reed GC, Alfaro VS. The Biologically Relevant Coordination Chemistry of Iron and Nitric Oxide: Electronic Structure and Reactivity. Chem Rev 2021; 121:14682-14905. [PMID: 34902255 DOI: 10.1021/acs.chemrev.1c00253] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.
Collapse
Affiliation(s)
- Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Eunsuk Kim
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Andrew P Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Elizabeth C Manickas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Kady M Oakley
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - John Pham
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Garrett C Reed
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Victor Sosa Alfaro
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
3
|
Quareshy M, Shanmugam M, Townsend E, Jameson E, Bugg TDH, Cameron AD, Chen Y. Structural basis of carnitine monooxygenase CntA substrate specificity, inhibition, and intersubunit electron transfer. J Biol Chem 2020; 296:100038. [PMID: 33158989 PMCID: PMC7948474 DOI: 10.1074/jbc.ra120.016019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/27/2020] [Accepted: 11/06/2020] [Indexed: 12/27/2022] Open
Abstract
Microbial metabolism of carnitine to trimethylamine (TMA) in the gut can accelerate atherosclerosis and heart disease, and these TMA-producing enzymes are therefore important drug targets. Here, we report the first structures of the carnitine oxygenase CntA, an enzyme of the Rieske oxygenase family. CntA exists in a head-to-tail α3 trimeric structure. The two functional domains (the Rieske and the catalytic mononuclear iron domains) are located >40 Å apart in the same monomer but adjacent in two neighboring monomers. Structural determination of CntA and subsequent electron paramagnetic resonance measurements uncover the molecular basis of the so-called bridging glutamate (E205) residue in intersubunit electron transfer. The structures of the substrate-bound CntA help to define the substrate pocket. Importantly, a tyrosine residue (Y203) is essential for ligand recognition through a π-cation interaction with the quaternary ammonium group. This interaction between an aromatic residue and quaternary amine substrates allows us to delineate a subgroup of Rieske oxygenases (group V) from the prototype ring-hydroxylating Rieske oxygenases involved in bioremediation of aromatic pollutants in the environment. Furthermore, we report the discovery of the first known CntA inhibitors and solve the structure of CntA in complex with the inhibitor, demonstrating the pivotal role of Y203 through a π-π stacking interaction with the inhibitor. Our study provides the structural and molecular basis for future discovery of drugs targeting this TMA-producing enzyme in human gut.
Collapse
Affiliation(s)
- Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology & Photon Science Institute, The University of Manchester, Manchester, UK
| | | | - Eleanor Jameson
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
4
|
Morgan ET, Skubic C, Lee CM, Cokan KB, Rozman D. Regulation of cytochrome P450 enzyme activity and expression by nitric oxide in the context of inflammatory disease. Drug Metab Rev 2020; 52:455-471. [PMID: 32898444 DOI: 10.1080/03602532.2020.1817061] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many hepatic cytochrome P450 enzymes and their associated drug metabolizing activities are down-regulated in disease states, and much of this has been associated with inflammatory cytokines and their signaling pathways. One such pathway is the induction of inducible nitric oxide synthase (NOS2) and generation of nitric oxide (NO) in many tissues and cells including the liver and hepatocytes. Experiments in the 1990s demonstrated that NO could bind to and inhibit P450 enzymes, and suggested that inhibition of NOS could attenuate, and NO generation could mimic, the down-regulation by inflammatory stimuli of not only P450 catalytic activities but also of mRNA expression and protein levels of certain P450 enzymes. This review will summarize and examine the evidence that NO functionally inhibits and down-regulates P450 enzymes in vivo and in vitro, with a particular focus on the mechanisms by which these effects are achieved.
Collapse
Affiliation(s)
- Edward T Morgan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Cene Skubic
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Choon-Myung Lee
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Kaja Blagotinšek Cokan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Louka S, Barry SM, Heyes DJ, Mubarak MQE, Ali HS, Alkhalaf LM, Munro AW, Scrutton NS, Challis GL, de Visser SP. Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate. J Am Chem Soc 2020; 142:15764-15779. [PMID: 32811149 PMCID: PMC7586343 DOI: 10.1021/jacs.0c05070] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
cytochromes P450 are heme-dependent enzymes that catalyze many
vital reaction processes in the human body related to biodegradation
and biosynthesis. They typically act as mono-oxygenases; however,
the recently discovered P450 subfamily TxtE utilizes O2 and NO to nitrate aromatic substrates such as L-tryptophan.
A direct and selective aromatic nitration reaction may be useful in
biotechnology for the synthesis of drugs or small molecules. Details
of the catalytic mechanism are unknown, and it has been suggested
that the reaction should proceed through either an iron(III)-superoxo
or an iron(II)-nitrosyl intermediate. To resolve this controversy,
we used stopped-flow kinetics to provide evidence for a catalytic
cycle where dioxygen binds prior to NO to generate an active iron(III)-peroxynitrite
species that is able to nitrate l-Trp efficiently. We show
that the rate of binding of O2 is faster than that of NO
and also leads to l-Trp nitration, while little evidence
of product formation is observed from the iron(II)-nitrosyl complex.
To support the experimental studies, we performed density functional
theory studies on large active site cluster models. The studies suggest
a mechanism involving an iron(III)-peroxynitrite that splits homolytically
to form an iron(IV)-oxo heme (Compound II) and a free NO2 radical via a small free energy of activation. The latter activates
the substrate on the aromatic ring, while compound II picks up the ipso-hydrogen to form the product. The calculations give
small reaction barriers for most steps in the catalytic cycle and,
therefore, predict fast product formation from the iron(III)-peroxynitrite
complex. These findings provide the first detailed insight into the
mechanism of nitration by a member of the TxtE subfamily and highlight
how the enzyme facilitates this novel reaction chemistry.
