1
|
Chong YK, Ong YS, Yeong KY. Unveiling sultam in drug discovery: spotlight on the underexplored scaffold. RSC Med Chem 2024; 15:1798-1827. [PMID: 38911171 PMCID: PMC11187559 DOI: 10.1039/d3md00653k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/14/2024] [Indexed: 06/25/2024] Open
Abstract
Decades ago, the application of cyclic sulfonamide (sultam) and its derivatives primarily focused on their antibacterial properties. However, recent years have seen a shift in research attention towards exploring their potential as anticancer, anti-inflammatory, antidiabetic, and antiviral agents. Despite this broadening scope, only a few sultam drugs have made it to the commercial market, as much of the research on sultams remains in the discovery phase. This class of compounds holds significant promise and remains pertinent in pharmaceutical research. Due to sultam's relevance and growing importance in drug discovery, this review paper aims to consolidate and examine the biological activities of sultam derivatives ranging from 4 to 8-membered ring structures.
Collapse
Affiliation(s)
- Yie Kie Chong
- School of Science, Monash University Malaysia Campus Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Yee Swen Ong
- School of Science, Monash University Malaysia Campus Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus Jalan Lagoon Selatan 47500 Bandar Sunway Selangor Malaysia
| |
Collapse
|
2
|
Racioppo B, Qiu N, Adibekian A. Serine Hydrolase Activity‐Based Probes for use in Chemical Proteomics. Isr J Chem 2023. [DOI: 10.1002/ijch.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Brittney Racioppo
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Nan Qiu
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Alexander Adibekian
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
| |
Collapse
|
3
|
Carvalho LAR, Almeida VT, Brito JA, Lum KM, Oliveira TF, Guedes RC, Gonçalves LM, Lucas SD, Cravatt BF, Archer M, Moreira R. 3-Oxo-β-sultam as a Sulfonylating Chemotype for Inhibition of Serine Hydrolases and Activity-Based Protein Profiling. ACS Chem Biol 2020; 15:878-883. [PMID: 32176480 DOI: 10.1021/acschembio.0c00090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Oxo-β-sultams are four-membered ring ambident electrophiles that can react with nucleophiles either at the carbonyl carbon or at the sulfonyl sulfur atoms, and that have been reported to inhibit serine hydrolases via acylation of the active-site serine residue. We have developed a panel of 3-oxo-β-sultam inhibitors and show, through crystallographic data, that they are regioselective sulfonylating electrophiles, covalently binding to the catalytic serine of human and porcine elastases through the sulfur atom. Application of 3-oxo-β-sultam-derived activity-based probes in a human proteome revealed their potential to label disease-related serine hydrolases and proteasome subunits. Activity-based protein profiling applications of 3-oxo-β-sultams should open up new opportunities to investigate these classes of enzymes in complex proteomes and expand the toolbox of available sulfur-based covalent protein modifiers in chemical biology.
Collapse
Affiliation(s)
- Luís A. R. Carvalho
- Department of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Vanessa T. Almeida
- Biological Chemistry Division, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - José A. Brito
- Biological Chemistry Division, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Kenneth M. Lum
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tânia F. Oliveira
- Biological Chemistry Division, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Rita C. Guedes
- Department of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Lídia M. Gonçalves
- Department of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Susana D. Lucas
- Department of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Margarida Archer
- Biological Chemistry Division, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Rui Moreira
- Department of Medicinal Chemistry, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmacia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
4
|
Hamama WS, Ibrahim ME, Ghaith EA, Zoorob HH. Rational Design to Construct Pyridinonethiol and Its Annulated Frameworks of Expected Significant Antitumor Activity and Geometrical Optimizations. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wafaa S. Hamama
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura Egypt
| | - Mona E. Ibrahim
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura Egypt
| | - Eslam A. Ghaith
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura Egypt
| | - Hanafi H. Zoorob
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura Egypt
| |
Collapse
|
5
|
Blackburn J, Molyneux G, Pitard A, Rice CR, Page MI, Afshinjavid S, Javid FA, Coles SJ, Horton PN, Hemming K. Synthesis, conformation and antiproliferative activity of isothiazoloisoxazole 1,1-dioxides. Org Biomol Chem 2016; 14:2134-44. [DOI: 10.1039/c5ob02586a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Isothiazoles (I) reacted with 1,3-dipoles or NaN3 to give cycloadducts (II) or thiazete (III). Thiazete (III) rearranged to give 1,2,3-oxathiazoline (IV).
