1
|
Bamburg JR. Meet the Editorial Board Member. Curr Neuropharmacol 2022. [PMCID: PMC9413792 DOI: 10.2174/1570159x2002220216142719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- James R. Bamburg
- Department of Biochemistry and Molecular Biology
Molecular and Radiological Bioscience Building, Room 235
Fort Collins, CO 80523-1870
Colorado State University
USA
| |
Collapse
|
2
|
Bamburg JR, Minamide LS, Wiggan O, Tahtamouni LH, Kuhn TB. Cofilin and Actin Dynamics: Multiple Modes of Regulation and Their Impacts in Neuronal Development and Degeneration. Cells 2021; 10:cells10102726. [PMID: 34685706 PMCID: PMC8534876 DOI: 10.3390/cells10102726] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023] Open
Abstract
Proteins of the actin depolymerizing factor (ADF)/cofilin family are ubiquitous among eukaryotes and are essential regulators of actin dynamics and function. Mammalian neurons express cofilin-1 as the major isoform, but ADF and cofilin-2 are also expressed. All isoforms bind preferentially and cooperatively along ADP-subunits in F-actin, affecting the filament helical rotation, and when either alone or when enhanced by other proteins, promotes filament severing and subunit turnover. Although self-regulating cofilin-mediated actin dynamics can drive motility without post-translational regulation, cells utilize many mechanisms to locally control cofilin, including cooperation/competition with other proteins. Newly identified post-translational modifications function with or are independent from the well-established phosphorylation of serine 3 and provide unexplored avenues for isoform specific regulation. Cofilin modulates actin transport and function in the nucleus as well as actin organization associated with mitochondrial fission and mitophagy. Under neuronal stress conditions, cofilin-saturated F-actin fragments can undergo oxidative cross-linking and bundle together to form cofilin-actin rods. Rods form in abundance within neurons around brain ischemic lesions and can be rapidly induced in neurites of most hippocampal and cortical neurons through energy depletion or glutamate-induced excitotoxicity. In ~20% of rodent hippocampal neurons, rods form more slowly in a receptor-mediated process triggered by factors intimately connected to disease-related dementias, e.g., amyloid-β in Alzheimer’s disease. This rod-inducing pathway requires a cellular prion protein, NADPH oxidase, and G-protein coupled receptors, e.g., CXCR4 and CCR5. Here, we will review many aspects of cofilin regulation and its contribution to synaptic loss and pathology of neurodegenerative diseases.
Collapse
Affiliation(s)
- James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Correspondence: ; Tel.: +1-970-988-9120; Fax: +1-970-491-0494
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - O’Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
| | - Lubna H. Tahtamouni
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Biology and Biotechnology, The Hashemite University, Zarqa 13115, Jordan
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA; (L.S.M.); (O.W.); (L.H.T.); (T.B.K.)
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, AK 99775, USA
| |
Collapse
|
3
|
Rosen SM, Joshi M, Hitt T, Beggs AH, Agrawal PB. Knockin mouse model of the human CFL2 p.A35T mutation results in a unique splicing defect and severe myopathy phenotype. Hum Mol Genet 2021; 29:1996-2003. [PMID: 32160286 DOI: 10.1093/hmg/ddaa035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 11/13/2022] Open
Abstract
Cofilin-2 is an actin-binding protein that is predominantly expressed in skeletal and cardiac muscles and belongs to the AC group of proteins, which includes cofilin-1 and destrin. In humans, cofilin-2 (CFL2) mutations have been associated with congenital myopathies that include nemaline and myofibrillar myopathy. To understand the pathogenicity of the human CFL2 mutation, p.A35T, that first linked cofilin-2 with the human disease, we created a knock-in mouse model. The Cfl2A35T/A35T (KI) mice were indistinguishable from their wild-type littermates at birth, but they rapidly worsened and died by postnatal day 9. The phenotypic, histopathologic and molecular findings mimicked the constitutive Cfl2-knockout (KO) mice described previously, including sarcomeric disruption and actin accumulations in skeletal muscles and negligible amounts of cofilin-2 protein. In addition, KI mice demonstrated a marked reduction in Cfl2 mRNA levels in various tissues including skeletal muscles. Further investigation revealed evidence of alternative splicing with the presence of two alternate transcripts of smaller size. These alternate transcripts were expressed at very low levels in the wild-type mice and were significantly upregulated in the mutant mice, indicating that pre-translational splicing defects may be a critical component of the disease mechanism associated with the mutation. Evidence of reduced expression of the full-length CFL2 transcript was also observed in the muscle biopsy sample of the patient with p.A35T mutation.
Collapse
Affiliation(s)
- Samantha M Rosen
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mugdha Joshi
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Talia Hitt
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Ullo MF, Logue JS. ADF and cofilin-1 collaborate to promote cortical actin flow and the leader bleb-based migration of confined cells. eLife 2021; 10:67856. [PMID: 34169836 PMCID: PMC8253594 DOI: 10.7554/elife.67856] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
Melanoma cells have been shown to undergo fast amoeboid (leader bleb-based) migration, requiring a single large bleb for migration. In leader blebs, is a rapid flow of cortical actin that drives the cell forward. Using RNAi, we find that co-depleting cofilin-1 and actin depolymerizing factor (ADF) led to a large increase in cortical actin, suggesting that both proteins regulate cortical actin. Furthermore, severing factors can promote contractility through the regulation of actin architecture. However, RNAi of cofilin-1 but not ADF led to a significant decrease in cell stiffness. We found cofilin-1 to be enriched at leader bleb necks, whereas RNAi of cofilin-1 and ADF reduced bleb sizes and the frequency of motile cells. Strikingly, cells without cofilin-1 and ADF had blebs with abnormally long necks. Many of these blebs failed to retract and displayed slow actin turnover. Collectively, our data identifies cofilin-1 and ADF as actin remodeling factors required for fast amoeboid migration.
Collapse
Affiliation(s)
- Maria F Ullo
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| | - Jeremy S Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, United States
| |
Collapse
|
5
|
Kang DE, Woo JA. Cofilin, a Master Node Regulating Cytoskeletal Pathogenesis in Alzheimer's Disease. J Alzheimers Dis 2020; 72:S131-S144. [PMID: 31594228 PMCID: PMC6971827 DOI: 10.3233/jad-190585] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The defining pathological hallmarks of Alzheimer’s disease (AD) are proteinopathies marked by the amyloid-β (Aβ) peptide and hyperphosphorylated tau. In addition, Hirano bodies and cofilin-actin rods are extensively found in AD brains, both of which are associated with the actin cytoskeleton. The actin-binding protein cofilin known for its actin filament severing, depolymerizing, nucleating, and bundling activities has emerged as a significant player in AD pathogenesis. In this review, we discuss the regulation of cofilin by multiple signaling events impinging on LIM kinase-1 (LIMK1) and/or Slingshot homolog-1 (SSH1) downstream of Aβ. Such pathophysiological signaling pathways impact actin dynamics to regulate synaptic integrity, mitochondrial translocation of cofilin to promote neurotoxicity, and formation of cofilin-actin pathology. Other intracellular signaling proteins, such as β-arrestin, RanBP9, Chronophin, PLD1, and 14-3-3 also impinge on the regulation of cofilin downstream of Aβ. Finally, we discuss the role of activated cofilin as a bridge between actin and microtubule dynamics by displacing tau from microtubules, thereby destabilizing tau-induced microtubule assembly, missorting tau, and promoting tauopathy.
Collapse
Affiliation(s)
- David E Kang
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL, USA.,Division of Research, James A. Haley VA Hospital, Tampa, FL, USA
| | - Jung A Woo
- Byrd Institute and Alzheimer's Center, USF Health Morsani College of Medicine, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|
6
|
Tang VW, Nadkarni AV, Brieher WM. Catastrophic actin filament bursting by cofilin, Aip1, and coronin. J Biol Chem 2020; 295:13299-13313. [PMID: 32723865 DOI: 10.1074/jbc.ra120.015018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/24/2020] [Indexed: 11/06/2022] Open
Abstract
Cofilin is an actin filament severing protein necessary for fast actin turnover dynamics. Coronin and Aip1 promote cofilin-mediated actin filament disassembly, but the mechanism is somewhat controversial. An early model proposed that the combination of cofilin, coronin, and Aip1 disassembled filaments in bursts. A subsequent study only reported severing. Here, we used EM to show that actin filaments convert directly into globular material. A monomer trap assay also shows that the combination of all three factors produces actin monomers faster than any two factors alone. We show that coronin accelerates the release of Pi from actin filaments and promotes highly cooperative cofilin binding to actin to create long stretches of polymer with a hypertwisted morphology. Aip1 attacks these hypertwisted regions along their sides, disintegrating them into monomers or short oligomers. The results are consistent with a catastrophic mode of disassembly, not enhanced severing alone.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ambika V Nadkarni
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
7
|
Liu T, Woo JAA, Yan Y, LePochat P, Bukhari MZ, Kang DE. Dual role of cofilin in APP trafficking and amyloid-β clearance. FASEB J 2019; 33:14234-14247. [PMID: 31646885 DOI: 10.1096/fj.201901268r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The accumulation of amyloid-β (Aβ) plays a pivotal early event in the pathogenesis of Alzheimer's disease (AD). In the brain, neurons produce Aβ by the proteolytic processing of amyloid precursor protein (APP) through the endocytic pathway, whereas microglia mediate Aβ clearance also via endocytic mechanisms. Previous studies have shown the critical importance of cofilin, a filamentous actin-severing protein, in actin dynamics and pathogen-triggered endocytic processes. Moreover, the binding of Aβ42 oligomers to β1-integrin triggers the cofilin activation, and in turn, cofilin promotes the internalization of surface β1-integrin. However, a role for cofilin in APP processing and Aβ metabolism has not been investigated. In this study, we found that knockdown of cofilin in Chinese hamster ovary 7WD10 cells and primary neurons significantly reduces Aβ production by increasing surface APP (sAPP) levels. Expression of active (S3A) but not inactive (S3E) cofilin reduces sAPP levels by enhancing APP endocytosis. Accordingly, Aβ deposition in APP and presenilin 1 (PS1) transgenic mice is significantly reduced by genetic reduction of cofilin (APP/PS1;cofilin+/-). However, the reduction of Aβ load in APP/PS1;cofilin+/- mice is paradoxically associated with significantly increased ionized calcium-binding adaptor molecule 1-positive microglial activation surrounding Aβ deposits. Primary microglia isolated from cofilin+/- mice demonstrate significantly enhanced state of activation and greater ability to uptake and clear Aβ42, which is reversed with the active (S3A) but not inactive (S3E) form of cofilin. These results taken together indicate a significant role for cofilin in Aβ accumulation via dual and opposing endocytic mechanisms of promoting Aβ production in neurons and inhibiting Aβ clearance in microglia.-Liu, T., Woo, J.-A. A., Yan, Y., LePochat, P., Bukhari, M. Z., Kang, D. E. Dual role of cofilin in APP trafficking and amyloid-β clearance.