Collapse
Affiliation(s)
- Savvas Louka
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| | - Sarah M Barry
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Derren J Heyes
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - M Qadri E Mubarak
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| | - Hafiz Saqib Ali
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Lona M Alkhalaf
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Andrew W Munro
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Nigel S Scrutton
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.,Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3800, Australia.,ARC Centre for Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, VIC 3800, Australia
| | - Sam P de Visser
- The Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.,Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Mancheste M13 9PL, United Kingdom
| |
Collapse
|
6
|
Lee CM, Wilderman PR, Park JW, Murphy TJ, Morgan ET. Tyrosine Nitration Contributes to Nitric Oxide-Stimulated Degradation of CYP2B6. Mol Pharmacol 2020; 98:267-279. [PMID: 32817462 PMCID: PMC7469253 DOI: 10.1124/molpharm.120.000020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022] Open
Abstract
Human cytochrome P450 (P450) CYP2B6 undergoes nitric oxide (NO)-dependent proteasomal degradation in response to the NO donor dipropylenetriamine NONOate (DPTA) and biologic NO in HeLa and HuH7 cell lines. CYP2B6 is also downregulated by NO in primary human hepatocytes. We hypothesized that NO or derivative reactive nitrogen species may generate adducts of tyrosine and/or cysteine residues, causing CYP2B6 downregulation, and selected Tyr and Cys residues for mutation based on predicted solvent accessibility. CYP2B6V5-Y317A, -Y380A, and -Y190A mutant proteins expressed in HuH7 cells were less sensitive than wild-type (WT) enzyme to degradation evoked by DPTA, suggesting that these tyrosines are targets for NO-dependent downregulation. The Y317A or Y380A mutants did not show increases in high molecular mass (HMM) species after treatment with DPTA or bortezomib + DPTA, in contrast to the WT enzyme. Carbon monoxide-releasing molecule 2 treatment caused rapid suppression of 2B6 enzyme activity, significant HMM species generation, and ubiquitination of CYP2B6 protein but did not stimulate CYP2B6 degradation. The CYP2B6 inhibitor 4-(4-chlorophenyl)imidazole blocked NO-dependent CYP2B6 degradation, suggesting that NO access to the active site is important. Molecular dynamics simulations predicted that tyrosine nitrations of CYP2B6 would cause significant destabilizing perturbations of secondary structure and remove correlated motions likely required for enzyme function. We propose that cumulative nitrations of Y190, Y317, and Y380 by reactive nitrogen species cause destabilization of CYP2B6, which may act synergistically with heme nitrosylation to target the enzyme for degradation. SIGNIFICANCE STATEMENT: This work provides novel insight into the mechanisms by which nitric oxide, which is produced in hepatocytes in response to inflammation, triggers the ubiquitin-dependent proteasomal degradation of the cytochrome P450 (P450) enzyme CYP2B6. Our data demonstrate that both nitration of specific tyrosine residues and interaction of nitric oxide (NO) with the P450 heme are necessary for NO to trigger ubiquitination and protein degradation.
Collapse
Affiliation(s)
- Choon-Myung Lee
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia (C.-m.L., J.W.P., T.J.M., E.T.M.) and University of Connecticut School of Pharmacy, Storrs, Connecticut (P.R.W.)
| | - P Ross Wilderman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia (C.-m.L., J.W.P., T.J.M., E.T.M.) and University of Connecticut School of Pharmacy, Storrs, Connecticut (P.R.W.)
| | - Ji Won Park
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia (C.-m.L., J.W.P., T.J.M., E.T.M.) and University of Connecticut School of Pharmacy, Storrs, Connecticut (P.R.W.)
| | - Thomas J Murphy
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia (C.-m.L., J.W.P., T.J.M., E.T.M.) and University of Connecticut School of Pharmacy, Storrs, Connecticut (P.R.W.)
| | - Edward T Morgan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia (C.-m.L., J.W.P., T.J.M., E.T.M.) and University of Connecticut School of Pharmacy, Storrs, Connecticut (P.R.W.)
| |
Collapse
|
7
|
Su Z, Horner JH, Newcomb M. Cytochrome P450 119 Compounds I Formed by Chemical Oxidation and Photooxidation Are the Same Species. Chemistry 2019; 25:14015-14020. [PMID: 23108625 PMCID: PMC3930626 DOI: 10.1002/chem.201202254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Indexed: 11/07/2022]
Abstract
Compound I from cytochrome P450 119 prepared by the photooxidation method involving peroxynitrite oxidation of the resting enzyme to Compound II followed by photooxidation to Compound I was compared to Compound I generated by m-chloroperoxybenzoic acid (MCPBA) oxidation of the resting enzyme. The two methods gave the same UV/Visible spectra, the same products from oxidations of lauric acid and palmitic acid and their (ω-2,ω-2,ω-3,ω-3)-tetradeuterated analogues, and the same kinetics for oxidations of lauric acid and caprylic acid. The experimental identities between the transients produced by the two methods leave no doubt that the same Compound I species is formed by the two methods.
Collapse
Affiliation(s)
- Zhi Su
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60617 U.S.A, Fax: (+1) 312-996-0431
| | - John H. Horner
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60617 U.S.A, Fax: (+1) 312-996-0431
| | - Martin Newcomb
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60617 U.S.A, Fax: (+1) 312-996-0431
| |
Collapse
|
8
|
Jeffreys LN, Girvan HM, McLean KJ, Munro AW. Characterization of Cytochrome P450 Enzymes and Their Applications in Synthetic Biology. Methods Enzymol 2018; 608:189-261. [PMID: 30173763 DOI: 10.1016/bs.mie.2018.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytochrome P450 monooxygenase enzymes (P450s) catalyze a diverse array of chemical transformations, most originating from the insertion of an oxygen atom into a substrate that binds close to the P450 heme. The oxygen is delivered by a highly reactive heme iron-oxo species (compound I) and, according to the chemical nature of the substrate and its position in the active site, the P450 can catalyze a wide range of reactions including, e.g., hydroxylation, reduction, decarboxylation, sulfoxidation, N- and O-demethylation, epoxidation, deamination, CC bond formation and breakage, nitration, and dehalogenation. In this chapter, we describe the structural, biochemical, and catalytic properties of the P450s, along with spectroscopic and analytical methods used to characterize P450 enzymes and their redox partners. Important uses of P450 enzymes are highlighted, including how various P450s have been exploited for applications in synthetic biology.