Collapse
|
6
|
Arima J, Shimone K, Miyatani K, Tsunehara Y, Isoda Y, Hino T, Nagano S. Crystal structure of D-stereospecific amidohydrolase from Streptomyces sp. 82F2 - insight into the structural factors for substrate specificity. FEBS J 2015; 283:337-49. [PMID: 26513520 DOI: 10.1111/febs.13579] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/17/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
Abstract
UNLABELLED D-Stereospecific amidohydrolase (DAH) from Streptomyces sp. 82F2, which catalyzes amide bond formation from d-aminoacyl esters and l-amino acids (aminolysis), can be used to synthesize short peptides with a dl-configuration. We found that DAH can use 1,8-diaminooctane and other amino compounds as acyl acceptors in the aminolysis reaction. Low concentrations of 1,8-diaminooctane inhibited acyl-DAH intermediate formation. By contrast, excess 1,8-diaminooctane promoted aminolysis by DAH, producing d-Phe-1,8-diaminooctane via nucleophilic attack of the diamine on enzyme-bound d-Phe. To clarify the mechanism of substrate specificity and amide bond formation by DAH, the crystal structure of the enzyme that binds 1,8-diaminooctane was determined at a resolution of 1.49 Å. Comparison of the DAH crystal structure with those of other members of the S12 peptidase family indicated that the substrate specificity of DAH arises from its active site structure. The 1,8-diaminooctane molecule binds at the entrance of the active site pocket. The electrkon density map showed that another potential 1,8-diaminooctane binding site, probably with lower affinity, is present close to the active site. The enzyme kinetics and structural comparisons suggest that the location of enzyme-bound diamine can explain the inhibition of the acyl-enzyme intermediate formation, although the bound diamine is too far from the active site for aminolysis. Despite difficulty in locating the diamine binding site for aminolysis definitively, we propose that the excess diamine also binds at or near the second binding site to attack the acyl-enzyme intermediate during aminolysis. DATABASE The coordinates and structure factors for d-stereospecific amidohydrolase have been deposited in the Protein Data Bank at the Research Collaboratory for Structural Bioinformatics under code: 3WWX.
Collapse
Affiliation(s)
- Jiro Arima
- Department of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, Japan
| | - Kana Shimone
- Department of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, Japan
| | - Kazusa Miyatani
- Department of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, Japan
| | - Yuka Tsunehara
- Department of Agricultural, Biological, and Environmental Sciences, Faculty of Agriculture, Tottori University, Japan
| | - Yoshitaka Isoda
- United Graduate School of Agricultural Sciences, Tottori University, Japan
| | - Tomoya Hino
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Japan
| | - Shingo Nagano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Japan
| |
Collapse
|
7
|
Avan I, Hall CD, Katritzky AR. Peptidomimetics via modifications of amino acids and peptide bonds. Chem Soc Rev 2014; 43:3575-94. [DOI: 10.1039/c3cs60384a] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Kolb R, Bach NC, Sieber SA. β-Sultams exhibit discrete binding preferences for diverse bacterial enzymes with nucleophilic residues. Chem Commun (Camb) 2014; 50:427-9. [DOI: 10.1039/c3cc46002a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Valegård K, Iqbal A, Kershaw NJ, Ivison D, Généreux C, Dubus A, Blikstad C, Demetriades M, Hopkinson RJ, Lloyd AJ, Roper DI, Schofield CJ, Andersson I, McDonough MA. Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1567-79. [PMID: 23897479 DOI: 10.1107/s0907444913011013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/23/2013] [Indexed: 11/10/2022]
Abstract
Structural and biochemical studies of the orf12 gene product (ORF12) from the clavulanic acid (CA) biosynthesis gene cluster are described. Sequence and crystallographic analyses reveal two domains: a C-terminal penicillin-binding protein (PBP)/β-lactamase-type fold with highest structural similarity to the class A β-lactamases fused to an N-terminal domain with a fold similar to steroid isomerases and polyketide cyclases. The C-terminal domain of ORF12 did not show β-lactamase or PBP activity for the substrates tested, but did show low-level esterase activity towards 3'-O-acetyl cephalosporins and a thioester substrate. Mutagenesis studies imply that Ser173, which is present in a conserved SXXK motif, acts as a nucleophile in catalysis, consistent with studies of related esterases, β-lactamases and D-Ala carboxypeptidases. Structures of wild-type ORF12 and of catalytic residue variants were obtained in complex with and in the absence of clavulanic acid. The role of ORF12 in clavulanic acid biosynthesis is unknown, but it may be involved in the epimerization of (3S,5S)-clavaminic acid to (3R,5R)-clavulanic acid.