Collapse
Affiliation(s)
- Tian Liu
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Jung-A A Woo
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Yan Yan
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Patrick LePochat
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - Mohammed Zaheen Bukhari
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA
| | - David E Kang
- Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,Department of Molecular of Medicine, Morsani College of Medicine, University of South Florida (USF) Health, Tampa, Florida, USA.,James A. Haley Veterans Administration Hospital, Tampa, Florida, USA
| |
Collapse
|
8
|
Structure, dynamics, and biochemical characterization of ADF/cofilin Twinstar from Drosophilamelanogaster. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:885-898. [PMID: 29709602 DOI: 10.1016/j.bbapap.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Twinstar is an ADF/cofilin family protein, which is expressed by the tsr gene in Drosophila melanogaster. Twinstar is one of the main regulators of actin cytoskeleton remodelling and is essential for vital cellular processes like cytokinesis and endocytosis. METHODS We have characterized the structure and dynamics of Twinstar by solution NMR spectroscopy, the interaction of Twinstar with rabbit muscle actin by ITC, and biochemical activities of Twinstar through different biochemical assays using fluorescence spectroscopy and ultra-centrifugation. RESULTS The solution structure of Twinstar shows characteristic ADF-H fold with well-formed G/F-site and F-site for interaction with actin. The structure possesses an extended F-loop, which is rigid at the base, but flexible towards its apical region. Twinstar shares similar dynamics for the G/F-site with C. elegans homologs, UNC-60A and UNC-60B. However, the dynamics of its F-loop are different from its C. elegans homologs. Twinstar shows strong affinity for ADP-G-Actin and ATP-G-Actin with Kds of ~7.6 nM and ~0.4 μM, respectively. It shows mild F-actin depolymerizing activity and stable interaction with F-actin with a Kd of ~5.0 μM. It inhibits the rate of the nucleotide exchange in a dose dependent manner. CONCLUSION On the basis of structure, dynamics, and biochemical activity, Twinstar can be taken to execute its biochemical role by facilitating directional growth and maintenance of length of actin filaments. GENERAL SIGNIFICANCE This study characterizes the structure, backbone dynamics, and biochemical activities of Twinstar of Drosophila, which provides an insight into the regulation of actin dynamics in the member of phylum insecta.
Collapse
|
9
|
Ishikawa-Ankerhold HC, Daszkiewicz W, Schleicher M, Müller-Taubenberger A. Actin-Interacting Protein 1 Contributes to Intranuclear Rod Assembly in Dictyostelium discoideum. Sci Rep 2017; 7:40310. [PMID: 28074884 PMCID: PMC5225641 DOI: 10.1038/srep40310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022] Open
Abstract
Intranuclear rods are aggregates consisting of actin and cofilin that are formed in the nucleus in consequence of chemical or mechanical stress conditions. The formation of rods is implicated in a variety of pathological conditions, such as certain myopathies and some neurological disorders. It is still not well understood what exactly triggers the formation of intranuclear rods, whether other proteins are involved, and what the underlying mechanisms of rod assembly or disassembly are. In this study, Dictyostelium discoideum was used to examine appearance, stages of assembly, composition, stability, and dismantling of rods. Our data show that intranuclear rods, in addition to actin and cofilin, are composed of a distinct set of other proteins comprising actin-interacting protein 1 (Aip1), coronin (CorA), filactin (Fia), and the 34 kDa actin-bundling protein B (AbpB). A finely tuned spatio-temporal pattern of protein recruitment was found during formation of rods. Aip1 is important for the final state of rod compaction indicating that Aip1 plays a major role in shaping the intranuclear rods. In the absence of both Aip1 and CorA, rods are not formed in the nucleus, suggesting that a sufficient supply of monomeric actin is a prerequisite for rod formation.
Collapse
Affiliation(s)
| | - Wioleta Daszkiewicz
- Department of Cell Biology (Anatomy III), Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schleicher
- Department of Cell Biology (Anatomy III), Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|
10
|
Bamburg JR, Bernstein BW. Actin dynamics and cofilin-actin rods in alzheimer disease. Cytoskeleton (Hoboken) 2016; 73:477-97. [PMID: 26873625 DOI: 10.1002/cm.21282] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/18/2022]
Abstract
Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO.
| | - Barbara W Bernstein
- Department of Biochemistry and Molecular Biology and the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO
| |
Collapse
|
11
|
Nomura K, Hayakawa K, Tatsumi H, Ono S. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner. J Biol Chem 2016; 291:5146-56. [PMID: 26747606 DOI: 10.1074/jbc.m115.713495] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Indexed: 02/02/2023] Open
Abstract
Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics.
Collapse
Affiliation(s)
- Kazumi Nomura
- From the Departments of Pathology and Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Hitoshi Tatsumi
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan, and the Department of Applied Biosciences, Kanazawa Institute of Technology, Kanazawa 924-0838, Japan
| | - Shoichiro Ono
- From the Departments of Pathology and Cell Biology, Emory University, Atlanta, Georgia 30322,
| |
Collapse
|
12
|
Ghosh S, Gupta P, Sen E. TNFα driven HIF-1α-hexokinase II axis regulates MHC-I cluster stability through actin cytoskeleton. Exp Cell Res 2015; 340:116-24. [PMID: 26597758 DOI: 10.1016/j.yexcr.2015.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible Factor-1α (HIF-1α)-regulated expression of Hexokinase-II (HKII) remains a cornerstone in the maintenance of high metabolic demands subserving various pro-tumor functions including immune evasion in gliomas. Since inflammation-induced HIF-1α regulates Major Histocompatibility Complex class I (MHC-I) gene expression, and as cytoskeletal dynamics affect MHC-I membrane clusters, we investigated the involvement of HIF-1α-HKII axis in Tumor Necrosis Factor-α (TNFα)-mediated MHC-I membrane cluster stability in glioma cells and the involvement of actin cytoskeleton in the process. TNFα increased the clustering and colocalization of MHC-I with cortical actin in a HIF-1α dependent manner. siRNA mediated knockdown of HIF-1α as well as enzymatic inhibition of HK II by Lonidamine, delocalized mitochondrially bound HKII. This altered subcellular HKII localization affected TNFα-induced cofilin activation and actin turnover, as pharmacological inhibition of HKII by Lonidamine decreased Actin-related protein 2 (ARP2)/cofilin interaction. Photobleaching studies revealed destabilization of TNFα- induced stable MHC-I membrane clusters in the presence of Lonidamine and ARP2 inhibitor CK666. This work highlights how TNFα triggers a previously unknown function of metabolic protein HKII to influence an immune related outcome. Our study establishes the importance of inflammation induced HIF-1α in integrating two crucial components- the metabolic and immune, through reorganization of cytoskeleton.