Collapse
Affiliation(s)
- Laura N Jeffreys
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Hazel M Girvan
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Kirsty J McLean
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Andrew W Munro
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
9
|
Baker G, Girvan HM, Matthews S, McLean KJ, Golovanova M, Waltham TN, Rigby SEJ, Nelson DR, Blankley RT, Munro AW. Expression, Purification, and Biochemical Characterization of the Flavocytochrome P450 CYP505A30 from Myceliophthora thermophila. ACS OMEGA 2017; 2:4705-4724. [PMID: 30023729 PMCID: PMC6044835 DOI: 10.1021/acsomega.7b00450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/26/2017] [Indexed: 05/21/2023]
Abstract
The cytochrome P450/P450 reductase fusion enzyme CYP505A30 from the thermophilic fungus Myceliophthora thermophila and its heme (P450) domain were expressed in Escherichia coli and purified using affinity, ion exchange, and size exclusion chromatography. CYP505A30 binds straight chain fatty acids (from ∼C10 to C20), with highest affinity for tridecanoic acid (KD = 2.7 μM). Reduced nicotinamide adenine dinucleotide phosphate is the preferred reductant for CYP505A30 (KM = 3.1 μM compared to 330 μM for reduced nicotinamide adenine dinucleotide in cytochrome c reduction). Electron paramagnetic resonance confirmed cysteine thiolate coordination of heme iron in CYP505A30 and its heme domain. Redox potentiometry revealed an unusually positive midpoint potential for reduction of the flavin adenine dinucleotide and flavin mononucleotide cofactors (E0' ∼ -118 mV), and a large increase in the CYP505A30 heme domain FeIII/FeII redox couple (ca. 230 mV) on binding arachidonic acid substrate. This switch brings the ferric heme iron potential into the same range as that of the reductase flavins. Multiangle laser light scattering analysis revealed CYP505A30's ability to dimerize, whereas the heme domain is monomeric. These data suggest CYP505A30 may function catalytically as a dimer (as described for Bacillus megaterium P450 BM3), and that binding interactions between CYP505A30 heme domains are not required for dimer formation. CYP505A30 catalyzed hydroxylation of straight chain fatty acids at the ω-1 to ω-3 positions, with a strong preference for ω-1 over ω-3 hydroxylation in the oxidation of dodecanoic and tetradecanoic acids (88 vs 2% products and 63 vs 9% products, respectively). CYP505A30 has important structural and catalytic similarities to P450 BM3 but distinct regioselectivity of lipid substrate oxidation with potential biotechnological applications.
Collapse
Affiliation(s)
- George
J. Baker
- Centre
for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Hazel M. Girvan
- Centre
for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sarah Matthews
- Centre
for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Kirsty J. McLean
- Centre
for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Marina Golovanova
- Centre
for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Timothy N. Waltham
- Centre
for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Stephen E. J. Rigby
- Centre
for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - David R. Nelson
- Department
of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Richard T. Blankley
- Agilent
Technologies U.K. Ltd., Lakeside, Cheadle Royal Business Park, Stockport, Cheshire SK8 3GR, U.K.
| | - Andrew W. Munro
- Centre
for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM),
School of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
- E-mail: . Phone: 0044-161-306-5151
| |
Collapse
|
10
|
Vicente JB, Colaço HG, Sarti P, Leandro P, Giuffrè A. S-Adenosyl-l-methionine Modulates CO and NO• Binding to the Human H2S-generating Enzyme Cystathionine β-Synthase. J Biol Chem 2015; 291:572-81. [PMID: 26582199 DOI: 10.1074/jbc.m115.681221] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Indexed: 01/11/2023] Open
Abstract
Cystathionine β-synthase (CBS) is a key enzyme in human (patho)physiology with a central role in hydrogen sulfide metabolism. The enzyme is composed of a pyridoxal 5'-phosphate-binding catalytic domain, flanked by the following two domains: a heme-binding N-terminal domain and a regulatory C-terminal domain binding S-adenosyl-l-methionine (AdoMet). CO or NO(•) binding at the ferrous heme negatively modulates the enzyme activity. Conversely, AdoMet binding stimulates CBS activity. Here, we provide experimental evidence for a functional communication between the two domains. We report that AdoMet binding significantly enhances CBS inhibition by CO. Consistently, we observed increased affinity (∼5-fold) and faster association (∼10-fold) of CO to the ferrous heme at physiological AdoMet concentrations. NO(•) binding to reduced CBS was also enhanced by AdoMet, although to a lesser extent (∼2-fold higher affinity) as compared with CO. Importantly, CO and NO(•) binding was unchanged by AdoMet in a truncated form of CBS lacking the C-terminal regulatory domain. These unprecedented observations demonstrate that CBS activation by AdoMet puzzlingly sensitizes the enzyme toward inhibition by exogenous ligands, like CO and NO(•). This further supports the notion that CBS regulation is a complex process, involving the concerted action of multiple physiologically relevant effectors.
Collapse
Affiliation(s)
- João B Vicente
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2781-156 Oeiras, Portugal,
| | - Henrique G Colaço
- the Metabolism and Genetics Group, Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Paolo Sarti
- the Department of Biochemical Sciences and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, I-00185 Rome, Italy
| | - Paula Leandro
- the Metabolism and Genetics Group, Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal, the Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, 1640-003 Lisbon, Portugal, and
| | - Alessandro Giuffrè
- the Institute of Molecular Biology and Pathology, National Research Council of Italy, I-00185 Rome, Italy
| |
Collapse
|
11
|
Smith AT, Pazicni S, Marvin KA, Stevens DJ, Paulsen KM, Burstyn JN. Functional divergence of heme-thiolate proteins: a classification based on spectroscopic attributes. Chem Rev 2015; 115:2532-58. [PMID: 25763468 DOI: 10.1021/cr500056m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron T Smith
- †Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, Illinois 60208, United States
| | - Samuel Pazicni
- ‡Department of Chemistry, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Katherine A Marvin
- §Department of Chemistry, Hendrix College, 1600 Washington Avenue, Conway, Arkansas 72032, United States
| | - Daniel J Stevens
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Katherine M Paulsen
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Judith N Burstyn
- ∥Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Yang Y, Zhang H, Usharani D, Bu W, Im S, Tarasev M, Rwere F, Pearl NM, Meagher J, Sun C, Stuckey J, Shaik S, Waskell L. Structural and functional characterization of a cytochrome P450 2B4 F429H mutant with an axial thiolate-histidine hydrogen bond. Biochemistry 2014; 53:5080-91. [PMID: 25029089 PMCID: PMC4131899 DOI: 10.1021/bi5003794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/15/2014] [Indexed: 02/02/2023]
Abstract
The structural basis of the regulation of microsomal cytochrome P450 (P450) activity was investigated by mutating the highly conserved heme binding motif residue, Phe429, on the proximal side of cytochrome P450 2B4 to a histidine. Spectroscopic, pre-steady-state and steady-state kinetic, thermodynamic, theoretical, and structural studies of the mutant demonstrate that formation of an H-bond between His429 and the unbonded electron pair of the Cys436 axial thiolate significantly alters the properties of the enzyme. The mutant lost >90% of its activity; its redox potential was increased by 87 mV, and the half-life of the oxyferrous mutant was increased ∼37-fold. Single-crystal electronic absorption and resonance Raman spectroscopy demonstrated that the mutant was reduced by a small dose of X-ray photons. The structure revealed that the δN atom of His429 forms an H-bond with the axial Cys436 thiolate whereas the εN atom forms an H-bond with the solvent and the side chain of Gln357. The amide of Gly438 forms the only other H-bond to the tetrahedral thiolate. Theoretical quantification of the histidine-thiolate interaction demonstrates a significant electron withdrawing effect on the heme iron. Comparisons of structures of class I-IV P450s demonstrate that either a phenylalanine or tryptophan is often found at the location corresponding to Phe429. Depending on the structure of the distal pocket heme, the residue at this location may or may not regulate the thermodynamic properties of the P450. Regardless, this residue appears to protect the thiolate from solvent, oxidation, protonations, and other deleterious reactions.