Collapse
Affiliation(s)
- Karin Valegård
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Zarei M, Jarrahpour A. A Simple and One-Pot Synthesis of β-Sultams by Using the Vilsmeier Reagent. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maaroof Zarei
- Department of Chemistry, College of Sciences; Hormozgan University; Bandar Abbas; 71961; Iran
| | - Aliasghar Jarrahpour
- Department of Chemistry, College of Sciences; Shiraz University; Shiraz; 71454; Iran
| |
Collapse
|
11
|
|
12
|
Zarei M. Convenient Propylphosphonic Anhydride (T3P®)-Mediated Synthesis of β-Sultams. MENDELEEV COMMUNICATIONS 2013. [DOI: 10.1016/j.mencom.2013.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Dzhekieva L, Kumar I, Pratt RF. Inhibition of Bacterial DD-Peptidases (Penicillin-Binding Proteins) in Membranes and in Vivo by Peptidoglycan-Mimetic Boronic Acids. Biochemistry 2012; 51:2804-11. [DOI: 10.1021/bi300148v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| | - Ish Kumar
- School of Natural
Sciences, Fairleigh Dickinson University, Teaneck, New Jersey 07666, United States
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459,
United
States
| |
Collapse
|
14
|
Lerner TR, Lovering AL, Bui NK, Uchida K, Aizawa SI, Vollmer W, Sockett RE. Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness. PLoS Pathog 2012; 8:e1002524. [PMID: 22346754 PMCID: PMC3276566 DOI: 10.1371/journal.ppat.1002524] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/21/2011] [Indexed: 11/18/2022] Open
Abstract
Bdellovibrio are predatory bacteria that have evolved to invade virtually all Gram-negative bacteria, including many prominent pathogens. Upon invasion, prey bacteria become rounded up into an osmotically stable niche for the Bdellovibrio, preventing further superinfection and allowing Bdellovibrio to replicate inside without competition, killing the prey bacterium and degrading its contents. Historically, prey rounding was hypothesized to be associated with peptidoglycan (PG) metabolism; we found two Bdellovibrio genes, bd0816 and bd3459, expressed at prey entry and encoding proteins with limited homologies to conventional dacB/PBP4 DD-endo/carboxypeptidases (responsible for peptidoglycan maintenance during growth and division). We tested possible links between Bd0816/3459 activity and predation. Bd3459, but not an active site serine mutant protein, bound β-lactam, exhibited DD-endo/carboxypeptidase activity against purified peptidoglycan and, importantly, rounded up E. coli cells upon periplasmic expression. A ΔBd0816 ΔBd3459 double mutant invaded prey more slowly than the wild type (with negligible prey cell rounding) and double invasions of single prey by more than one Bdellovibrio became more frequent. We solved the crystal structure of Bd3459 to 1.45 Å and this revealed predation-associated domain differences to conventional PBP4 housekeeping enzymes (loss of the regulatory domain III, alteration of domain II and a more exposed active site). The Bd3459 active site (and by similarity the Bd0816 active site) can thus accommodate and remodel the various bacterial PGs that Bdellovibrio may encounter across its diverse prey range, compared to the more closed active site that “regular” PBP4s have for self cell wall maintenance. Therefore, during evolution, Bdellovibrio peptidoglycan endopeptidases have adapted into secreted predation-specific proteins, preventing wasteful double invasion, and allowing activity upon the diverse prey peptidoglycan structures to sculpt the prey cell into a stable intracellular niche for replication. Bdellovibrio bacteriovorus is a small predatory bacterium that invades other bacteria including pathogens of humans and animals. Bdellovibrio digest the pathogens from within, growing at their expense. Bdellovibrio do not attack human, plant or animal cells and so could be applied as “living antibiotics”. Here we have discovered how Bdellovibrio evolved to live inside other bacteria. Evolution has changed (normally housekeeping) genes called dacBs so that their products recognise and modify the different cell walls of a wide range of bacteria. Their action sculpts the cell walls of the invaded bacteria to make a stable “home” for the Bdellovibrio, inside which it kills them. We know the structure and activity of the enzymes and that mutants without them are not as efficient predators. This is relevant to antibacterial therapies because the predatory DacB enzymes themselves act against bacteria and are also a key factor in Bdellovibrio cells being live predators of pathogens.
