1
|
Lena A, Benassi A, Stasi M, Saint‐Pierre C, Freccero M, Gasparutto D, Bombard S, Doria F, Verga D. Photoactivatable V-Shaped Bifunctional Quinone Methide Precursors as a New Class of Selective G-quadruplex Alkylating Agents. Chemistry 2022; 28:e202200734. [PMID: 35441438 PMCID: PMC9322314 DOI: 10.1002/chem.202200734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Combining the selectivity of G-quadruplex (G4) ligands with the spatial and temporal control of photochemistry is an emerging strategy to elucidate the biological relevance of these structures. In this work, we developed six novel V-shaped G4 ligands that can, upon irradiation, form stable covalent adducts with G4 structures via the reactive intermediate, quinone methide (QM). We thoroughly investigated the photochemical properties of the ligands and their ability to generate QMs. Subsequently, we analyzed their specificity for various topologies of G4 and discovered a preferential binding towards the human telomeric sequence. Finally, we tested the ligand ability to act as photochemical alkylating agents, identifying the covalent adducts with G4 structures. This work introduces a novel molecular tool in the chemical biology toolkit for G4s.
Collapse
Affiliation(s)
- Alberto Lena
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Alessandra Benassi
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Michele Stasi
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
- Present Address: Department of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | | | - Mauro Freccero
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Didier Gasparutto
- University Grenoble AlpesCEACNRSIRIGSyMMES-UMR581938054GrenobleFrance
| | - Sophie Bombard
- CNRS UMR9187INSERM U1196Institut CuriePSL Research University91405OrsayFrance
- CNRS UMR9187INSERM U1196Université Paris-Saclay91405OrsayFrance
| | - Filippo Doria
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Daniela Verga
- CNRS UMR9187INSERM U1196Institut CuriePSL Research University91405OrsayFrance
- CNRS UMR9187INSERM U1196Université Paris-Saclay91405OrsayFrance
| |
Collapse
|
2
|
The catalytic properties of DNA G-quadruplexes rely on their structural integrity. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63744-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Affiliation(s)
- Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
4
|
Wang J, Cheng M, Chen J, Ju H, Monchaud D, Mergny JL, Zhou J. An oxidatively damaged G-quadruplex/hemin DNAzyme. Chem Commun (Camb) 2020; 56:1839-1842. [PMID: 31950946 DOI: 10.1039/c9cc09237d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative damage of guanine to 8-oxoguanine triggers a partial and variable loss of G-quadruplex/hemin DNAzyme activity and provides clues to the mechanistic origins of DNAzyme deactivation, which originates from an interplay between decreased G-quadruplex stability, lower hemin affinity and a modification of the nature of hemin binding sites.
Collapse
Affiliation(s)
- Jiawei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - David Monchaud
- Institut de Chimie Moléculaire, Université de Bourgogne (ICMUB), CNRS UMR6302, UBFC Dijon 21000, France
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Binding of BRACO19 to a Telomeric G-Quadruplex DNA Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. Molecules 2019; 24:molecules24061010. [PMID: 30871220 PMCID: PMC6471034 DOI: 10.3390/molecules24061010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 11/30/2022] Open
Abstract
Although BRACO19 is a potent G-quadruplex binder, its potential for clinical usage is hindered by its low selectivity towards DNA G-quadruplex over duplex. High-resolution structures of BRACO19 in complex with neither single-stranded telomeric DNA G-quadruplexes nor B-DNA duplex are available. In this study, the binding pathway of BRACO19 was probed by 27.5 µs molecular dynamics binding simulations with a free ligand (BRACO19) to a DNA duplex and three different topological folds of the human telomeric DNA G-quadruplex (parallel, anti-parallel and hybrid). The most stable binding modes were identified as end stacking and groove binding for the DNA G-quadruplexes and duplex, respectively. Among the three G-quadruplex topologies, the MM-GBSA binding energy analysis suggested that BRACO19′s binding to the parallel scaffold was most energetically favorable. The two lines of conflicting evidence plus our binding energy data suggest conformation-selection mechanism: the relative population shift of three scaffolds upon BRACO19 binding (i.e., an increase of population of parallel scaffold, a decrease of populations of antiparallel and/or hybrid scaffold). This hypothesis appears to be consistent with the fact that BRACO19 was specifically designed based on the structural requirements of the parallel scaffold and has since proven effective against a variety of cancer cell lines as well as toward a number of scaffolds. In addition, this binding mode is only slightly more favorable than BRACO19s binding to the duplex, explaining the low binding selectivity of BRACO19 to G-quadruplexes over duplex DNA. Our detailed analysis suggests that BRACO19′s groove binding mode may not be stable enough to maintain a prolonged binding event and that the groove binding mode may function as an intermediate state preceding a more energetically favorable end stacking pose; base flipping played an important role in enhancing binding interactions, an integral feature of an induced fit binding mechanism.