Collapse
Affiliation(s)
- Yuting Yang
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Haoming Zhang
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Dandamudi Usharani
- Institute
of Chemistry and Lise Meitner-Minerva Center for Computational Quantum
Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Weishu Bu
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Sangchoul Im
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Michael Tarasev
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Freeborn Rwere
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Naw May Pearl
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Jennifer Meagher
- Life
Science Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - Cuthbert Sun
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| | - Jeanne Stuckey
- Life
Science Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United States
| | - Sason Shaik
- Institute
of Chemistry and Lise Meitner-Minerva Center for Computational Quantum
Chemistry, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Lucy Waskell
- Department
of Anesthesiology, University of Michigan
and VA Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann
Arbor, Michigan 48105, United States
| |
Collapse
|
13
|
Belcher J, McLean KJ, Matthews S, Woodward LS, Fisher K, Rigby SEJ, Nelson DR, Potts D, Baynham MT, Parker DA, Leys D, Munro AW. Structure and biochemical properties of the alkene producing cytochrome P450 OleTJE (CYP152L1) from the Jeotgalicoccus sp. 8456 bacterium. J Biol Chem 2014; 289:6535-6550. [PMID: 24443585 DOI: 10.1074/jbc.m113.527325] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The production of hydrocarbons in nature has been documented for only a limited set of organisms, with many of the molecular components underpinning these processes only recently identified. There is an obvious scope for application of these catalysts and engineered variants thereof in the future production of biofuels. Here we present biochemical characterization and crystal structures of a cytochrome P450 fatty acid peroxygenase: the terminal alkene forming OleTJE (CYP152L1) from Jeotgalicoccus sp. 8456. OleTJE is stabilized at high ionic strength, but aggregation and precipitation of OleTJE in low salt buffer can be turned to advantage for purification, because resolubilized OleTJE is fully active and extensively dissociated from lipids. OleTJE binds avidly to a range of long chain fatty acids, and structures of both ligand-free and arachidic acid-bound OleTJE reveal that the P450 active site is preformed for fatty acid binding. OleTJE heme iron has an unusually positive redox potential (-103 mV versus normal hydrogen electrode), which is not significantly affected by substrate binding, despite extensive conversion of the heme iron to a high spin ferric state. Terminal alkenes are produced from a range of saturated fatty acids (C12-C20), and stopped-flow spectroscopy indicates a rapid reaction between peroxide and fatty acid-bound OleTJE (167 s(-1) at 200 μm H2O2). Surprisingly, the active site is highly similar in structure to the related P450BSβ, which catalyzes hydroxylation of fatty acids as opposed to decarboxylation. Our data provide new insights into structural and mechanistic properties of a robust P450 with potential industrial applications.
Collapse
Affiliation(s)
- James Belcher
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Kirsty J McLean
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Sarah Matthews
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Laura S Woodward
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Karl Fisher
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Stephen E J Rigby
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Donna Potts
- Agilent Technologies UK Ltd., Lakeside, Cheadle Royal Business Park, Stockport, Cheshire SK8 3GR, United Kingdom
| | - Michael T Baynham
- Agilent Technologies UK Ltd., Lakeside, Cheadle Royal Business Park, Stockport, Cheshire SK8 3GR, United Kingdom
| | | | - David Leys
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Andrew W Munro
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, Manchester M1 7DN, United Kingdom.
| |
Collapse
|
14
|
Dumais G, Iovu M, du Souich P. Inflammatory reactions and drug response: importance of cytochrome P450 and membrane transporters. Expert Rev Clin Pharmacol 2014; 1:627-47. [DOI: 10.1586/17512433.1.5.627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Heinecke JL, Khin C, Pereira JCM, Suárez SA, Iretskii AV, Doctorovich F, Ford PC. Nitrite reduction mediated by heme models. Routes to NO and HNO? J Am Chem Soc 2013; 135:4007-17. [PMID: 23421316 DOI: 10.1021/ja312092x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The water-soluble ferriheme model Fe(III)(TPPS) mediates oxygen atom transfer from inorganic nitrite to a water-soluble phosphine (tppts), dimethyl sulfide, and the biological thiols cysteine (CysSH) and glutathione (GSH). The products with the latter reductant are the respective sulfenic acids CysS(O)H and GS(O)H, although these reactive intermediates are rapidly trapped by reaction with excess thiol. The nitrosyl complex Fe(II)(TPPS)(NO) is the dominant iron species while excess substrate is present. However, in slightly acidic media (pH ≈ 6), the system does not terminate at this very stable ferrous nitrosyl. Instead, it displays a matrix of redox transformations linking spontaneous regeneration of Fe(III)(TPPS) to the formation of both N2O and NO. Electrochemical sensor and trapping experiments demonstrate that HNO (nitroxyl) is formed, at least when tppts is the reductant. HNO is the likely predecessor of the N2O. A key pathway to NO formation is nitrite reduction by Fe(II)(TPPS), and the kinetics of this iron-mediated transformation are described. Given that inorganic nitrite has protective roles during ischemia/reperfusion (I/R) injury to organs, attributed in part to NO formation, and that HNO may also reduce net damage from I/R, the present studies are relevant to potential mechanisms of such nitrite protection.
Collapse
Affiliation(s)
- Julie L Heinecke
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106-9510, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Cytochrome P450–catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nat Chem Biol 2013; 8:814-6. [PMID: 22941045 PMCID: PMC3522571 DOI: 10.1038/nchembio.1048] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/07/2012] [Indexed: 11/08/2022]
Abstract
Thaxtomin phytotoxins produced by plant-pathogenic Streptomyces species contain a nitro group that is essential for phytotoxicity. The N,N’-dimethyldiketopiperazine core of thaxtomins is assembled from L-phenylalanine and L-4-nitrotryptophan by a nonribosomal peptide synthetase and nitric oxide synthase-generated NO is incorporated into the nitro group, but the biosynthesis of the non-proteinogenic amino acid L-4-nitrotryptophan is unclear. Here we report that TxtE, a unique cytochrome P450, catalyzes L-tryptophan nitration using NO and O2.