Collapse
Affiliation(s)
- Thomas R. Lerner
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - Andrew L. Lovering
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Nhat Khai Bui
- The Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kaoru Uchida
- Department of Life Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - Shin-Ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - R. Elizabeth Sockett
- Centre for Genetics and Genomics, School of Biology, University of Nottingham, Medical School, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Capes JS, Kiley PJ, Windle AH. Investigating the effect of pH on the aggregation of two surfactant-like octapeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5637-5644. [PMID: 20334410 DOI: 10.1021/la904528p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The aggregation of two de novo designed surfactant-like peptides, with sequences Ac-IIKKEENN-OH (P1) and Ac-IIEENNDD-OH (P2), has been studied in aqueous solution at various pH values using titration, Circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). It was found that aggregates of P1 and P2 both display 5 pK(a)'s, some of which differ considerably from the tabulated values for those amino acids. In particular, a lysine of P1 titrated to 4.939 +/- 0.066. CD spectra of P1 were insensitive to pH, while CD spectra of P2 demonstrated a random coil-to-beta-sheet transition as pH was decreased. AFM images confirmed that P1 aggregates were spheres at all pH values and ranged in size from 3 to 20 nm. On the other hand, P2 aggregates were twisted ribbons below pH 4 but spheres less than 10 nm above pH 4. In addition, AFM images demonstrated the partial breakup of these twisted ribbons upon elevating the pH from 3.03 to 3.46 and the virtual disappearance of ribbons at pH 3.82. FTIR spectra of P2 indicate a structural transition from random coil to beta-sheet as pH was decreased. The role of backbone hydrogen bonding as well as charge is discussed.
Collapse
Affiliation(s)
- Jacqueline S Capes
- Department of Materials Science and Metallurgy, University of Cambridge, Downing Street, Cambridge, United Kingdom CB2 3QZ
| | | | | |
Collapse
|
16
|
Luo C, Roussel P, Dreier J, Page MGP, Paetzel M. Crystallographic analysis of bacterial signal peptidase in ternary complex with arylomycin A2 and a beta-sultam inhibitor. Biochemistry 2009; 48:8976-84. [PMID: 19655811 DOI: 10.1021/bi9009538] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial type I signal peptidase (SPase I), an essential membrane-bound endopeptidase with a unique Ser/Lys dyad mechanism, is being investigated as a potential novel antibiotic target. We present here binding and inhibition assays along with crystallographic data that shows that the lipohexapeptide-based natural product arylomycin A2 and the morpholino-beta-sultam derivative (BAL0019193) inhibit SPase I by binding to non-overlapping subsites near the catalytic center. The 2.0 A resolution crystal structure of the soluble catalytic domain of Escherichia coli SPase I (SPase I Delta2-75) in ternary complex with arylomycin A2 and BAL0019193 reveals the position of BAL0019193 adjacent to arylomycin A2 within the SPase I binding site. BAL0019193 binds in a noncovalent manner in close proximity to SPase I residues Ser88, Ser90, Lys145, Asn277, Ala279, and Glu307, as well as atom O45 of arylomycin A2. The binding mode of arylomycin A2 in this 2.0 A resolution ternary complex is compared to that seen in the previous 2.5 A resolution arylomycin A2-SPase cocrystal structure. This work contributes to our understanding of SPase I inhibitor/substrate recognition and should prove helpful in the further development of novel antibiotics based on the inhibition of SPase I.