Collapse
|
6
|
Morel E, Beauvineau C, Naud-Martin D, Landras-Guetta C, Verga D, Ghosh D, Achelle S, Mahuteau-Betzer F, Bombard S, Teulade-Fichou MP. Selectivity of Terpyridine Platinum Anticancer Drugs for G-quadruplex DNA. Molecules 2019; 24:molecules24030404. [PMID: 30678027 PMCID: PMC6385020 DOI: 10.3390/molecules24030404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/23/2023] Open
Abstract
Guanine-rich DNA can form four-stranded structures called G-quadruplexes (G4s) that can regulate many biological processes. Metal complexes have shown high affinity and selectivity toward the quadruplex structure. Here, we report the comparison of a panel of platinum (II) complexes for quadruplex DNA selective recognition by exploring the aromatic core around terpyridine derivatives. Their affinity and selectivity towards G4 structures of various topologies have been evaluated by FRET-melting (Fluorescence Resonance Energy Transfert-melting) and Fluorescent Intercalator Displacement (FID) assays, the latter performed by using three different fluorescent probes (Thiazole Orange (TO), TO-PRO-3, and PhenDV). Their ability to bind covalently to the c-myc G4 structure in vitro and their cytotoxicity potential in two ovarian cancerous cell lines were established. Our results show that the aromatic surface of the metallic ligands governs, in vitro, their affinity, their selectivity for the G4 over the duplex structures, and platination efficiency. However, the structural modifications do not allow significant discrimination among the different G4 topologies. Moreover, all compounds were tested on ovarian cancer cell lines and normal cell lines and were all able to overcome cisplatin resistance highlighting their interest as new anticancer drugs.
Collapse
Affiliation(s)
- Elodie Morel
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
| | - Claire Beauvineau
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
| | - Delphine Naud-Martin
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
| | - Corinne Landras-Guetta
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
| | - Daniela Verga
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
| | - Deepanjan Ghosh
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
| | - Sylvain Achelle
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- University Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Florence Mahuteau-Betzer
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
| | - Sophie Bombard
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
| | - Marie-Paule Teulade-Fichou
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
- Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France.
| |
Collapse
|
7
|
Chen J, Zhang Y, Cheng M, Guo Y, Šponer J, Monchaud D, Mergny JL, Ju H, Zhou J. How Proximal Nucleobases Regulate the Catalytic Activity of G-Quadruplex/Hemin DNAzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03811] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jielin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yingying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mingpan Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuehua Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiri Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - David Monchaud
- Institut de Chimie Moléculaire (ICMUB), CNRS UMR6302, UBFC Dijon 21078, France
| | - Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, 33600 Pessac, France
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Dual functional dinuclear platinum complex with selective reactivity towards c-myc G-quadruplex. Sci Rep 2018; 8:767. [PMID: 29335501 PMCID: PMC5768759 DOI: 10.1038/s41598-017-19095-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/20/2017] [Indexed: 01/24/2023] Open
Abstract
G-quadruplexes (GQ) folded by the oncogenic G-rich sequences are the promising targets for developing anticancer therapeutic molecules. However, the current drug development mainly focused on non-covalent dynamic binders to stabilize GQ structures, while the covalent targeting from inorganic complexes via chelating principles, as a potent therapeutic strategy was surprisingly lack of exploration. Herein, a series of dinuclear platinum complexes, [(Pt(Dip)Cl)2(μ-diamine)](NO3)2 (Dip: 4,7-diphenyl-1,10-phenanthroline), were designed to contain two dual-functional Pt cores connected by an alkyl linkage. Pt3 with nonanediamine linkage optimized the specific binding towards c-myc G-quadruplex via dual functional clamp on GQ as 1) non-covalently π-stacking of aromatic ligands, and 2) two Pt(II) cores covalently chelated to guanines at both 3'- and 5'-ends.