Collapse
Affiliation(s)
- Sadashib Ghosh
- Molecular & Cellular Neuroscience Division, National Brain Research Centre, Manesar, Haryana 122051, India.
| | - Piyushi Gupta
- Molecular & Cellular Neuroscience Division, National Brain Research Centre, Manesar, Haryana 122051, India
| | - Ellora Sen
- Molecular & Cellular Neuroscience Division, National Brain Research Centre, Manesar, Haryana 122051, India
| |
Collapse
|
13
|
Solution structures and dynamics of ADF/cofilins UNC-60A and UNC-60B from Caenorhabditis elegans. Biochem J 2015; 465:63-78. [PMID: 25279657 DOI: 10.1042/bj20140923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The nematode Caenorhabditis elegans has two ADF (actin-depolymerizing factor)/cofilin isoforms, UNC-60A and UNC-60B, which are expressed by the unc60 gene by alternative splicing. UNC-60A has higher activity to cause net depolymerization, and to inhibit polymerization, than UNC-60B. UNC-60B, on the other hand, shows much stronger severing activity than UNC-60A. To understand the structural basis of their functional differences, we have determined the solution structures of UNC-60A and UNC-60B proteins and characterized their backbone dynamics. Both UNC-60A and UNC-60B show a conserved ADF/cofilin fold. The G-actin (globular actin)-binding regions of the two proteins are structurally and dynamically conserved. Accordingly, UNC-60A and UNC-60B individually bind to rabbit muscle ADP-G-actin with high affinities, with Kd values of 32.25 nM and 8.62 nM respectively. The primary differences between these strong and weak severing proteins were observed in the orientation and dynamics of the F-actin (filamentous actin)-binding loop (F-loop). In the strong severing activity isoform UNC-60B, the orientation of the F-loop was towards the recently identified F-loop-binding region on F-actin, and the F-loop was relatively more flexible with 14 residues showing motions on a nanosecond-picosecond timescale. In contrast, in the weak severing protein isoform UNC-60A, the orientation of the F-loop was away from the F-loop-binding region and inclined towards its own C-terminal and strand β6. It was also relatively less flexible with only five residues showing motions on a nanosecond-picosecond timescale. These differences in structure and dynamics seem to directly correlate with the differential F-actin site-binding and severing properties of UNC-60A and UNC-60B, and other related ADF/cofilin proteins.
Collapse
|
14
|
Aggeli D, Kish-Trier E, Lin MC, Haarer B, Cingolani G, Cooper JA, Wilkens S, Amberg DC. Coordination of the filament stabilizing versus destabilizing activities of cofilin through its secondary binding site on actin. Cytoskeleton (Hoboken) 2014; 71:361-79. [PMID: 24943913 PMCID: PMC4241054 DOI: 10.1002/cm.21178] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/29/2014] [Indexed: 11/08/2022]
Abstract
Cofilin is a ubiquitous modulator of actin cytoskeleton dynamics that can both stabilize and destabilize actin filaments depending on its concentration and/or the presence of regulatory co-factors. Three charge-reversal mutants of yeast cofilin, located in cofilin's filament-specific secondary binding site, were characterized in order to understand why disruption of this site leads to enhanced filament disassembly. Crystal structures of the mutants showed that the mutations specifically affect the secondary actin-binding interface, leaving the primary binding site unaltered. The mutant cofilins show enhanced activity compared to wild-type cofilin in severing and disassembling actin filaments. Electron microscopy and image analysis revealed long actin filaments in the presence of wild-type cofilin, while the mutants induced many short filaments, consistent with enhanced severing. Real-time fluorescence microscopy of labeled actin filaments confirmed that the mutants, unlike wild-type cofilin, were functioning as constitutively active severing proteins. In cells, the mutant cofilins delayed endocytosis, which depends on rapid actin turnover. We conclude that mutating cofilin's secondary actin-binding site increases cofilin's ability to sever and de-polymerize actin filaments. We hypothesize that activators of cofilin severing, like Aip1p, may act by disrupting the interface between cofilin's secondary actin-binding site and the actin filament.
Collapse
Affiliation(s)
- Dimitra Aggeli
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 E. Adams Street, Syracuse, NY 13159
| | - Erik Kish-Trier
- University of Utah, Department of Biochemistry, 15 N Medical Drive East, Salt Lake City, UT 84112-5650
| | - Meng Chi Lin
- Early Embryogenesis Lab, Center for Developmental Biology, Riken, Japan
| | - Brian Haarer
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 E. Adams Street, Syracuse, NY 13159
| | - Gino Cingolani
- Thomas Jefferson University, Department of Biochemistry and Molecular Biology, 233 South 10th Street, Philadelphia, PA 19107
| | - John A. Cooper
- Washington University in St. Louis, Department of Cell Biology and Physiology, 660 South Euclid Avenue, St. Louis, MO 63110
| | - Stephan Wilkens
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 E. Adams Street, Syracuse, NY 13159
| | - David C. Amberg
- SUNY Upstate Medical University, Department of Biochemistry and Molecular Biology, 750 E. Adams Street, Syracuse, NY 13159
| |
Collapse
|
15
|
The other side of the coin: functional and structural versatility of ADF/cofilins. Eur J Cell Biol 2014; 93:238-51. [PMID: 24836399 DOI: 10.1016/j.ejcb.2013.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 01/20/2023] Open
Abstract
Several cellular processes rely on the fine tuning of actin cytoskeleton. A central component in the regulation of this cellular machinery is the ADF-H domain proteins. Despite sharing the same domain, ADF-H domain proteins produce a diverse functional landscape in the regulation of the actin cytoskeleton. Recent findings emphasize that the functional and structural features of these proteins can differ not only between ADF-H families but even within the same family. The structural and evolutional background of this functional diversity is poorly understood. This review focuses on the specific functional characteristics of ADF-H domain proteins and how these features can be linked to structural differences in the ADF-H domain and also to different conformational transitions in actin. In the light of recent discoveries we pay special attention to the ADF/cofilin proteins to find tendencies along which the functional and structural diversification is governed through the evolution.
Collapse
|
16
|
Mi J, Shaw AE, Pak CW, Walsh KP, Minamide LS, Bernstein BW, Kuhn TB, Bamburg JR. A genetically encoded reporter for real-time imaging of cofilin-actin rods in living neurons. PLoS One 2013; 8:e83609. [PMID: 24391794 PMCID: PMC3877059 DOI: 10.1371/journal.pone.0083609] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/05/2013] [Indexed: 01/18/2023] Open
Abstract
Filament bundles (rods) of cofilin and actin (1:1) form in neurites of stressed neurons where they inhibit synaptic function. Live-cell imaging of rod formation is hampered by the fact that overexpression of a chimera of wild type cofilin with a fluorescent protein causes formation of spontaneous and persistent rods, which is exacerbated by the photostress of imaging. The study of rod induction in living cells calls for a rod reporter that does not cause spontaneous rods. From a study in which single cofilin surface residues were mutated, we identified a mutant, cofilinR21Q, which when fused with monomeric Red Fluorescent Protein (mRFP) and expressed several fold above endogenous cofilin, does not induce spontaneous rods even during the photostress of imaging. CofilinR21Q-mRFP only incorporates into rods when they form from endogenous proteins in stressed cells. In neurons, cofilinR21Q-mRFP reports on rods formed from endogenous cofilin and induced by all modes tested thus far. Rods have a half-life of 30-60 min upon removal of the inducer. Vesicle transport in neurites is arrested upon treatments that form rods and recovers as rods disappear. CofilinR21Q-mRFP is a genetically encoded rod reporter that is useful in live cell imaging studies of induced rod formation, including rod dynamics, and kinetics of rod elimination.
Collapse
Affiliation(s)
- Jianjie Mi
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Alisa E. Shaw
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Chi W. Pak
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Keifer P. Walsh
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laurie S. Minamide
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barbara W. Bernstein
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thomas B. Kuhn
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Chemistry and Biochemistry, University of Alaska, Fairbanks, Alaska, United States of America
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, and Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
17
|
Tahtamouni LH, Shaw AE, Hasan MH, Yasin SR, Bamburg JR. Non-overlapping activities of ADF and cofilin-1 during the migration of metastatic breast tumor cells. BMC Cell Biol 2013; 14:45. [PMID: 24093776 PMCID: PMC3850953 DOI: 10.1186/1471-2121-14-45] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ADF/cofilin proteins are key modulators of actin dynamics in metastasis and invasion of cancer cells. Here we focused on the roles of ADF and cofilin-1 individually in the development of polarized migration of rat mammary adenocarcinoma (MTLn3) cells, which express nearly equal amounts of each protein. Small interference RNA (siRNA) technology was used to knockdown (KD) the expression of ADF and cofilin-1 independently. RESULTS Either ADF KD or cofilin KD caused cell elongation, a reduction in cell area, a decreased ability to form invadopodia, and a decreased percentage of polarized cells after 180 s of epidermal growth factor stimulation. Moreover, ADF KD or cofilin KD increased the rate of cell migration and the time of lamellipodia protrusion but through different mechanisms: lamellipodia protrude more frequently in ADF KD cells and are more persistent in cofilin KD cells. ADF KD cells showed a significant increase in F-actin aggregates, whereas cofilin KD cells showed a significant increase in prominent F-actin bundles and increased cell adhesion. Focal adhesion area and cell adhesion in cofilin KD cells were returned to control levels by expressing exogenous cofilin but not ADF. Return to control rates of cell migration in ADF KD cells was achieved by expression of exogenous ADF but not cofilin, whereas in cofilin KD cells, expression of cofilin efficiently rescued control migration rates. CONCLUSION Although ADF and cofilin have many redundant functions, each of these isoforms has functional differences that affect F-actin structures, cell adhesion and lamellipodial dynamics, all of which are important determinants of cell migration.