Collapse
Affiliation(s)
- Chuanyun Luo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, South Science Building 8888 University Drive, Burnaby, British Columbia, V5A 1S6 Canada
| | | | | | | | | |
Collapse
|
17
|
Zajac M, Peters R. Catalytic Asymmetric Synthesis of β-Sultams as Precursors for Taurine Derivatives. Chemistry 2009; 15:8204-22. [DOI: 10.1002/chem.200900496] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Balaguer AN, Companyó X, Calvet T, Font-Bardía M, Moyano A, Rios R. Highly Regio- and Diastereoselective Oxazol-5-one Addition to Nitrostyrenes. European J Org Chem 2009. [DOI: 10.1002/ejoc.200801005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Nakamura S, Hirata N, Yamada R, Kita T, Shibata N, Toru T. Catalytic and Highly Enantioselective Reactions of α-Sulfonyl Carbanions with Chiral Bis(oxazoline)s. Chemistry 2008; 14:5519-27. [DOI: 10.1002/chem.200800221] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Macheboeuf P, Fischer DS, Brown T, Zervosen A, Luxen A, Joris B, Dessen A, Schofield CJ. Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins. Nat Chem Biol 2007; 3:565-9. [PMID: 17676039 DOI: 10.1038/nchembio.2007.21] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 07/06/2007] [Indexed: 11/08/2022]
Abstract
Beta-lactam antibiotics, including penicillins and cephalosporins, inhibit penicillin-binding proteins (PBPs), which are essential for bacterial cell wall biogenesis. Pathogenic bacteria have evolved efficient antibiotic resistance mechanisms that, in Gram-positive bacteria, include mutations to PBPs that enable them to avoid beta-lactam inhibition. Lactivicin (LTV; 1) contains separate cycloserine and gamma-lactone rings and is the only known natural PBP inhibitor that does not contain a beta-lactam. Here we show that LTV and a more potent analog, phenoxyacetyl-LTV (PLTV; 2), are active against clinically isolated, penicillin-resistant Streptococcus pneumoniae strains. Crystallographic analyses of S. pneumoniae PBP1b reveal that LTV and PLTV inhibition involves opening of both monocyclic cycloserine and gamma-lactone rings. In PBP1b complexes, the ring-derived atoms from LTV and PLTV show a notable structural convergence with those derived from a complexed cephalosporin (cefotaxime; 3). The structures imply that derivatives of LTV will be useful in the search for new antibiotics with activity against beta-lactam-resistant bacteria.
Collapse
Affiliation(s)
- Pauline Macheboeuf
- Institut de Biologie Structurale Jean-Pierre Ebel Commissariat à l'énergie atomique - Centre National de La Recherche Scientifique - Université Joseph Fourier, 41 rue Jules Horowitz, F-38027 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Koch FM, Peters R. Catalytic Enantio- and Diastereoselective Formation of β-Sultones: Ring-Strained Precursors for Enantioenriched β-Hydroxysulfonyl Derivatives. Angew Chem Int Ed Engl 2007; 46:2685-9. [PMID: 17330913 DOI: 10.1002/anie.200604796] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Florian M Koch
- Laboratory of Organic Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, Hönggerberg HCI E 111, 8093 Zürich, Switzerland
| | | |
Collapse
|
22
|
Koch F, Peters R. Katalytische enantio- und diastereoselektive Synthese von β-Sultonen: ringgespannte Vorstufen für enantiomerenangereicherte β-Hydroxysulfonylderivate. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604796] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Lewis AKDK, Mok BJ, Tocher DA, Wilden JD, Caddick S. New Synthesis of β-Sultams from Pentafluorophenyl Sulfonates. Org Lett 2006; 8:5513-5. [PMID: 17107060 DOI: 10.1021/ol062164b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stereoselective one-pot synthesis of substituted 1,2-thiazetidine 1,1-dioxides (beta-sultams) has been achieved from heterocyclic pentafluorophenyl (PFP) sulfonates. Mild N-O bond cleavage of isoxazolidines followed by intramolecular cyclization of the amine onto the PFP demonstrates the potential utility for using the PFP sulfonate as a valuable precursor to sulfonamides. [reaction: see text].
Collapse
Affiliation(s)
- Alexandra K de K Lewis
- The Christopher Ingold Laboratories, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | | | | | | | | |
Collapse
|
24
|
Tsang WY, Ahmed N, Hinchliffe PS, Wood JM, Harding LP, Laws AP, Page MI. Different transition-state structures for the reactions of beta-lactams and analogous beta-sultams with serine beta-lactamases. J Am Chem Soc 2006; 127:17556-64. [PMID: 16332108 DOI: 10.1021/ja056124z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beta-sultams are the sulfonyl analogues of beta-lactams, and N-acyl beta-sultams are novel inactivators of the class C beta-lactamase of Enterobacter cloacae P99. They sulfonylate the active site serine residue to form a sulfonate ester which subsequently undergoes C-O bond fission and formation of a dehydroalanine residue by elimination of the sulfonate anion as shown by electrospray ionization mass spectroscopy. The analogous N-acyl beta-lactams are substrates for beta-lactamase and undergo enzyme-catalyzed hydrolysis presumably by the normal acylation-deacylation process. The rates of acylation of the enzyme by the beta-lactams, measured by the second-order rate constant for hydrolysis, kcat/K(m), and those of sulfonylation by the beta-sultams, measured by the second-order rate constant for inactivation, k(i), both show a similar pH dependence to that exhibited by the beta-lactamase-catalyzed hydrolysis of beta-lactam antibiotics. Electron-withdrawing groups in the aryl residue of the leaving group of N-aroyl beta-lactams increase the rate of alkaline hydrolysis and give a Bronsted beta(lg) of -0.55, indicative of a late transition state for rate-limiting formation of the tetrahedral intermediate. Interestingly, the corresponding Bronsted beta(lg) for the beta-lactamase-catalyzed hydrolysis of the same substrates is -0.06, indicative of an earlier transition state for the enzyme-catalyzed reaction. By contrast, although the Bronsted beta(lg) for the alkaline hydrolysis of N-aroyl beta-sultams is -0.73, similar to that for the beta-lactams, that for the sulfonylation of beta-lactamase by these compounds is -1.46, compatible with significant amide anion expulsion/S-N fission in the transition state. In this case, the enzyme reaction displays a later transition state compared with hydroxide-ion-catalyzed hydrolysis of the beta-sultam.