Collapse
|
9
|
Brabec V, Hrabina O, Kasparkova J. Cytotoxic platinum coordination compounds. DNA binding agents. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Charif R, Granotier-Beckers C, Bertrand HC, Poupon J, Ségal-Bendirdjian E, Teulade-Fichou MP, Boussin FD, Bombard S. Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption. Chem Res Toxicol 2017; 30:1629-1640. [DOI: 10.1021/acs.chemrestox.7b00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Razan Charif
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
| | - Christine Granotier-Beckers
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Hélène Charlotte Bertrand
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
- Département
de Chimie, Ecole Normale Supérieure, PSL Research University,
UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités,
UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire
des Biomolécules (LBM), 24 rue
Lhomond, 75005 Paris, France
| | - Joël Poupon
- Laboratoire
de Toxicologie-Biologique, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris, France
| | | | - Marie-Paule Teulade-Fichou
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| | - François D. Boussin
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Sophie Bombard
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| |
Collapse
|
11
|
Cao Q, Li Y, Freisinger E, Qin PZ, Sigel RKO, Mao ZW. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00300a] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes the recent development of G4 DNA targeted metal complexes and discusses their potential as anticancer drugs.
Collapse
Affiliation(s)
- Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Yi Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| | - Eva Freisinger
- University of Zurich
- Department of Chemistry
- CH-8057 Zurich
- Switzerland
| | - Peter Z. Qin
- Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | | | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-Sen University
- Guangzhou 510275
- China
| |
Collapse
|
12
|
Betzer JF, Nuter F, Chtchigrovsky M, Hamon F, Kellermann G, Ali S, Calméjane MA, Roque S, Poupon J, Cresteil T, Teulade-Fichou MP, Marinetti A, Bombard S. Linking of Antitumor trans NHC-Pt(II) Complexes to G-Quadruplex DNA Ligand for Telomeric Targeting. Bioconjug Chem 2016; 27:1456-70. [PMID: 27115175 DOI: 10.1021/acs.bioconjchem.6b00079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-quadruplex structures (G4) are promising anticancerous targets. A great number of small molecules targeting these structures have already been identified through biophysical methods. In cellulo, some of them are able to target either telomeric DNA and/or some sequences involved in oncogene promotors, both resulting in cancer cell death. However, only a few of them are able to bind to these structures G4 irreversibly. Here we combine within the same molecule the G4-binding agent PDC (pyridodicarboxamide) with a N-heterocyclic carbene-platinum complex NHC-Pt already identified for its antitumor properties. The resulting conjugate platinum complex NHC-Pt-PDC stabilizes strongly G-quadruplex structures in vitro, with affinity slightly affected as compared to PDC. In addition, we show that the new conjugate binds preferentially and irreversibly the quadruplex form of the human telomeric sequence with a profile in a way different from that of NHC-Pt thereby indicating that the platination reaction is oriented by stacking of the PDC moiety onto the G4-structure. In cellulo, NHC-Pt-PDC induces a significant loss of TRF2 from telomeres that is considerably more important than the effect of its two components alone, PDC and NHC-Pt, respectively.