Collapse
Affiliation(s)
- Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Maram H Hasan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - Salem R Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
18
|
Guardians of the actin monomer. Eur J Cell Biol 2013; 92:316-32. [DOI: 10.1016/j.ejcb.2013.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022] Open
|
19
|
ATP-dependent regulation of actin monomer-filament equilibrium by cyclase-associated protein and ADF/cofilin. Biochem J 2013; 453:249-59. [PMID: 23672398 DOI: 10.1042/bj20130491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CAP (cyclase-associated protein) is a conserved regulator of actin filament dynamics. In the nematode Caenorhabditis elegans, CAS-1 is an isoform of CAP that is expressed in striated muscle and regulates sarcomeric actin assembly. In the present study, we report that CAS-2, a second CAP isoform in C. elegans, attenuates the actin-monomer-sequestering effect of ADF (actin depolymerizing factor)/cofilin to increase the steady-state levels of actin filaments in an ATP-dependent manner. CAS-2 binds to actin monomers without a strong preference for either ATP- or ADP-actin. CAS-2 strongly enhances the exchange of actin-bound nucleotides even in the presence of UNC-60A, a C. elegans ADF/cofilin that inhibits nucleotide exchange. UNC-60A induces the depolymerization of actin filaments and sequesters actin monomers, whereas CAS-2 reverses the monomer-sequestering effect of UNC-60A in the presence of ATP, but not in the presence of only ADP or the absence of ATP or ADP. A 1:100 molar ratio of CAS-2 to UNC-60A is sufficient to increase actin filaments. CAS-2 has two independent actin-binding sites in its N- and C-terminal halves, and the C-terminal half is necessary and sufficient for the observed activities of the full-length CAS-2. These results suggest that CAS-2 (CAP) and UNC-60A (ADF/cofilin) are important in the ATP-dependent regulation of the actin monomer-filament equilibrium.
Collapse
|
20
|
Vitriol EA, Wise AL, Berginski ME, Bamburg JR, Zheng JQ. Instantaneous inactivation of cofilin reveals its function of F-actin disassembly in lamellipodia. Mol Biol Cell 2013; 24:2238-47. [PMID: 23676663 PMCID: PMC3708729 DOI: 10.1091/mbc.e13-03-0156] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/23/2022] Open
Abstract
Cofilin is a key regulator of the actin cytoskeleton. It can sever actin filaments, accelerate filament disassembly, act as a nucleation factor, recruit or antagonize other actin regulators, and control the pool of polymerization-competent actin monomers. In cells these actions have complex functional outputs. The timing and localization of cofilin activity are carefully regulated, and thus global, long-term perturbations may not be sufficient to probe its precise function. To better understand cofilin's spatiotemporal action in cells, we implemented chromophore-assisted laser inactivation (CALI) to instantly and specifically inactivate it. In addition to globally inhibiting actin turnover, CALI of cofilin generated several profound effects on the lamellipodia, including an increase of F-actin, a rearward expansion of the actin network, and a reduction in retrograde flow speed. These results support the hypothesis that the principal role of cofilin in lamellipodia at steady state is to break down F-actin, control filament turnover, and regulate the rate of retrograde flow.
Collapse
Affiliation(s)
- Eric A. Vitriol
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Ariel L. Wise
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| | - Mathew E. Berginski
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - James R. Bamburg
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523
| | - James Q. Zheng
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
21
|
Bravo-Cordero JJ, Magalhaes MAO, Eddy RJ, Hodgson L, Condeelis J. Functions of cofilin in cell locomotion and invasion. Nat Rev Mol Cell Biol 2013; 14:405-15. [PMID: 23778968 DOI: 10.1038/nrm3609] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, a consensus has emerged that cofilin severing activity can generate free actin filament ends that are accessible for F-actin polymerization and depolymerization without changing the rate of G-actin association and dissociation at either filament end. The structural basis of actin filament severing by cofilin is now better understood. These results have been integrated with recently discovered mechanisms for cofilin activation in migrating cells, which led to new models for cofilin function that provide insights into how cofilin regulation determines the temporal and spatial control of cell behaviour.
Collapse
Affiliation(s)
- Jose Javier Bravo-Cordero
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA.
| | | | | | | | | |
Collapse
|
22
|
Wiggan O, Shaw AE, DeLuca JG, Bamburg JR. ADF/cofilin regulates actomyosin assembly through competitive inhibition of myosin II binding to F-actin. Dev Cell 2012; 22:530-43. [PMID: 22421043 DOI: 10.1016/j.devcel.2011.12.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/30/2011] [Accepted: 12/31/2011] [Indexed: 11/29/2022]
Abstract
The contractile actin cortex is important for diverse fundamental cell processes, but little is known about how the assembly of F-actin and myosin II motors is regulated. We report that depletion of actin depolymerizing factor (ADF)/cofilin proteins in human cells causes increased contractile cortical actomyosin assembly. Remarkably, our data reveal that the major cellular defects resulting from ADF/cofilin depletion, including cortical F-actin accumulation, were largely due to excessive myosin II activity. We identify that ADF/cofilins from unicellular organisms to humans share a conserved activity to inhibit myosin II binding to F-actin, indicating a mechanistic rationale for our cellular results. Our study establishes an essential requirement for ADF/cofilin proteins in the control of normal cortical contractility and in processes such as mitotic karyokinesis. We propose that ADF/cofilin proteins are necessary for controlling actomyosin assembly and intracellular contractile force generation, a function of equal physiological importance to their established roles in mediating F-actin turnover.
Collapse
Affiliation(s)
- O'Neil Wiggan
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
23
|
Miyauchi-Nomura S, Obinata T, Sato N. Cofilin is required for organization of sarcomeric actin filaments in chicken skeletal muscle cells. Cytoskeleton (Hoboken) 2012; 69:290-302. [PMID: 22396208 DOI: 10.1002/cm.21025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 12/15/2022]
Abstract
Cofilin is an actin regulatory protein that plays a critical role in actin filament dynamics in a variety of cells. We have previously demonstrated that excess cofilin in skeletal muscle cells leads to disruption of actin filaments, followed by actin-cofilin rod formation in the cytoplasm. In this study, to further clarify the role of cofilin in actin assembly during myofibrillogenesis, cofilin expression was suppressed in cultured chicken skeletal muscle cells. First, we confirmed that turnover of cofilin in myotubes was much higher than that of actin, and that the cofilin level could be decreased drastically within 2 days when cofilin de novo synthesis was suppressed. Next, cofilin expression in individual myotubes was suppressed by introducing antisense morpholino oligonucleotides into the cells by microinjection. Cofilin depletion at the early phase of myofibrillogenesis caused abnormal actin aggregates in myotubes and impaired actin organization into cross-striated myofibril structures. However, when cofilin expression was suppressed in developed myotubes, actin localization in striated myofibrils was scarcely affected. These results indicate that cofilin plays a critical role in the regulation of actin assembly at the early process of myofibrillogenesis.
Collapse
Affiliation(s)
- Saeko Miyauchi-Nomura
- Department of Biology, Faculty of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba 262-8533, Japan
| | | | | |
Collapse
|
24
|
Agrawal PB, Joshi M, Savic T, Chen Z, Beggs AH. Normal myofibrillar development followed by progressive sarcomeric disruption with actin accumulations in a mouse Cfl2 knockout demonstrates requirement of cofilin-2 for muscle maintenance. Hum Mol Genet 2012; 21:2341-56. [PMID: 22343409 DOI: 10.1093/hmg/dds053] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cofilin-2, a small actin-binding protein and member of the AC protein family that includes cofilin-1 and destrin, is predominantly expressed at sarcomeres in skeletal and cardiac muscles. The role of cofilin-2 in muscle development and function is unclear. In humans, recessive cofilin-2 mutations have been associated with nemaline myopathy with minicores. To investigate the functional role of cofilin-2 in vivo, we generated constitutive and muscle-specific cofilin-2-deficient mice using a cre-loxP strategy. Cofilin-2-deficient mice were similar to their wild-type (WT) littermates at birth, but died by day 8. They were significantly smaller, severely weak and had very little milk in their stomachs. The sarcomeric structure was intact at birth, but by Day 7, skeletal muscles showed severe sarcomeric disruptions starting at the Z-line, along with filamentous actin accumulations consistent with a lack of actin depolymerization activity. Cofilin-2-deficient muscles contained elevated numbers of slow fibers and exhibited upregulation of slow fiber-specific genes. Increased amounts of other sarcomeric proteins including α-actinin-2, α-sarcomeric actin and tropomyosin were also present. While destrin was not expressed in either WT or cofilin-2-deficient muscles, cofilin-1 was similarly expressed in developing myofibers of both genotypes. There was no evidence for compensatory changes in expression of either family member in cofilin-2-deficient tissues. The onset of pathology and weakness in cofilin-2-deficient muscles correlated with normal developmental loss of cofilin-1 expression within myofibers, suggesting that cofilin-1 serves as an early developmental sarcomeric isoform. Overall, cofilin-2, although not critical for muscle development, is essential for muscle maintenance.