Collapse
|
17
|
Mechanisms of Nitric Oxide Reactions Mediated by Biologically Relevant Metal Centers. NITROSYL COMPLEXES IN INORGANIC CHEMISTRY, BIOCHEMISTRY AND MEDICINE II 2013. [DOI: 10.1007/430_2013_117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Warman AJ, Robinson JW, Luciakova D, Lawrence AD, Marshall KR, Warren MJ, Cheesman MR, Rigby SEJ, Munro AW, McLean KJ. Characterization of Cupriavidus metallidurans CYP116B1--a thiocarbamate herbicide oxygenating P450-phthalate dioxygenase reductase fusion protein. FEBS J 2012; 279:1675-93. [PMID: 22356105 DOI: 10.1111/j.1742-4658.2012.08543.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The novel cytochrome P450/redox partner fusion enzyme CYP116B1 from Cupriavidus metallidurans was expressed in and purified from Escherichia coli. Isolated CYP116B1 exhibited a characteristic Fe(II)CO complex with Soret maximum at 449 nm. EPR and resonance Raman analyses indicated low-spin, cysteinate-coordinated ferric haem iron at both 10 K and ambient temperature, respectively, for oxidized CYP116B1. The EPR of reduced CYP116B1 demonstrated stoichiometric binding of a 2Fe-2S cluster in the reductase domain. FMN binding in the reductase domain was confirmed by flavin fluorescence studies. Steady-state reduction of cytochrome c and ferricyanide were supported by both NADPH/NADH, with NADPH used more efficiently (K(m[NADPH]) = 0.9 ± 0.5 μM and K(m[NADH]) = 399.1 ± 52.1 μM). Stopped-flow studies of NAD(P)H-dependent electron transfer to the reductase confirmed the preference for NADPH. The reduction potential of the P450 haem iron was -301 ± 7 mV, with retention of haem thiolate ligation in the ferrous enzyme. Redox potentials for the 2Fe-2S and FMN cofactors were more positive than that of the haem iron. Multi-angle laser light scattering demonstrated CYP116B1 to be monomeric. Type I (substrate-like) binding of selected unsaturated fatty acids (myristoleic, palmitoleic and arachidonic acids) was shown, but these substrates were not oxidized by CYP116B1. However, CYP116B1 catalysed hydroxylation (on propyl chains) of the herbicides S-ethyl dipropylthiocarbamate (EPTC) and S-propyl dipropylthiocarbamate (vernolate), and the subsequent N-dealkylation of vernolate. CYP116B1 thus has similar thiocarbamate-oxidizing catalytic properties to Rhodoccocus erythropolis CYP116A1, a P450 involved in the oxidative degradation of EPTC.
Collapse
Affiliation(s)
- Ashley J Warman
- Department of Biochemistry, University of Leicester, Leicester, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang ZQ, Tejero J, Wei CC, Haque MM, Santolini J, Fadlalla M, Biswas A, Stuehr DJ. Arg375 tunes tetrahydrobiopterin functions and modulates catalysis by inducible nitric oxide synthase. J Inorg Biochem 2012; 108:203-15. [PMID: 22173094 PMCID: PMC3306459 DOI: 10.1016/j.jinorgbio.2011.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
NO synthase enzymes (NOS) support unique single-electron transitions of a bound H(4)B cofactor during catalysis. Previous studies showed that both the pterin structure and surrounding protein residues impact H(4)B redox function during catalysis. A conserved Arg residue (Arg375 in iNOS) forms hydrogen bonds with the H(4)B ring. In order to understand the role of this residue in modulating the function of H(4)B and overall NO synthesis of the enzyme, we generated and characterized three mutants R375D, R375K and R375N of the oxygenase domain of inducible NOS (iNOSoxy). The mutations affected the dimer stability of iNOSoxy and its binding affinity toward substrates and H(4)B to varying degrees. Optical spectra of the ferric, ferrous, ferrous dioxy, ferrous-NO, ferric-NO, and ferrous-CO forms of each mutant were similar to the wild-type. However, mutants displayed somewhat lower heme midpoint potentials and faster ferrous heme-NO complex reactivity with O(2). Unlike the wild-type protein, mutants could not oxidize NOHA to nitrite in a H(2)O(2)-driven reaction. Mutation could potentially change the ferrous dioxy decay rate, H(4)B radical formation rate, and the amount of the Arg hydroxylation during single turnover Arg hydroxylation reaction. All mutants were able to form heterodimers with the iNOS G450A full-length protein and displayed lower NO synthesis activities and uncoupled NADPH consumption. We conclude that the conserved residue Arg375 (1) regulates the tempo and extent of the electron transfer between H(4)B and ferrous dioxy species and (2) controls the reactivity of the heme-based oxidant formed after electron transfer from H(4)B during steady state NO synthesis and H(2)O(2)-driven NOHA oxidation. Thus, Arg375 modulates the redox function of H(4)B and is important in controlling the catalytic function of NOS enzymes.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Chemistry and Biochemistry, Kent State University at Tuscarawas, New Philadelphia, Ohio, 44663
| | - Jesús Tejero
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| | - Chin-Chuan Wei
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62026
| | - Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| | - Jerome Santolini
- iBiTec-S; LSOD, C. E. A. Saclay; 91191 Gif-sur-Yvette Cedex, France
| | - Mohammed Fadlalla
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| | - Ashis Biswas
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| |
Collapse
|
20
|
Tsai AL, Berka V, Martin E, Olson JS. A "sliding scale rule" for selectivity among NO, CO, and O₂ by heme protein sensors. Biochemistry 2011; 51:172-86. [PMID: 22111978 DOI: 10.1021/bi2015629] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selectivity among NO, CO, and O₂ is crucial for the physiological function of most heme proteins. Although there is a million-fold variation in equilibrium dissociation constants (K(D)), the ratios for NO:CO:O₂ binding stay roughly the same, 1:~10(3):~10(6), when the proximal ligand is a histidine and the distal site is apolar. For these proteins, there is a "sliding scale rule" for plots of log(K(D)) versus ligand type that allows predictions of K(D) values if one or two are missing. The predicted K(D) for binding of O₂to Ns H-NOX coincides with the value determined experimentally at high pressures. Active site hydrogen bond donors break the rule and selectively increase O₂ affinity with little effect on CO and NO binding. Strong field proximal ligands such as thiolate, tyrosinate, and imidazolate exert a "leveling" effect on ligand binding affinity. The reported picomolar K(D) for binding of NO to sGC deviates even more dramatically from the sliding scale rule, showing a NO:CO K(D) ratio of 1:~10(8). This deviation is explained by a complex, multistep process, in which an initial low-affinity hexacoordinate NO complex with a measured K(D) of ≈54 nM, matching that predicted from the sliding scale rule, is formed initially and then is converted to a high-affinity pentacoordinate complex. This multistep six-coordinate to five-coordinate mechanism appears to be common to all NO sensors that exclude O₂ binding to capture a lower level of cellular NO and prevent its consumption by dioxygenation.