Collapse
Affiliation(s)
- Jean-François Betzer
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Frédérick Nuter
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Mélanie Chtchigrovsky
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Florian Hamon
- CNRS UMR9187/INSERM U1196, Institut Curie, Centre Universitaire Paris XI , Bâtiments 110-112, 91405 Orsay, France
| | - Guillaume Kellermann
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Samar Ali
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Marie-Ange Calméjane
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Sylvain Roque
- INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| | - Joël Poupon
- Laboratoire de Toxicologie Biologique, Hôpital Lariboisière , 2 rue Ambroise Paré, 75475 Paris, France
| | - Thierry Cresteil
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France.,Université Paris-Sud d'Innovation Thérapeutique , 5 rue J.B. Clément, 92290 Châtenay-Malabry, France
| | - Marie-Paule Teulade-Fichou
- CNRS UMR9187/INSERM U1196, Institut Curie, Centre Universitaire Paris XI , Bâtiments 110-112, 91405 Orsay, France
| | - Angela Marinetti
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay , 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Sophie Bombard
- CNRS UMR9187/INSERM U1196, Institut Curie, Centre Universitaire Paris XI , Bâtiments 110-112, 91405 Orsay, France.,INSERM UMR-S-1007, Université Paris Descartes , 45, rue des Saints Pères, 75270 Paris, France
| |
Collapse
|
13
|
Berger G, Fusaro L, Luhmer M, Czapla-Masztafiak J, Lipiec E, Szlachetko J, Kayser Y, Fernandes DLA, Sá J, Dufrasne F, Bombard S. Insights into the structure–activity relationships of chiral 1,2-diaminophenylalkane platinum(II) anticancer derivatives. J Biol Inorg Chem 2015; 20:841-53. [DOI: 10.1007/s00775-015-1270-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/03/2015] [Indexed: 01/28/2023]
|
14
|
Verga D, Hamon F, Poyer F, Bombard S, Teulade-Fichou MP. Photo-Cross-Linking Probes for Trapping G-Quadruplex DNA. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307413] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Verga D, Hamon F, Poyer F, Bombard S, Teulade-Fichou MP. Photo-Cross-Linking Probes for Trapping G-Quadruplex DNA. Angew Chem Int Ed Engl 2013; 53:994-8. [DOI: 10.1002/anie.201307413] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/14/2013] [Indexed: 01/18/2023]
|
16
|
Gabano E, Gama S, Mendes F, Gariboldi MB, Monti E, Bombard S, Bianco S, Ravera M. Study of the synthesis, antiproliferative properties, and interaction with DNA and polynucleotides of cisplatin-like Pt(II) complexes containing carcinogenic polyaromatic amines. J Biol Inorg Chem 2013; 18:791-801. [PMID: 23873259 DOI: 10.1007/s00775-013-1022-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/30/2013] [Indexed: 01/03/2023]
Abstract
The chemical and biological features of two newly synthesized [PtCl2(L)(2-aminonaphthalene)] complexes (L is NH3 or 2-aminonaphthalene) were compared with those of two already reported enantiomeric complexes of formula [PtCl2(DABN)] [DABN is (R)-1,1'-binaphthyl-2,2'-diamine or (S)-1,1'-binaphthyl-2,2'-diamine]. Solution behavior, lipophilicity, cytotoxicity with regard to one colorectal (HCT116) and two ovarian (A2780 and A2780Cp8) human carcinoma cell lines, and in vitro DNA- and G-quadruplex-binding properties were evaluated. In particular, the cytotoxicity of [PtCl2(NH3)(2-aminonaphthalene)] was better than that of cisplatin for all cell lines, and rather resembled that of oxaliplatin. The solution behavior of the whole series of complexes and the absence of an evident relationship between lipophilicity and cytotoxicity seem to suggest that all these experimental parameters are probably smoothed out during the 3-day cytotoxicity experiments and do not strongly affect the half-maximal inhibitory concentrations. The results of electrophoretic studies indicate that different kinds of interaction with DNA can be involved in the mode of action of these complexes, with intercalation in double-stranded DNA and stacking on G-quadruplex DNA being strongly implicated in particular for [PtCl2(NH3)(2-aminonaphthalene)].
Collapse
Affiliation(s)
- Elisabetta Gabano
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), Università del Piemonte Orientale "Amedeo Avogadro", Viale Michel 11, 15121, Alessandria, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Holder IT, Drescher M, Hartig JS. Structural characterization of quadruplex DNA with in-cell EPR approaches. Bioorg Med Chem 2013; 21:6156-61. [PMID: 23693068 DOI: 10.1016/j.bmc.2013.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/26/2013] [Accepted: 04/05/2013] [Indexed: 12/20/2022]
Abstract
Guanosine-rich DNA sequences have the potential to adopt four-stranded conformations termed quadruplexes. The chromosomes of higher organisms are capped by so-called telomeres that are composed of repeats of the sequence TTAGGG. Up to 200 nucleotides of the G-rich strand form an overhang that is suspected to fold into intramolecular G-quadruplexes. Since induction of quadruplexes at the telomeres results in anti-proliferative effects, the intracellular structure of G-quadruplexes is of high interest as an anti-cancer drug target. Here we give a perspective on the elucidation of DNA sequence folds by electron paramagnetic resonance (EPR) distance measurements. The technique complements X-ray crystallography and NMR spectroscopy, as it can be applied in noncrystalline states, is not intrinsically limited by the size of the bio-macromolecular complex, and is able to analyze flexible structures or coexisting DNA conformation.