Collapse
Affiliation(s)
- Pankaj B Agrawal
- Genomics Program and Division of Genetics, The Manton Center for Orphan Disease Research, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
25
|
Henty JL, Bledsoe SW, Khurana P, Meagher RB, Day B, Blanchoin L, Staiger CJ. Arabidopsis actin depolymerizing factor4 modulates the stochastic dynamic behavior of actin filaments in the cortical array of epidermal cells. THE PLANT CELL 2011; 23:3711-26. [PMID: 22010035 PMCID: PMC3229145 DOI: 10.1105/tpc.111.090670] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 09/27/2011] [Accepted: 10/06/2011] [Indexed: 05/19/2023]
Abstract
Actin filament arrays are constantly remodeled as the needs of cells change as well as during responses to biotic and abiotic stimuli. Previous studies demonstrate that many single actin filaments in the cortical array of living Arabidopsis thaliana epidermal cells undergo stochastic dynamics, a combination of rapid growth balanced by disassembly from prolific severing activity. Filament turnover and dynamics are well understood from in vitro biochemical analyses and simple reconstituted systems. However, the identification in living cells of the molecular players involved in controlling actin dynamics awaits the use of model systems, especially ones where the power of genetics can be combined with imaging of individual actin filaments at high spatial and temporal resolution. Here, we test the hypothesis that actin depolymerizing factor (ADF)/cofilin contributes to stochastic filament severing and facilitates actin turnover. A knockout mutant for Arabidopsis ADF4 has longer hypocotyls and epidermal cells when compared with wild-type seedlings. This correlates with a change in actin filament architecture; cytoskeletal arrays in adf4 cells are significantly more bundled and less dense than in wild-type cells. Several parameters of single actin filament turnover are also altered. Notably, adf4 mutant cells have a 2.5-fold reduced severing frequency as well as significantly increased actin filament lengths and lifetimes. Thus, we provide evidence that ADF4 contributes to the stochastic dynamic turnover of actin filaments in plant cells.
Collapse
Affiliation(s)
- Jessica L. Henty
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Samuel W. Bledsoe
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
| | - Parul Khurana
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- School of Natural Science and Mathematics, Indiana University East, Richmond, Indiana 47374
| | - Richard B. Meagher
- Department of Genetics, University of Georgia, Athens, Georgia 30602-7223
| | - Brad Day
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan 48824-1311
| | - Laurent Blanchoin
- Institut de Recherches en Technologie et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire and Végétale, Commissariat à l’Energie Atomique/Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique/Universite Joseph Fourier, F38054 Grenoble, France
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-2064
- The Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, Indiana 47907
- Address correspondence to
| |
Collapse
|
26
|
Poukkula M, Kremneva E, Serlachius M, Lappalainen P. Actin-depolymerizing factor homology domain: a conserved fold performing diverse roles in cytoskeletal dynamics. Cytoskeleton (Hoboken) 2011; 68:471-90. [PMID: 21850706 DOI: 10.1002/cm.20530] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/29/2011] [Accepted: 08/05/2011] [Indexed: 11/09/2022]
Abstract
Actin filaments form contractile and protrusive structures that play central roles in many processes such as cell migration, morphogenesis, endocytosis, and cytokinesis. During these processes, the dynamics of the actin filaments are precisely regulated by a large array of actin-binding proteins. The actin-depolymerizing factor homology (ADF-H) domain is a structurally conserved protein motif, which promotes cytoskeletal dynamics by interacting with monomeric and/or filamentous actin, and with the Arp2/3 complex. Despite their structural homology, the five classes of ADF-H domain proteins display distinct biochemical activities and cellular roles, only parts of which are currently understood. ADF/cofilin promotes disassembly of aged actin filaments, whereas twinfilin inhibits actin filament assembly via sequestering actin monomers and interacting with filament barbed ends. GMF does not interact with actin, but instead binds Arp2/3 complex and promotes dissociation of Arp2/3-mediated filament branches. Abp1 and drebrin are multidomain proteins that interact with actin filaments and regulate the activities of other proteins during various actin-dependent processes. The exact function of coactosin is currently incompletely understood. In this review article, we discuss the biochemical functions, cellular roles, and regulation of the five groups of ADF-H domain proteins.
Collapse
Affiliation(s)
- Minna Poukkula
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
27
|
Yadav R, Pathak PP, Shukla VK, Jain A, Srivastava S, Tripathi S, Krishna Pulavarti SVSR, Mehta S, Sibley LD, Arora A. Solution structure and dynamics of ADF from Toxoplasma gondii. J Struct Biol 2011; 176:97-111. [PMID: 21820516 DOI: 10.1016/j.jsb.2011.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 07/13/2011] [Accepted: 07/19/2011] [Indexed: 12/01/2022]
Abstract
Toxoplasma gondii ADF (TgADF) belongs to a functional subtype characterized by strong G-actin sequestering activity and low F-actin severing activity. Among the characterized ADF/cofilin proteins, TgADF has the shortest length and is missing a C-terminal helix implicated in F-actin binding. In order to understand its characteristic properties, we have determined the solution structure of TgADF and studied its backbone dynamics from ¹⁵N-relaxation measurements. TgADF has conserved ADF/cofilin fold consisting of a central mixed β-sheet comprised of six β-strands that are partially surrounded by three α-helices and a C-terminal helical turn. The high G-actin sequestering activity of TgADF relies on highly structurally and dynamically optimized interactions between G-actin and G-actin binding surface of TgADF. The equilibrium dissociation constant for TgADF and rabbit muscle G-actin was 23.81 nM, as measured by ITC, which reflects very strong affinity of TgADF and G-actin interactions. The F-actin binding site of TgADF is partially formed, with a shortened F-loop that does not project out of the ellipsoid structure and a C-terminal helical turn in place of the C-terminal helix α4. Yet, it is more rigid than the F-actin binding site of Leishmania donovani cofilin. Experimental observations and structural features do not support the interaction of PIP2 with TgADF, and PIP2 does not affect the interaction of TgADF with G-actin. Overall, this study suggests that conformational flexibility of G-actin binding sites enhances the affinity of TgADF for G-actin, while conformational rigidity of F-actin binding sites of conventional ADF/cofilins is necessary for stable binding to F-actin.
Collapse
Affiliation(s)
- Rahul Yadav
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226001, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Tholl S, Moreau F, Hoffmann C, Arumugam K, Dieterle M, Moes D, Neumann K, Steinmetz A, Thomas C. Arabidopsis actin-depolymerizing factors (ADFs) 1 and 9 display antagonist activities. FEBS Lett 2011; 585:1821-7. [PMID: 21570971 DOI: 10.1016/j.febslet.2011.05.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 01/05/2023]
Abstract
We provide evidence that one of the 11 Arabidopsis actin-depolymerizing factors (ADFs), namely ADF9, does not display typical F-actin depolymerizing activity. Instead, ADF9 effectively stabilizes actin filaments in vitro and concomitantly bundles actin filaments with the highest efficiency under acidic conditions. Competition experiments show that ADF9 antagonizes ADF1 activity by reducing its ability to potentiate F-actin depolymerization. Accordingly, ectopic expression of ADF1 and ADF9 in tobacco cells has opposite effects. ADF1 severs actin filaments/bundles and promotes actin cytoskeleton disassembly, whereas ADF9 induces the formation of long bundles. Together these data reveal an additional degree of complexity in the comprehension of the biological functions of the ADF family and illustrate that antagonist activities can be displayed by seemingly equivalent actin-binding proteins.
Collapse
Affiliation(s)
- Stéphane Tholl
- Centre de Recherche Public-Santé, Luxembourg, Luxembourg
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Ono S. Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton (Hoboken) 2010; 67:677-92. [PMID: 20737540 PMCID: PMC2963174 DOI: 10.1002/cm.20476] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/08/2023]
Abstract
In striated muscle, the actin cytoskeleton is differentiated into myofibrils. Actin and myosin filaments are organized in sarcomeres and specialized for producing contractile forces. Regular arrangement of actin filaments with uniform length and polarity is critical for the contractile function. However, the mechanisms of assembly and maintenance of sarcomeric actin filaments in striated muscle are not completely understood. Live imaging of actin in striated muscle has revealed that actin subunits within sarcomeric actin filaments are dynamically exchanged without altering overall sarcomeric structures. A number of regulators for actin dynamics have been identified, and malfunction of these regulators often result in disorganization of myofibril structures or muscle diseases. Therefore, proper regulation of actin dynamics in striated muscle is critical for assembly and maintenance of functional myofibrils. Recent studies have suggested that both enhancers of actin dynamics and stabilizers of actin filaments are important for sarcomeric actin organization. Further investigation of the regulatory mechanism of actin dynamics in striated muscle should be a key to understanding how myofibrils develop and operate.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
31
|
Marsick BM, Flynn KC, Santiago-Medina M, Bamburg JR, Letourneau PC. Activation of ADF/cofilin mediates attractive growth cone turning toward nerve growth factor and netrin-1. Dev Neurobiol 2010; 70:565-88. [PMID: 20506164 DOI: 10.1002/dneu.20800] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proper neural circuitry requires that growth cones, motile tips of extending axons, respond to molecular guidance cues expressed in the developing organism. However, it is unclear how guidance cues modify the cytoskeleton to guide growth cone pathfinding. Here, we show acute treatment with two attractive guidance cues, nerve growth factor (NGF) and netrin-1, for embryonic dorsal root ganglion and temporal retinal neurons, respectively, results in increased growth cone membrane protrusion, actin polymerization, and filamentous actin (F-actin). ADF/cofilin (AC) family proteins facilitate F-actin dynamics, and we found the inactive phosphorylated form of AC is decreased in NGF- or netrin-1-treated growth cones. Directly increasing AC activity mimics addition of NGF or netrin-1 to increase growth cone protrusion and F-actin levels. Extracellular gradients of NGF, netrin-1, and a cell-permeable AC elicit attractive growth cone turning and increased F-actin barbed ends, F-actin accumulation, and active AC in growth cone regions proximal to the gradient source. Reducing AC activity blunts turning responses to NGF and netrin. Our results suggest that gradients of NGF and netrin-1 locally activate AC to promote actin polymerization and subsequent growth cone turning toward the side containing higher AC activity.