Collapse
Affiliation(s)
- Ah-Lim Tsai
- Division of Hematology, Internal Medicine, University of Texas Medical School at Houston, Houston, Texas 77030, United States.
| | | | | | | |
Collapse
|
21
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
22
|
Chen X, Su Z, Horner JH, Newcomb M. Oxidation of 10-undecenoic acid by cytochrome P450(BM-3) and its Compound I transient. Org Biomol Chem 2011; 9:7427-33. [PMID: 21901220 DOI: 10.1039/c1ob06035j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxidations of 10-undecenoic acid by cytochrome P450(BM-3) and its Compound I transient were studied. The only product formed in Compound I oxidations was 10,11-epoxyundecanoic acid, whereas the enzyme under turnover conditions gave the epoxide and 9-hydroxy-10-undecenoic acid in a 10 : 90 ratio. Kinetic studies at 0 °C of oxidations by Compounds I formed by MCPBA oxidation and by a photo-oxidation pathway gave the same results, displaying saturation kinetics that yielded equilibrium binding constants and first-order oxidation rate constants that were experimentally indistinguishable. Oxidation of 10-undecenoic acid by Compound I from CYP119 generated by MCBPA oxidation also gave 10,11-epoxyundecanoic acid as the only product. CYP119 Compound I bound the substrate less strongly but reacted with a faster oxidation rate constant than P450(BM-3) Compound I. The kinetic parameters for oxidation of the substrate by P450(BM-3) under turnover conditions were similar to those of the Compound I transient even though the products differed.
Collapse
Affiliation(s)
- Xiaohong Chen
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, IL 60607, USA.
| | | | | | | |
Collapse
|
23
|
Cytochrome P450 BM3, NO binding and real-time NO detection. Nitric Oxide 2011; 25:89-94. [DOI: 10.1016/j.niox.2011.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/27/2011] [Accepted: 01/29/2011] [Indexed: 11/19/2022]
|
24
|
Affiliation(s)
- Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93110-9510
| |
Collapse
|
25
|
Waheed SM, Ghosh A, Chakravarti R, Biswas A, Haque MM, Panda K, Stuehr DJ. Nitric oxide blocks cellular heme insertion into a broad range of heme proteins. Free Radic Biol Med 2010; 48:1548-58. [PMID: 20211245 PMCID: PMC2866197 DOI: 10.1016/j.freeradbiomed.2010.02.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/26/2010] [Accepted: 02/27/2010] [Indexed: 11/18/2022]
Abstract
Although the insertion of heme into proteins enables their function in bioenergetics, metabolism, and signaling, the mechanisms and regulation of this process are not fully understood. We developed a means to study cellular heme insertion into apo-protein targets over a 3-h period and then investigated how nitric oxide (NO) released from a chemical donor (NOC-18) might influence heme (protoporphyrin IX) insertion into seven targets that present a range of protein structures, heme ligation states, and functions (three NO synthases, two cytochrome P450's, catalase, and hemoglobin). NO blocked cellular heme insertion into all seven apo-protein targets. The inhibition occurred at relatively low (nM/min) fluxes of NO, was reversible, and did not involve changes in intracellular heme levels, activation of guanylate cyclase, or inhibition of mitochondrial ATP production. These aspects and the range of protein targets suggest that NO can act as a global inhibitor of heme insertion, possibly by inhibiting a common step in the process.
Collapse
Affiliation(s)
- Syed Mohsin Waheed
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Arnab Ghosh
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Ritu Chakravarti
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Ashis Biswas
- Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| | - Koustubh Panda
- Center for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, India
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
26
|
Heinecke J, Ford PC. Mechanistic studies of nitrite reactions with metalloproteins and models relevant to mammalian physiology. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2009.07.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
McLean KJ, Lafite P, Levy C, Cheesman MR, Mast N, Pikuleva IA, Leys D, Munro AW. The Structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection. J Biol Chem 2010; 284:35524-33. [PMID: 19846552 DOI: 10.1074/jbc.m109.032706] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report characterization and the crystal structure of the Mycobacterium tuberculosis cytochrome P450 CYP125, a P450 implicated in metabolism of host cholesterol and essential for establishing infection in mice. CYP125 is purified in a high spin form and undergoes both type I and II spectral shifts with various azole drugs. The 1.4-A structure of ligand-free CYP125 reveals a "letterbox" active site cavity of dimensions appropriate for entry of a polycyclic sterol. A mixture of hexa-coordinate and penta-coordinate states could be discerned, with water binding as the 6th heme-ligand linked to conformation of the I-helix Val(267) residue. Structures in complex with androstenedione and the antitubercular drug econazole reveal that binding of hydrophobic ligands occurs within the active site cavity. Due to the funnel shape of the active site near the heme, neither approaches the heme iron. A model of the cholesterol CYP125 complex shows that the alkyl side chain extends toward the heme iron, predicting hydroxylation of cholesterol C27. The alkyl chain is in close contact to Val(267), suggesting a substrate binding-induced low- to high-spin transition coupled to reorientation of the latter residue. Reconstitution of CYP125 activity with a redox partner system revealed exclusively cholesterol 27-hydroxylation, consistent with structure and modeling. This activity may enable catabolism of host cholesterol or generation of immunomodulatory compounds that enable persistence in the host. This study reveals structural and catalytic properties of a potential M. tuberculosis drug target enzyme, and the likely mode by which the host-derived substrate is bound and hydroxylated.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Yuan X, Wang Q, Horner JH, Sheng X, Newcomb M. Kinetics and activation parameters for oxidations of styrene by Compounds I from the cytochrome P450(BM-3) (CYP102A1) heme domain and from CYP119. Biochemistry 2009; 48:9140-6. [PMID: 19708688 DOI: 10.1021/bi901258m] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 (CYP or P450) enzymes are ubiquitous in nature where they catalyze a vast array of oxidation reactions. The active oxidants in P450s have long been assumed to be iron(IV)-oxo porphyrin radical cations termed Compounds I, but P450 Compounds I have proven to be difficult to prepare. The recent development of an entry to these transients by photo-oxidation of the corresponding iron(IV)-oxo neutral porphyrin species (Compounds II) permits spectroscopic and kinetic studies. We report here application of the photo-oxidation method for production of Compound I from the heme domain of CYP102A1 (cytochrome P450(BM-3)), and product and kinetic studies of reactions of styrene with this Compound I transient and also Compound I from CYP119. The studies were performed at low temperatures in 1:1 (v:v) mixtures of glycerol and phosphate buffer. Single-turnover reactions at 0 degrees C gave styrene oxide in good yields. In kinetic studies conducted between -10 and -50 degrees C, both Compounds I displayed saturation kinetics permitting determinations of binding constants and first-order oxidation rate constants. Temperature-dependent functions for the binding constants and rate constants were determined for both Compounds I. In the temperature range studied, the Compound I transient from the CYP102A1 heme domain bound styrene more strongly than Compound I from CYP119, but the rate constants for oxidations of styrene by the latter were somewhat larger than those for the former. The temperature-dependent functions for the first-order oxidation reactions are as follows: log k = 13.2-15.2/2.303RT and log k = 13.3-14.6/2.303RT (kilocalories per mole) for Compounds I from the CYP102A1 heme domain and CYP119, respectively.