Collapse
Affiliation(s)
- Isabelle T Holder
- Department of Chemistry and Konstanz Research School of Chemical Biology, University of Konstanz, 78467 Konstanz, Germany
| | | | | |
Collapse
|
18
|
Chtchigrovsky M, Eloy L, Jullien H, Saker L, Ségal-Bendirdjian E, Poupon J, Bombard S, Cresteil T, Retailleau P, Marinetti A. Antitumor trans-N-Heterocyclic Carbene–Amine–Pt(II) Complexes: Synthesis of Dinuclear Species and Exploratory Investigations of DNA Binding and Cytotoxicity Mechanisms. J Med Chem 2013; 56:2074-86. [DOI: 10.1021/jm301780s] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mélanie Chtchigrovsky
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| | - Laure Eloy
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| | - Hélène Jullien
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| | - Lina Saker
- Université Paris Descartes, INSERM UMR S 1007, 45 rue des Saints
Pères, 75270 Paris, France
| | | | - Joel Poupon
- Laboratoire de Toxicologie-Biologique, Hôpital Lariboisière, 2 rue Ambroise
Paré, 75475 Paris, France
| | - Sophie Bombard
- Université Paris Descartes, INSERM UMR S 1007, 45 rue des Saints
Pères, 75270 Paris, France
| | - Thierry Cresteil
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| | - Angela Marinetti
- Institut de Chimie des Substances Naturelles, UPR CNRS 2301, 1 av. de la
Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Abu-Ghazalah RM, Rutledge S, Lau LWY, Dubins DN, Macgregor RB, Helmy AS. Concentration-dependent structural transitions of human telomeric DNA sequences. Biochemistry 2012; 51:7357-66. [PMID: 22931349 DOI: 10.1021/bi300689t] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oligodeoxyribonucleotides (ODNs) that have four repeats of the human telomeric sequence d(TTAGGG)(n) can assume multiple monomolecular G-quadruplex topologies. These are determined by the cation species present, the bases at the 5' or 3' end, and the sample preparation technique. In this work, we report our studies of the concentration dependence of the circular dichroism (CD) and the vibrational modes probed by Raman scattering of three previously characterized monomolecular G-quadruplexes: H-Tel, d[5'-A(GGGTTA)(3)GGG-3']; hybrid-1, d[5'-AAA(GGGTTA)(3)GGGAA-3']; and hybrid-2, d[5'-TTA(GGGTTA)(3)GGGTT-3']. At high (millimolar) ODN concentrations, we observed a transformation of the CD spectrum of H-Tel, with a relaxation time on the order of 10 h. Analysis of the kinetics of this process is consistent with the formation of an aggregated complex of folded H-Tel monomers. Upon dilution, the aggregates dissociate rapidly, yielding spectra identical to those of monomeric H-Tel. Both hybrid sequences undergo a similar transition under high-salt (1 M) conditions. The measurements suggest that for these ODN concentrations, which are typically used in high-resolution spectroscopies, the monomolecular G-quadruplex structures undergo a transition to multimolecular structures at room temperature. Guided by our findings, we propose that the terminal bases of the hybrid-1 and hybrid-2 ODNs impede the formation of these aggregates; however, in solutions containing 1 M salt, the hybrid oligonucleotides aggregate.
Collapse
Affiliation(s)
- Rashid M Abu-Ghazalah
- Edward S. Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Stefan L, Denat F, Monchaud D. Insights into how nucleotide supplements enhance the peroxidase-mimicking DNAzyme activity of the G-quadruplex/hemin system. Nucleic Acids Res 2012; 40:8759-72. [PMID: 22730286 PMCID: PMC3458538 DOI: 10.1093/nar/gks581] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Since the initial discovery of the catalytic capability of short DNA fragments, this peculiar enzyme-like property (termed DNAzyme) has continued to garner much interest in the scientific community because of the virtually unlimited applications in developing new molecular devices. Alongside the exponential rise in the number of DNAzyme applications in the last past years, the search for convenient ways to improve its overall efficiency has only started to emerge. Credence has been lent to this strategy by the recent demonstration that the quadruplex-based DNAzyme proficiency can be enhanced by ATP supplements. Herein, we have made a further leap along this path, trying first of all to decipher the actual DNAzyme catalytic cycle (to gain insights into the steps ATP may influence), and subsequently investigating in detail the influence of all the parameters that govern the catalytic efficiency. We have extended this study to other nucleotides and quadruplexes, thus demonstrating the versatility and broad applicability of such an approach. The defined exquisitely efficient DNAzyme protocols were exploited to highlight the enticing advantages of this method via a 96-well plate experiment that enables the detection of nanomolar DNA concentrations in real-time with the naked-eye (see movie as Supplementary Data).