Collapse
Affiliation(s)
- Bonnie M Marsick
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
32
|
Bamburg JR, Bernstein BW. Roles of ADF/cofilin in actin polymerization and beyond. F1000 BIOLOGY REPORTS 2010; 2:62. [PMID: 21173851 PMCID: PMC2990448 DOI: 10.3410/b2-62] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In collaboration or competition with many other actin-binding proteins, the actin-depolymerizing factor/cofilins integrate transmembrane signals to coordinate the spatial and temporal organization of actin filament assembly/disassembly (dynamics). In addition, newly discovered effects of these proteins in lipid metabolism, gene regulation, and apoptosis suggest that their roles go well beyond regulating the cytoskeleton.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology, 1870 Campus Delivery, Colorado State University Fort Collins, CO 80523-1870 USA
| | | |
Collapse
|
33
|
Modulation of actin filament dynamics by actin-binding proteins residing in lamellipodia. Eur J Cell Biol 2010; 89:402-13. [DOI: 10.1016/j.ejcb.2009.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 09/24/2009] [Accepted: 10/01/2009] [Indexed: 11/19/2022] Open
|
34
|
Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L. Regulation of actin dynamics by actin-binding proteins in pollen. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1969-86. [PMID: 20159884 DOI: 10.1093/jxb/erq012] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A dynamic network of polymers, the actin cytoskeleton, co-ordinates numerous fundamental cellular processes. In pollen tubes, organelle movements and cytoplasmic streaming, organization of the tip zone, vesicle trafficking, and tip growth have all been linked to actin-based function. Further, during the self-incompatibility response of Papaver rhoeas, destruction of the cytoskeleton is a primary target implicated in the rapid cessation of pollen tube growth and alterations in actin dynamics are associated with the initiation of programmed cell death. Surprisingly, these diverse cellular processes are accomplished with only a small amount of filamentous actin and a huge pool of polymerizable monomers. These observations hint at incredibly fast and complex actin dynamics in pollen. To understand the molecular mechanisms regulating actin dynamics in plant cells, the abundant actin monomer-binding proteins, a major filament nucleator, a family of bundling and severing proteins, and a modulator of growth at the barbed-end of actin filaments have been characterized biochemically. The activities of these proteins are generally consistent with textbook models for actin turnover. For example, the three monomer-binding proteins, profilin, ADF, and CAP, are thought to function synergistically to enhance turnover and the exchange of subunits between monomer and polymer pools. How individual actin filaments behave in living cells, however, remains largely unexplored. Actin dynamics were examined using variable angle epifluorescence microscopy (VAEM) in expanding hypocotyl epidermal cells. Our observations of single filament behaviour are not consistent with filament turnover by treadmilling, but rather represent a novel property called stochastic dynamics. A new model for the dynamic control of actin filament turnover in plant cells is presented.
Collapse
Affiliation(s)
- Christopher J Staiger
- Department of Biological Sciences and Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907-2064, USA.
| | | | | | | | | |
Collapse
|
35
|
Minamide LS, Maiti S, Boyle JA, Davis RC, Coppinger JA, Bao Y, Huang TY, Yates J, Bokoch GM, Bamburg JR. Isolation and characterization of cytoplasmic cofilin-actin rods. J Biol Chem 2010; 285:5450-60. [PMID: 20022956 PMCID: PMC2820773 DOI: 10.1074/jbc.m109.063768] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/11/2009] [Indexed: 12/20/2022] Open
Abstract
Cofilin-actin bundles (rods), which form in axons and dendrites of stressed neurons, lead to synaptic dysfunction and may mediate cognitive deficits in dementias. Rods form abundantly in the cytoplasm of non-neuronal cells in response to many treatments that induce rods in neurons. Rods in cell lysates are not stable in detergents or with added calcium. Rods induced by ATP-depletion and released from cells by mechanical lysis were first isolated from two cell lines expressing chimeric actin-depolymerizing factor (ADF)/cofilin fluorescent proteins by differential and equilibrium sedimentation on OptiPrep gradients and then from neuronal and non-neuronal cells expressing only endogenous proteins. Rods contain ADF/cofilin and actin in a 1:1 ratio. Isolated rods are stable in dithiothreitol, EGTA, Ca(2+), and ATP. Cofilin-GFP-containing rods are stable in 500 mM NaCl, whereas rods formed from endogenous proteins are significantly less stable in high salt. Proteomic analysis of rods formed from endogenous proteins identified other potential components whose presence in rods was examined by immunofluorescence staining of cells. Only actin and ADF/cofilin are in rods during all phases of their formation; furthermore, the rapid assembly of rods in vitro from these purified proteins at physiological concentration shows that they are the only proteins necessary for rod formation. Cytoplasmic rod formation is inhibited by cytochalasin D and jasplakinolide. Time lapse imaging of rod formation shows abundant small needle-shaped rods that coalesce over time. Rod filament lengths measured by ultrastructural tomography ranged from 22 to 1480 nm. These results suggest rods form by assembly of cofilin-actin subunits, followed by self-association of ADF/cofilin-saturated F-actin.
Collapse
Affiliation(s)
| | - Sankar Maiti
- From the Department of Biochemistry and Molecular Biology and
| | - Judith A. Boyle
- From the Department of Biochemistry and Molecular Biology and
| | | | | | - Yunhe Bao
- From the Department of Biochemistry and Molecular Biology and
| | | | - John Yates
- The Scripps Research Institute, La Jolla, California 92037
| | - Gary M. Bokoch
- The Scripps Research Institute, La Jolla, California 92037
| | - James R. Bamburg
- From the Department of Biochemistry and Molecular Biology and
- the Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado 80523-1870 and
| |
Collapse
|
36
|
Mehta S, Sibley LD. Toxoplasma gondii actin depolymerizing factor acts primarily to sequester G-actin. J Biol Chem 2009; 285:6835-47. [PMID: 20042603 DOI: 10.1074/jbc.m109.068155] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Toxoplasma gondii is a protozoan parasite belonging to the phylum Apicomplexa. Parasites in this phylum utilize a unique process of motility termed gliding, which is dependent on parasite actin filaments. Surprisingly, 98% of parasite actin is maintained as G-actin, suggesting that filaments are rapidly assembled and turned over. Little is known about the regulated disassembly of filaments in the Apicomplexa. In higher eukaryotes, the related actin depolymerizing factor (ADF) and cofilin proteins are essential regulators of actin filament turnover. ADF is one of the few actin-binding proteins conserved in apicomplexan parasites. In this study we examined the mechanism by which T. gondii ADF (TgADF) regulates actin filament turnover. Unlike other members of the ADF/cofilin (AC) family, apicomplexan ADFs lack key F-actin binding sites. Surprisingly, this promotes their enhanced disassembly of actin filaments. Restoration of the C-terminal F-actin binding site to TgADF stabilized its interaction with filaments but reduced its net filament disassembly activity. Analysis of severing activity revealed that TgADF is a weak severing protein, requiring much higher concentrations than typical AC proteins. Investigation of TgADF interaction with T. gondii actin (TgACT) revealed that TgADF disassembled short TgACT oligomers. Kinetic and steady-state polymerization assays demonstrated that TgADF has strong monomer-sequestering activity, inhibiting TgACT polymerization at very low concentrations. Collectively these data indicate that TgADF promoted the efficient turnover of actin filaments via weak severing of filaments and strong sequestering of monomers. This suggests a dual role for TgADF in maintaining high G-actin concentrations and effecting rapid filament turnover.
Collapse
Affiliation(s)
- Simren Mehta
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
37
|
The regulatory action of alpha-actinin on actin filaments is enhanced by cofilin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:1143-53. [PMID: 19997845 DOI: 10.1007/s00249-009-0566-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
We have used fluorescence recovery after photobleaching to study the effect of muscle alpha-actinin on the structure of actin filaments in dilute solutions. Unexpectedly we found that alpha-actinin partitioned filaments into two types: those with a high mobility and those with low mobility. We have determined that the high mobility (smaller sized) population is too large to be simple monomeric actin:alpha-actinin complexes. Although it is known that cofilin encourages the transformation of alpha-actinin:actin gels into large meshworks of inter-digitating actin filament bundles (Maciver et al. 1991), we have found that the presence of cofilin also increases the cross-linking of actin filaments by alpha-actinin and hypothesize that this is due to cofilin's ability to alter the filament twist. This effectively makes more potential alpha-actinin binding sites per unit of actin filament. As expected from previous work, this effect was more marked at pH 6.5 than at pH 8.0. Both effects are likely to operate in cells to deny other actin-binding proteins access to binding these particular filaments and may explain how very different actin cytoskeletal structures may co-exist in the same cell at the same time.