Collapse
Affiliation(s)
- Xinting Yuan
- Department of Chemistry, University of Illinois, 845 West Taylor Street, Chicago, Illinois 60607, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
During catalysis, the heme in nitric oxide synthase (NOS) binds NO before releasing it to the environment. Oxidation of the NOS ferrous heme-NO complex by O2 is key for catalytic cycling, but the mechanism is unclear. We utilized stopped-flow methods to study the reaction of O2 with ferrous heme-NO complexes of inducible and neuronal NOS enzymes. We found that the reaction does not involve heme-NO dissociation, but instead proceeds by a rapid direct reaction of O2 with the ferrous heme-NO complex. This behavior is novel and may distinguish heme-thiolate enzymes, such as NOS, from related heme proteins.
Collapse
Affiliation(s)
- Jesús Tejero
- Department of Pathobiology, The Cleveland Clinic Foundation, Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | |
Collapse
|
30
|
Abstract
Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH–cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of the A264M, A264Q and A264C variants were determined in both the intact flavocytochromes and haem domains of P450 BM3. Crystal structures of the mutant haem domains demonstrate axial ligation of P450 haem iron by methionine and glutamine ligands trans to the cysteine thiolate, creating novel haem iron ligand sets in the A264M/Q variants. In contrast, the crystal structure of the A264C variant reveals no direct interaction between the introduced cysteine side chain and the haem, although EPR data indicate Cys264 interactions with haem iron in solution. The A264M haem potential is elevated by comparison with wild-type haem domain, and substrate binding to the A264Q haem domain results in a ∼360 mV increase in potential. All mutant haem domains occupy the conformation adopted by the substrate-bound form of wild-type BM3, despite the absence of added substrate. The A264M mutant (which has higher dodecanoate affinity than wild-type BM3) co-purifies with a structurally resolved lipid. These data demonstrate that a single mutation at Ala264 is enough to perturb the conformational equilibrium between substrate-free and substrate-bound P450 BM3, and provide firm structural and spectroscopic data for novel haem iron ligand sets unprecedented in Nature.
Collapse
|
31
|
McLean KJ, Girvan HM, Munro AW. Cytochrome P450/redox partner fusion enzymes: biotechnological and toxicological prospects. Expert Opin Drug Metab Toxicol 2007; 3:847-63. [PMID: 18028029 DOI: 10.1517/17425255.3.6.847] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cytochromes P450 (CYPs) are versatile oxidase catalysts that play pivotal roles in drug metabolism. They are highly regarded as biotechnological tools for their capacity to perform regio- and stereo-selective oxidations. Human CYPs source electrons for oxygen activation from one or more separate redox partner enzymes. However, several CYP enzymes are now known in which the CYP is covalently linked to a reductase system. Some of these systems offer distinct advantages over typical CYPs as efficient, self-contained units capable of important biotransformations, including synthesis of high value chemicals and pharmaceuticals. Protein engineering has been widely applied to produce variant CYP fusions with desirable activities. The review focuses on the nature and diversity of CYP/redox partner fusion enzymes and their biocatalytic potential.
Collapse
Affiliation(s)
- Kirsty J McLean
- University of Manchester, Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, 131 Princess Street, Manchester M1 7DN, UK
| | | | | |
Collapse
|
32
|
Noble MA, Girvan HM, Smith SJ, Smith WE, Murataliev M, Guzov VM, Feyereisen R, Munro AW. Analysis of the interactions of cytochrome b5 with flavocytochrome P450 BM3 and its domains. Drug Metab Rev 2007; 39:599-617. [PMID: 17786641 DOI: 10.1080/03602530701468458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Interactions between a soluble form of microsomal cytochrome b(5) (b(5)) from Musca domestica (housefly) and Bacillus megaterium flavocytochrome P450 BM3 and its component reductase (CPR), heme (P450) and FAD/NADPH-binding (FAD) domains were analyzed by a combination of steady-state and stopped-flow kinetics methods, and optical spectroscopy techniques. The high affinity binding of b(5) to P450 BM3 induced a low-spin to high-spin transition in the P450 heme iron (K(d) for b(5) binding = 0.44 microM and 0.72 microM for the heme domain and intact flavocytochrome, respectively). The b(5) had modest inhibitory effects on steady-state turnover of P450 BM3 with fatty acids, and the ferrous-carbon monoxy P450 complex was substantially stabilized on binding b(5). Single turnover reduction of b(5) by BM3 using stopped-flow absorption spectroscopy (k(lim) = 116 s(-1)) was substantially faster than steady-state reduction of b(5) by P450 BM3 (or its CPR and FAD domains), indicating rate-limiting step(s) other than BM3 flavin-to-b(5) heme electron transfer in the steady-state reaction. Steady-state b(5) reduction by P450 BM3 was considerably accelerated at high ionic strength. Pre-reduction of P450 BM3 by NADPH decreased the k(lim) for b(5) reduction approximately 10-fold, and also resulted in a lag phase in steady-state b(5) reduction that was likely due to BM3 conformational perturbations sensitive to the reduction state of the flavocytochrome. Ferrous b(5) could not reduce the ferric P450 BM3 heme domain under anaerobic conditions, consistent with heme iron reduction potentials of the two proteins. However, rapid oxidation of both hemoproteins occurred on aeration of the ferrous protein mixture (and despite the much slower autoxidation rate of b(5) in isolation), consistent with electron transfer occurring from b(5) to the oxyferrous P450 BM3 in the complex. The results demonstrate that strong interactions occur between a eukaryotic b(5) and a model prokaryotic P450. Binding of b(5) perturbs BM3 heme iron spin-state equilibrium, as is seen in many physiologically relevant b(5) interactions with eukaryotic P450s. These results are consistent with the conservation of structure of P450s (particularly at the heme proximal face) between prokaryotes and eukaryotes, and may point to as yet undiscovered roles for b(5)-like proteins in the control of activities of certain prokaryotic P450s.