Collapse
Affiliation(s)
- Loic Stefan
- Institut de Chimie Moléculaire, Université de Bourgogne (ICMUB), CNRS UMR6302, 9, avenue Alain Savary, 21000 Dijon, France
| | | | | |
Collapse
|
21
|
Singh V, Azarkh M, Drescher M, Hartig JS. Conformations of individual quadruplex units studied in the context of extended human telomeric DNA. Chem Commun (Camb) 2012; 48:8258-60. [PMID: 22531827 DOI: 10.1039/c2cc32012f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
G-quadruplex conformations within a sequence of three quadruplex units of human telomeric DNA were studied by two-frequency pulsed electron paramagnetic resonance (EPR) spectroscopy. In contrast to some individual G-quadruplexes, within the higher-order human telomeric sequence a (3+1) hybrid structure is formed.
Collapse
Affiliation(s)
- Vijay Singh
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
22
|
Stucki SR, Nyakas A, Schürch S. Tandem mass spectrometry of platinated quadruplex DNA. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:1288-1297. [PMID: 22223421 DOI: 10.1002/jms.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Quadruplexes are higher-order structures formed by G-rich DNA strands that are involved in various processes of cell cycle regulation, such as control of telomere length and participation in gene regulation. Because of these central biological functions, quadruplex DNA represents a promising target for cancer therapy, e.g. by applying organometallic drugs, such as cisplatin. High-resolution electrospray tandem mass spectrometry is evaluated as a technique for exploring structural features of unplatinated and platinated quadruplexes. Results of experiments on tetramolecular, bimolecular and monomolecular quadruplexes provide information about the extent of platination and the binding sites of the drug. The dissociation behavior of the different types of quadruplexes is compared. Tetramolecular quadruplexes were found to weave out a strand end in order to provide a platination site, and their fragmentation is characterized by the release of an unplatinated strand and the formation of a platinated triplex. Partial opening of the structure in combination with the loss of small fragments leads to truncated quadruplex ions. For the bimolecular quadruplexes studied, strand separation is the predominant dissociation pathway. Depending on the loop sequence, cross-linking of the loops by cisplatin is demonstrated. Distinct differences in the product ion spectra of unannealed and annealed monomolecular sequences provide proof of quadruplex formation and show that platination preferentially occurs at the terminal regions.
Collapse
Affiliation(s)
- Silvan R Stucki
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | | | | |
Collapse
|
23
|
Yuan G, Zhang Q, Zhou J, Li H. Mass spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation. MASS SPECTROMETRY REVIEWS 2011; 30:1121-1142. [PMID: 21520218 DOI: 10.1002/mas.20315] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/09/2010] [Accepted: 06/09/2010] [Indexed: 05/30/2023]
Abstract
G-quadruplexes are special secondary structures formed from G-rich sequences of DNA, and have proven to play important roles in a number of biological systems, including the regulation of gene transcription and translation. The highly distinctive nature of G-quadruplex structures and their functions suggest that G-quadruplexes can act as novel targets for drug development. As a highly sensitive analytical tool, mass spectrometry has been widely used for the analysis of G-quadruplex structures. Electrospray-ionization mass spectrometry, in particular, has found captivating applications to probe interactions between small molecules and G-quadruplex DNA. In this review, we will discuss: (1) mass spectrometry probing of the formation, binding affinity, and stoichiometry between G-quadruplexes and small molecules; (2) stabilization and collision-dissociation behavior of G-quadruplex DNA; (3) the exploration of the equilibrium transfer between a G-quadruplex and duplex DNA; and (4) the ESI-MS analysis of the conversion of intramolecular and intermolecular G-quadruplexes. Finally, we will also introduce the application of new techniques in the analysis of G-quadruplex conformation, such as ion-mobility and infrared multiphoton-dissociation mass spectrometry. We believe that, with the new technical developments, mass spectrometry will play an unparalleled role in the analysis of the G-quadruplex structures.