Collapse
|
38
|
Muscle LIM protein interacts with cofilin 2 and regulates F-actin dynamics in cardiac and skeletal muscle. Mol Cell Biol 2009; 29:6046-58. [PMID: 19752190 DOI: 10.1128/mcb.00654-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The muscle LIM protein (MLP) and cofilin 2 (CFL2) are important regulators of striated myocyte function. Mutations in the corresponding genes have been directly associated with severe human cardiac and skeletal myopathies, and aberrant expression patterns have often been observed in affected muscles. Herein, we have investigated whether MLP and CFL2 are involved in common molecular mechanisms, which would promote our understanding of disease pathogenesis. We have shown for the first time, using a range of biochemical and immunohistochemical methods, that MLP binds directly to CFL2 in human cardiac and skeletal muscles. The interaction involves the inter-LIM domain, amino acids 94 to 105, of MLP and the amino-terminal domain, amino acids 1 to 105, of CFL2, which includes part of the actin depolymerization domain. The MLP/CFL2 complex is stronger in moderately acidic (pH 6.8) environments and upon CFL2 phosphorylation, while it is independent of Ca(2+) levels. This interaction has direct implications in actin cytoskeleton dynamics in regulating CFL2-dependent F-actin depolymerization, with maximal depolymerization enhancement at an MLP/CFL2 molecular ratio of 2:1. Deregulation of this interaction by intracellular pH variations, CFL2 phosphorylation, MLP or CFL2 gene mutations, or expression changes, as observed in a range of cardiac and skeletal myopathies, could impair F-actin depolymerization, leading to sarcomere dysfunction and disease.
Collapse
|
39
|
Bamburg JR, Bloom GS. Cytoskeletal pathologies of Alzheimer disease. CELL MOTILITY AND THE CYTOSKELETON 2009; 66:635-49. [PMID: 19479823 PMCID: PMC2754410 DOI: 10.1002/cm.20388] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The histopathological hallmarks of Alzheimer disease are the extracellular amyloid plaques, composed principally of the amyloid beta peptide, and the intracellular neurofibrillary tangles, composed of paired helical filaments of the microtubule-associated protein, tau. Other histopathological structures involving actin and the actin-binding protein, cofilin, have more recently been recognized. Here we review new findings about these cytoskeletal pathologies, and, emphasize how plaques, tangles, the actin-containing inclusions and their respective building blocks may contribute to Alzheimer pathogenesis and the primary behavioral symptoms of the disease. Cell Motil. Cytoskeleton, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- James R Bamburg
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, Colorado, USA.
| | | |
Collapse
|
40
|
Chan C, Beltzner CC, Pollard TD. Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr Biol 2009; 19:537-45. [PMID: 19362000 DOI: 10.1016/j.cub.2009.02.060] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/16/2009] [Accepted: 02/17/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Actin-based cellular motility requires spatially and temporally coordinated remodeling of a network of branched actin filaments. This study investigates how cofilin and Arp2/3 complex, two main players in the dendritic nucleation model, interact to produce sharp spatial transitions between densely branched filaments and long, unbranched filaments. RESULTS We found that cofilin binding reduces both the affinity of actin filaments for Arp2/3 complex and the stability of branches. We used fluorescence spectroscopy to measure the kinetics of cofilin association with filaments and the resulting dissociation of Arp2/3 complex and TIRF microscopy to visualize filament severing and the loss of actin filament branches. Cofilin severs filaments optimally when few actin subunits are occupied but dissociates branches rapidly only at higher occupancies. Effective debranching is nevertheless achieved, as a result of cooperative binding and reduced affinity of Arp2/3 complex for the filament, at cofilin concentrations below those required for direct competition. CONCLUSIONS Cofilin rapidly dissociates Arp2/3 complex and branches by direct competition for binding sites on the actin filament and by propagation of structural changes in the actin filament that reduce affinity for Arp2/3 complex.
Collapse
Affiliation(s)
- Chikio Chan
- Department of Molecular Cellular, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| | | | | |
Collapse
|
41
|
Regulation of acetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking. Nat Neurosci 2009; 12:848-56. [PMID: 19483689 PMCID: PMC2714269 DOI: 10.1038/nn.2322] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 03/23/2009] [Indexed: 01/23/2023]
Abstract
Postsynaptic receptor localization is crucial for synapse development and function, but the underlying cytoskeletal mechanisms remain elusive. Using Xenopus neuromuscular junctions as a model, we here report that actin depolymerizing factor (ADF)/cofilin regulates actin-dependent vesicular trafficking of acetylcholine receptors (AChRs) to the postsynaptic membrane. We found that active ADF/cofilin was concentrated in small puncta adjacent to AChR clusters and spatiotemporally correlated with the formation and maintenance of surface AChR clusters. Importantly, increased actin dynamics, vesicular markers, and intracellular AChRs were all enriched at the sites of ADF/cofilin localization. Furthermore, a substantial amount of new AChRs was detected at these ADF/cofilin-enriched sites. Manipulation of either ADF/cofilin activity through its serine-3 phosphorylation or ADF/cofilin localization via 14-3-3 proteins markedly attenuated AChR insertion and clustering. These results suggest that spatiotemporally restricted ADF/cofilin-mediated actin dynamics regulate AChR trafficking during the development of neuromuscular synapses.
Collapse
|
42
|
Morsczeck C, Petersen J, Völlner F, Driemel O, Reichert T, Beck HC. Proteomic analysis of osteogenic differentiation of dental follicle precursor cells. Electrophoresis 2009; 30:1175-84. [PMID: 19288589 DOI: 10.1002/elps.200800796] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
43
|
Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R, Condeelis J, Kelly MJS, Jacobson MP, Barber DL. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. ACTA ACUST UNITED AC 2008; 183:865-79. [PMID: 19029335 PMCID: PMC2592832 DOI: 10.1083/jcb.200804161] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Newly generated actin free barbed ends at the front of motile cells provide sites for actin filament assembly driving membrane protrusion. Growth factors induce a rapid biphasic increase in actin free barbed ends, and we found both phases absent in fibroblasts lacking H(+) efflux by the Na-H exchanger NHE1. The first phase is restored by expression of mutant cofilin-H133A but not unphosphorylated cofilin-S3A. Constant pH molecular dynamics simulations and nuclear magnetic resonance (NMR) reveal pH-sensitive structural changes in the cofilin C-terminal filamentous actin binding site dependent on His133. However, cofilin-H133A retains pH-sensitive changes in NMR spectra and severing activity in vitro, which suggests that it has a more complex behavior in cells. Cofilin activity is inhibited by phosphoinositide binding, and we found that phosphoinositide binding is pH-dependent for wild-type cofilin, with decreased binding at a higher pH. In contrast, phosphoinositide binding by cofilin-H133A is attenuated and pH insensitive. These data suggest a molecular mechanism whereby cofilin acts as a pH sensor to mediate a pH-dependent actin filament dynamics.
Collapse
Affiliation(s)
- Christian Frantz
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Medina PMB, Worthen RJ, Forsberg LJ, Brenman JE. The actin-binding protein capulet genetically interacts with the microtubule motor kinesin to maintain neuronal dendrite homeostasis. PLoS One 2008; 3:e3054. [PMID: 18725959 PMCID: PMC2516187 DOI: 10.1371/journal.pone.0003054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 08/06/2008] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Neurons require precise cytoskeletal regulation within neurites, containing microtubule tracks for cargo transport in axons and dendrites or within synapses containing organized actin. Due to the unique architecture and specialized function of neurons, neurons are particularly susceptible to perturbation of the cytoskeleton. Numerous actin-binding proteins help maintain proper cytoskeletal regulation. METHODOLOGY/PRINCIPAL FINDINGS From a Drosophila forward genetic screen, we identified a mutation in capulet--encoding a conserved actin-binding protein--that causes abnormal aggregates of actin within dendrites. Through interaction studies, we demonstrate that simultaneous genetic inactivation of capulet and kinesin heavy chain, a microtubule motor protein, produces elongate cofilin-actin rods within dendrites but not axons. These rods resemble actin-rich structures induced in both mammalian neurodegenerative and Drosophila Alzheimer's models, but have not previously been identified by loss of function mutations in vivo. We further demonstrate that mitochondria, which are transported by Kinesin, have impaired distribution along dendrites in a capulet mutant. While Capulet and Cofilin may biochemically cooperate in certain circumstances, in neuronal dendrites they genetically antagonize each other. CONCLUSIONS/SIGNIFICANCE The present study is the first molecularly defined loss of function demonstration of actin-cofilin rods in vivo. This study suggests that simultaneous, seemingly minor perturbations in neuronal dendrites can synergize producing severe abnormalities affecting actin, microtubules and mitochondria/energy availability in dendrites. Additionally, as >90% of Alzheimer's and Parkinson's cases are sporadic this study suggests mechanisms by which multiple mutations together may contribute to neurodegeneration instead of reliance on single mutations to produce disease.