Collapse
Affiliation(s)
- Wing Y Tsang
- Department of Chemical and Biological Sciences, The University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Delmarcelle M, Boursoit MC, Filée P, Baurin SL, Frère JM, Joris B. Specificity inversion of Ochrobactrum anthropi D-aminopeptidase to a D,D-carboxypeptidase with new penicillin binding activity by directed mutagenesis. Protein Sci 2006; 14:2296-303. [PMID: 16131658 PMCID: PMC2253486 DOI: 10.1110/ps.051475305] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The serine penicillin-recognizing proteins have been extensively studied. They show a wide range of substrate specificities accompanied by multidomain features. Their adaptation capacity has resulted in the emergence of pathogenic bacteria resistant to beta-lactam antibiotics. The most divergent enzymatic activities in this protein family are those of the Ochrobactrum anthropi D-aminopeptidase and of the Streptomyces R61 D,D-carboxypeptidase/transpeptidase. With the help of structural data, we have attempted to identify the factors responsible for this opposite specificity. A loop deletion mutant of the Ochrobactrum anthropi D-aminopeptidase lost its original activity in favor of a new penicillin-binding activity. D-aminopeptidase activity of the deletion mutant can be restored by complementation with another deletion mutant corresponding to the noncatalytic domain of the wild-type enzyme. By a second step site-directed mutagenesis, the specificity of the Ochrobactrum anthropi D-aminopeptidase was inverted to a D,D-carboxypeptidase specificity. These results imply a core enzyme with high diversity potential surrounded by specificity modulators. It is the first example of drastic specificity change in the serine penicillin-recognizing proteins. These results open new perspectives in the conception of new enzymes with nonnatural specificities. The structure/specificity relationship in the serine penicillin-recognizing proteins are discussed.
Collapse
Affiliation(s)
- Michaël Delmarcelle
- Centre d'Ingénierie des Protéines, Institut de Chimie, B6a, Universitéde Liège, Sart-Tilman, B- 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Wilke MS, Lovering AL, Strynadka NCJ. Beta-lactam antibiotic resistance: a current structural perspective. Curr Opin Microbiol 2006; 8:525-33. [PMID: 16129657 DOI: 10.1016/j.mib.2005.08.016] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022]
Abstract
Bacterial resistance to beta-lactam antibiotics can be achieved by any of three strategies: the production of beta-lactam-hydrolyzing beta-lactamase enzymes, the utilization of beta-lactam-insensitive cell wall transpeptidases, and the active expulsion of beta-lactam molecules from Gram-negative cells by way of efflux pumps. In recent years, structural biology has contributed significantly to the understanding of these processes and should prove invaluable in the design of drugs to combat beta-lactam resistance in the future.
Collapse
Affiliation(s)
- Mark S Wilke
- Department of Biochemistry and Molecular Biology, and the Center for Blood Research, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
27
|
Hemming K, O’Gorman PA, Page MI. The synthesis of azabicyclo[4.2.1]nonenes by the addition of a cyclopropenone to 4-vinyl substituted 1-azetines—isomers of the homotropane nucleus. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2005.11.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Page MI, Tsang WY, Ahmed N. Comparison of the mechanisms of reactions of β-lactams and β-sultams, including their reactions with some serine enzymes. J PHYS ORG CHEM 2006. [DOI: 10.1002/poc.1016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|