Collapse
Affiliation(s)
- Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
24
|
Musetti C, Nazarov AA, Farrell NP, Sissi C. DNA Reactivity Profile of trans-Platinum Planar Amine Derivatives. ChemMedChem 2011; 6:1283-90. [DOI: 10.1002/cmdc.201100032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 02/18/2011] [Indexed: 12/22/2022]
|
25
|
Rao L, West TK, Saluta G, Kucera GL, Bierbach U. Probing platinum-adenine-n3 adduct formation with DNA minor-groove binding agents. Chem Res Toxicol 2010; 23:1148-50. [PMID: 20578739 DOI: 10.1021/tx100170p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Me-lex(py/py), an adenine-N3-selective alkylating agent, and the reversible minor-groove binder netropsin were used to probe the formation of unusual minor-groove adducts by the cytotoxic hybrid agent PT-ACRAMTU ([PtCl(en)(ACRAMTU)](NO(3))(2); en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea). PT-ACRAMTU was found by chemical footprinting to inhibit specific Me-lex-mediated DNA cleavage at several adenine sites but not at nonspecific guanine, which is consistent with the platination of adenine-N3. In a cell proliferation assay, a significant decrease in cytotoxicity was observed for PT-ACRAMTU, when cancer cells were pretreated with netropsin, suggesting that minor-groove adducts in cellular DNA contribute to the biological activity of the hybrid agent.
Collapse
Affiliation(s)
- Lu Rao
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
Polynuclear platinum agents are a structurally unique class of anti-cancer drugs, distinct from the cisplatin family. To describe the chemistry and biology of this class, it was necessary to challenge the accepted paradigms for the structure-activity relationships; design new chemotypes and delineate the structures and consequences of their DNA binding modes. This article summarizes the structural changes induced in DNA by both covalent (bond-forming) and non-covalent (ligand recognition) adducts. Solution (Nuclear Magnetic Resonance), solid state (crystallography) and gas-phase (Electrospray Ionization Mass Spectrometry) techniques have all been used to describe the new DNA structures along with molecular biological techniques. The combined approaches allow molecular description of hitherto unobserved adducts such as long-range major-groove interstrand crosslinks; directional isomers on DNA and a third class of ligand-DNA binding, the phosphate clamp. The phosphate recognition is distinct from ''classic'' minor-groove recognition or intercalation.
Collapse
Affiliation(s)
- John B. Mangrum
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, VA 23284, USA
| | - Nicholas P. Farrell
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main Street, Richmond, VA 23284, USA
| |
Collapse
|
27
|
Georgiades SN, Abd Karim NH, Suntharalingam K, Vilar R. Interaction of metal complexes with G-quadruplex DNA. Angew Chem Int Ed Engl 2010; 49:4020-34. [PMID: 20503216 DOI: 10.1002/anie.200906363] [Citation(s) in RCA: 380] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Guanine-rich sequences of DNA can assemble into tetrastranded structures known as G-quadruplexes. It has been suggested that these secondary DNA structures could be involved in the regulation of several key biological processes. In the human genome, guanine-rich sequences with the potential to form G-quadruplexes exist in the telomere as well as in promoter regions of certain oncogenes. The identification of these sequences as novel targets for the development of anticancer drugs has sparked great interest in the design of molecules that can interact with quadruplex DNA. While most reported quadruplex DNA binders are based on purely organic templates, numerous metal complexes have more recently been shown to interact effectively with this DNA secondary structure. This Review provides an overview of the important roles that metal complexes can play as quadruplex DNA binding molecules, highlighting the unique properties metals can confer to these molecules.