Collapse
Affiliation(s)
- Paul M. B. Medina
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Ryan J. Worthen
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Lawrence J. Forsberg
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Jay E. Brenman
- Neuroscience Center, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- Department of Cell and Developmental Biology, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
45
|
Ono K, Yamashiro S, Ono S. Essential role of ADF/cofilin for assembly of contractile actin networks in the C. elegans somatic gonad. J Cell Sci 2008; 121:2662-70. [PMID: 18653537 DOI: 10.1242/jcs.034215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The somatic gonad of the nematode Caenorhabditis elegans contains a myoepithelial sheath, which surrounds oocytes and provides contractile forces during ovulation. Contractile apparatuses of the myoepithelial-sheath cells are non-striated and similar to those of smooth muscle. We report the identification of a specific isoform of actin depolymerizing factor (ADF)/cofilin as an essential factor for assembly of contractile actin networks in the gonadal myoepithelial sheath. Two ADF/cofilin isoforms, UNC-60A and UNC-60B, are expressed from the unc-60 gene by alternative splicing. RNA interference of UNC-60A caused disorganization of the actin networks in the myoepithelial sheath. UNC-60B, which is known to function in the body-wall muscle, was not necessary or sufficient for actin organization in the myoepithelial sheath. However, mutant forms of UNC-60B with reduced actin-filament-severing activity rescued the UNC-60A-depletion phenotype. UNC-60A has a much weaker filament-severing activity than UNC-60B, suggesting that an ADF/cofilin with weak severing activity is optimal for assembly of actin networks in the myoepithelial sheath. By contrast, strong actin-filament-severing activity of UNC-60B was required for assembly of striated myofibrils in the body-wall muscle. Our results suggest that an optimal level of actin-filament-severing activity of ADF/cofilin is required for assembly of actin networks in the somatic gonad.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
46
|
Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 2008; 87:649-67. [PMID: 18499298 DOI: 10.1016/j.ejcb.2008.04.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 03/25/2008] [Accepted: 04/02/2008] [Indexed: 12/15/2022] Open
Abstract
The actin-binding proteins of the actin-depolymerisation factor (ADF)/cofilin family were first described more than three decades ago, but research on these proteins still occupies a front role in the actin and cell migration field. Moreover, cofilin activity is implicated in the malignant, invasive properties of cancer cells. The effects of ADF/cofilins on actin dynamics are diverse and their regulation is complex. In stimulated cells, multiple signalling pathways can be initiated resulting in different activation/deactivation switches that control ADF/cofilin activity. The output of this entire regulatory system, in combination with spatial and temporal segregation of the activation mechanisms, underlies the contribution of ADF/cofilins to various cell migration/invasion phenotypes. In this framework, we describe current views on how ADF/cofilins function in migrating and invading cells.
Collapse
|
47
|
Kudryashov DS, Cordero CL, Reisler E, Satchell KJF. Characterization of the enzymatic activity of the actin cross-linking domain from the Vibrio cholerae MARTX Vc toxin. J Biol Chem 2008; 283:445-452. [PMID: 17951576 PMCID: PMC2365471 DOI: 10.1074/jbc.m703910200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vibrio cholerae is a Gram-negative bacterial pathogen that exports enterotoxins, which alter host cells through a number of mechanisms resulting in diarrheal disease. Among the secreted toxins is the multifunctional, autoprocessing RTX toxin (MARTX(Vc)), which disrupts actin cytoskeleton by covalently cross-linking actin monomers into oligomers. The region of the toxin responsible for cross-linking activity is the actin cross-linking domain (ACD). In this study, we demonstrate unambiguously that ACD utilizes G- and not F-actin as a substrate for the cross-linking reaction and hydrolyzes one molecule of ATP per cross-linking event. Furthermore, major actin-binding proteins that regulate actin cytoskeleton in vivo do not block the cross-linking reaction in vitro. Cofilin inhibits the cross-linking of G- and F-actin, at a high mole ratio to actin but accelerates F-actin cross-linking at low mole ratios. DNase I completely blocks the cross-linking of actin, likely due to steric hindrance with one of the cross-linking sites on actin. In the context of the holotoxin, the inhibition of Rho by the Rho-inactivating domain of MARTX(Vc) (Sheahan, K. L., and Satchell, K. J. F. (2007) Cell. Microbiol. 9, 1324-1335) would accelerate F-actin depolymerization and provide G-actin, alone or in complex with actin-binding proteins, for cross-linking by ACD, ultimately leading to the observed rapid cell rounding.
Collapse
Affiliation(s)
- Dmitri S Kudryashov
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Christina L Cordero
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Emil Reisler
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Karla J Fullner Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611.
| |
Collapse
|
48
|
Kuhn TB, Bamburg JR. Tropomyosin and ADF/cofilin as collaborators and competitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 644:232-49. [PMID: 19209826 DOI: 10.1007/978-0-387-85766-4_18] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dynamics of actin filaments is pivotal to many fundamental cellular processes such as Dcytokinesis, motility, morphology, vesicle and organelle transport, gene transcription and senescence. In vivo kinetics of actin filament dynamics is far from the equilibrium in vitro and these profound differences are attributed to large number of regulatory proteins. In particular, proteins of the ADF/cofilin family greatly increase actin filament dynamics by severing filaments and enhancing depolymerization of ADP-actin monomers from their pointed ends. Cofilin binds cooperatively to a minor conformer of F-actin in which the subunits are slightly under rotated along the filament helical axis. At high stoichiometry of cofilin to actin subunits, cofilin actually stabilizes actin filaments. Many isoforms oftropomyosin appear to compete with ADF/cofilin proteins for binding to actin filaments. Tropomyosin isoforms studied to date prefer binding to the "untwisted" conformer of F-actin and through their protection and stabilization of F-actin, recruit myosin II and assemble different actin superstructures from the cofilin-actin filaments. However, some tropomyosin isoforms may synergize with ADF/cofilin to enhance filament dynamics, suggesting that the different isoforms of tropomyosins, many of which show developmental or tissue specific expression profiles, play major roles in the assembly and turnover of actin superstructures. Different actin superstructures can overlap both spatially and temporally within a cell, but can be differentiated from each other based upon their kinetic and kinematic properties. Furthermore, local regulation of ADF/cofilin activity through signal transduction pathways could be one mechanism to alter the dynamic balance in F-actin-binding of certain tropomyosin isoforms in subcellular domains.
Collapse
Affiliation(s)
- Thomas B Kuhn
- Department of Chemistry, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | | |
Collapse
|
49
|
Estornes Y, Gay F, Gevrey JC, Navoizat S, Nejjari M, Scoazec JY, Chayvialle JA, Saurin JC, Abello J. Differential involvement of destrin and cofilin-1 in the control of invasive properties of Isreco1 human colon cancer cells. Int J Cancer 2007; 121:2162-71. [PMID: 17583572 DOI: 10.1002/ijc.22911] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Actin depolymerizing factor (ADF)/cofilin family proteins are key regulators of actin filament turnover and cytoskeleton reorganization. The role of cofilin-1 in cell motility has been demonstrated in several cell types but remained poorly documented in the case of colon cancer. In addition, the putative function of destrin (also known as ADF) had not been explored in this context despite the fact that it is expressed in all colon cancer cell lines examined. We were therefore prompted to evaluate the respective contributions of these proteins to the invasive properties of the human colon cancer Isreco1 cell line, which expresses a comparatively high destrin/cofilin ratio. Reduction of cofilin-1 or destrin expression in Isreco1 cells using RNA interference led to an increase of the number of multinucleated cells and altered polarized lamellipodium protrusion and distribution of paxillin-containing adhesions. Both cofilin-1 and destrin silencing enhanced cell adhesion to extracellular matrix components. However, only destrin appeared to be required for cell migration on collagen I and for cell invasion through Matrigel in response to the proinvasive neuroendocrine peptide bombesin. This differential functional involvement was supported by a destrin-dependent, cofilin-independent phosphorylation of p130Crk-associated substrate (p130Cas) upon cell adhesion to collagen I or Matrigel. Taken together, our results suggest that destrin is a significant regulator of various processes important for invasive phenotype of human colon cancer Isreco1 cells whereas cofilin-1 may be involved in only a subset of them.
Collapse
|
50
|
Mseka T, Bamburg JR, Cramer LP. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J Cell Sci 2007; 120:4332-44. [PMID: 18042624 DOI: 10.1242/jcs.017640] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
How formation of the front and rear of a cell are coordinated during cell polarization in migrating cells is not well understood. Time-lapse microscopy of live primary chick embryo heart fibroblasts expressing GFP-actin show that, prior to cell polarization, polymerized actin in the cell body reorganizes to form oriented actin-filament bundles spanning the entire cell body. Within an average of 5 minutes of oriented actin bundles forming, localized cell-edge retraction initiates at either the side or at one end of the newly formed bundles and then elaborates around the nearest end of the bundles to form the cell rear, the first visual break in cell symmetry. Localized net protrusion occurs at the opposing end of the bundles to form the cell front and lags formation of the rear of the cell. Consequently, cells acquire full polarity and start to migrate in the direction of the long axis of the bundles, as previously documented for already migrating cells. When ADF/cofilin family protein activity or actin-filament disassembly is specifically blocked during cell polarization, reorganization of polymerized actin to form oriented actin-filament bundles in the cell body fails, and formation of the cell rear and front is inhibited. We conclude that formation of oriented actin-filament bundles in the cell body requires ADF/cofilin family proteins, and is an early event needed to coordinate the spatial location of the cell rear and front during fibroblast polarization.
Collapse
Affiliation(s)
- Tayamika Mseka
- MRC-Laboratory Molecular Cell Biology, UCL, London, WC1E 6BT, UK
| | | | | |
Collapse
|