Collapse
|
33
|
Brenner S, Hay S, Girvan HM, Munro AW, Scrutton NS. Conformational dynamics of the cytochrome P450 BM3/N-palmitoylglycine complex: the proposed "proximal-distal" transition probed by temperature-jump spectroscopy. J Phys Chem B 2007; 111:7879-86. [PMID: 17571881 DOI: 10.1021/jp073036n] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ferric spin state equilibrium of the heme iron was analyzed in wild-type cytochrome P450 BM3 and its F87G mutant by using temperature (T)-jump relaxation spectroscopy in combination with static equilibrium experiments. No relaxation process was measurable in the substrate-free enzyme indicating a relaxation process with a rate constant>10,000 s(-1). In contrast, a slow spin state transition process was observed in the N-palmitoylglycine (NPG)-bound enzyme species. This transition occurred with an observed rate constant (298 K) of approximately 800 s(-1) in the wild-type, and approximately 2500 s(-1) in the F87G mutant, suggesting a significant contribution of the phenylalanine side chain to a reaction step rate limiting the actual spin state transition. These findings are discussed in terms of an equilibrium between different binding modes of the substrate, including a position 7.5 A away from the heme iron ("distal") and the catalytically relevant "proximal" binding site, and are in accordance with results from X-ray crystallography, NMR studies, and molecular dynamics simulations.
Collapse
Affiliation(s)
- Sibylle Brenner
- Manchester Interdisciplinary Biocentre and Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Bonifacio A, Keizers PHJ, Vermeulen NPE, Commandeur JNM, Gooijer C, van der Zwan G. Surface-enhanced resonance Raman scattering of cytochrome P450-2D6 on coated silver hydrosols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1860-6. [PMID: 17279667 DOI: 10.1021/la062525w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Surface-enhanced resonance Raman scattering (SERRS) from dilute solutions (down to nanomolar concentrations) of human mono-oxygenase CYP2D6 is observed using aqueous dispersions of Ag nanoparticles (hydrosol) coated with self-assembled monolayers (SAMs) of mercaptoalkanoic acids of two different lengths. From a direct comparison with its resonance Raman spectrum in solution, CYP2D6 appears to fully retain its native structure upon adsorption on coated hydrosol through electrostatic interaction, while a structural change in the active site is observed when uncoated citrate-reduced hydrosol is used. Using SERRS on these biocompatible coated hydrosols, the effects of dextromethorphan on the enzyme's active site can be observed, demonstrating that CYP2D6 ability of binding substrates is preserved. Moreover, by tuning the wavelength of the exciting laser away from the main absorption band of the heme, the vibrational bands of the SAM coating are observed and analyzed to see how the presence of the protein affects the SAM structure.
Collapse
Affiliation(s)
- Alois Bonifacio
- Laser Centre/Analytical Chemistry and Applied Spectroscopy, and LACDR/Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
35
|
Girvan HM, Seward HE, Toogood HS, Cheesman MR, Leys D, Munro AW. Structural and Spectroscopic Characterization of P450 BM3 Mutants with Unprecedented P450 Heme Iron Ligand Sets. J Biol Chem 2007; 282:564-72. [PMID: 17077084 DOI: 10.1074/jbc.m607949200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two novel P450 heme iron ligand sets were generated by directed mutagenesis of the flavocytochrome P450 BM3 heme domain. The A264H and A264K variants produce Cys-Fe-His and Cys-Fe-Lys axial ligand sets, which were validated structurally and characterized by spectroscopic analysis. EPR and magnetic circular dichroism (MCD) provided fingerprints defining these P450 ligand sets. Near IR MCD spectra identified ferric low spin charge-transfer bands diagnostic of the novel ligands. For the A264K mutant, this is the first report of a Cys-Fe-Lys near-IR MCD band. Crystal structure determination showed that substrate-free A264H and A264K proteins crystallize in distinct conformations, as observed previously in substrate-free and fatty acid-bound wild-type P450 forms, respectively. This, in turn, likely reflects the positioning of the I alpha helix section of the protein that is required for optimal configuration of the ligands to the heme iron. One of the monomers in the asymmetric unit of the A264H crystals was in a novel conformation with a more open substrate access route to the active site. The same species was isolated for the wildtype heme domain and represents a novel conformational state of BM3 (termed SF2). The "locking" of these distinct conformations is evident from the fact that the endogenous ligands cannot be displaced by substrate or exogenous ligands. The consequent reduction of heme domain conformational heterogeneity will be important in attempts to determine atomic structure of the full-length, multidomain flavocytochrome, and thus to understand in atomic detail interactions between its heme and reductase domains.
Collapse
Affiliation(s)
- Hazel M Girvan
- School of Chemical Engineering and Analytical Science, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester M1 7DN, UK
| | | | | | | | | | | |
Collapse
|
36
|
Yokota N, Araki Y, Kurokawa H, Ito O, Igarashi J, Shimizu T. Critical roles of Leu99 and Leu115 at the heme distal side in auto-oxidation and the redox potential of a heme-regulated phosphodiesterase from Escherichia coli. FEBS J 2006; 273:1210-23. [PMID: 16519686 DOI: 10.1111/j.1742-4658.2006.05145.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The heme-regulated phosphodiesterase from Escherichia coli (Ec DOS), which is a heme redox-dependent enzyme, is active with a ferrous heme but inactive with a ferric heme. Global structural changes including axial ligand switching and a change in the rigidity of the FG loop accompanying the heme redox change may be related to the dependence of Ec DOS activity on the redox state. Axial ligands such as CO, NO, and O2 act as inhibitors of Ec DOS because they interact with the ferrous heme complex. The X-ray crystal structure of the isolated heme-bound domain (Ec DosH) shows that Leu99, Phe113 and Leu115 indirectly and directly form a hydrophobic triad on the heme plane and that they should be located at or near the ligand access channel of the heme iron. We generated L99T, L99F, L115T, and L115F mutants of Ec DosH and examined their physicochemical characteristics, including auto-oxidation rates, O2 and CO binding kinetics, and redox potentials. The Fe(III) complex of the L115F mutant was unstable and had a Soret absorption spectrum located 5 nm lower than those of the wild-type and other mutants. Auto-oxidation rates of the mutants (0.049-0.33 min(-1)) were much higher than that of the wild-type (0.0063 min(-1)). Furthermore, the redox potentials of the former three mutants (23.1-34.6 mV versus SHE) were also significantly lower than that of the wild-type (63.9 mV versus SHE). Interaction between O2 and the L99F mutant was different from that in the wild-type, whereas CO binding rates of the mutants were similar to those of the wild-type. Thus, it appears that Leu99 and Leu115 are critical for determining the characteristics of heme iron. Finally, we discuss the roles of these amino-acid residues in the heme electronic states.
Collapse
Affiliation(s)
- Nao Yokota
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | | | | | | | | | | |
Collapse
|