Collapse
Affiliation(s)
- Savvas N Georgiades
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
28
|
Rickling S, Ghisdavu L, Pierard F, Gerbaux P, Surin M, Murat P, Defrancq E, Moucheron C, Kirsch-De Mesmaeker A. A rigid dinuclear ruthenium(II) complex as an efficient photoactive agent for bridging two guanine bases of a duplex or quadruplex oligonucleotide. Chemistry 2010; 16:3951-61. [PMID: 20175157 DOI: 10.1002/chem.200902817] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The rigid dinuclear [(tap)(2)Ru(tpac)Ru(tap)(2)](4+) complex (1) (TAP=1,4,5,8-tetraazaphenanthrene, TPAC=tetrapyridoacridine) is shown to be much more efficient than the mononuclear bis-TAP complexes at photodamaging oligodeoxyribonucleotides (ODNs) containing guanine (G). This is particularly striking with the G-rich telomeric sequence d(T(2)AG(3))(4). Complex 1, which interacts strongly with the ODNs as determined by surface plasmon resonance (SPR) and emission anisotropy experiments, gives rise under illumination to the formation of covalent adducts with the G units of the ODNs. The yield of photocrosslinking of the two strands of duplexes by 1 is the highest when the G bases of each strand are separated by three to four base pairs. This corresponds with each Ru(tap)(2) moiety of complex 1 forming an adduct with the G base. This separation distance of the G units of a duplex could be determined thanks to the rigidity of complex 1. On the basis of results of gel electrophoresis, mass spectrometry, and molecular modelling, it is suggested that such photocrosslinking can also occur intramolecularly in the human telomeric quadruplex d(T(2)AG(3))(4).
Collapse
Affiliation(s)
- Stéphane Rickling
- Organic Chemistry and Photochemistry, Université libre de Bruxelles, 50 avenue F.D. Roosevelt, 1050 Bruxelles, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Georgiades S, Abd Karim N, Suntharalingam K, Vilar R. Wechselwirkung von Metallkomplexen mit G-Quadruplex-DNA. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906363] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Biological activity of enantiomeric complexes [PtCl(2)L (2)] (L (2) is aromatic bisphosphanes and aromatic diamines). J Biol Inorg Chem 2010; 15:841-50. [PMID: 20333420 DOI: 10.1007/s00775-010-0648-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/09/2010] [Indexed: 12/25/2022]
Abstract
Enantiomeric complexes of formula [PtCl(2)L(2)] [L(2) is (R)-(+)-BINAP and (S)-(-)-BINAP, where BINAP is 2,2'-bis(diphenylphosphane)-1,1'-binaphthyl, and (R)-(+)-DABN and (S)-(-)-DABN, where DABN is 1,1'-binaphthyl-2,2'-diamine], were tested for their cytotoxic activity against three cancer cell lines and for their ability to bind to the human telomeric sequence folded in the G-quadruplex structure. Similar experiments were carried out on prototypal complexes cisplatin and cis-[PtCl(2)(PPh(3))(2)] for comparison. Platinum complexes containing phosphanes proved less cytotoxic to cancer cell lines and less likely to interact with the nucleobases of the G-quadruplex than those containing amines; in both cases the S-(-) isomer was more active than the R-(+) counterpart. More specifically, whereas all the platinum complexes were able to platinate the G-quadruplex structure from the human telomeric repeat, the extent and sites of platination depended on the nature of the ligands. Complexes containing (bulky) phosphanes interacted only with the adenines of the loops, whereas those containing the less sterically demanding amines interacted with adenines and some guanines of the G-quartet.
Collapse
|
31
|
Platination of telomeric DNA by cisplatin disrupts recognition by TRF2 and TRF1. J Biol Inorg Chem 2010; 15:641-54. [DOI: 10.1007/s00775-010-0631-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/27/2010] [Indexed: 12/23/2022]
|
32
|
Quinone methides tethered to naphthalene diimides as selective G-quadruplex alkylating agents. J Am Chem Soc 2010; 131:13132-41. [PMID: 19694465 DOI: 10.1021/ja904876q] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed novel G-quadruplex (G-4) ligand/alkylating hybrid structures, tethering the naphthalene diimide moiety to quaternary ammonium salts of Mannich bases, as quinone-methide precursors, activatable by mild thermal digestion (40 degrees C). The bis-substituted naphthalene diimides were efficiently synthesized, and their reactivity as activatable bis-alkylating agents was investigated in the presence of thiols and amines in aqueous buffered solutions. The electrophilic intermediate, quinone-methide, involved in the alkylation process was trapped, in the presence of ethyl vinyl ether, in a hetero Diels-Alder [4 + 2] cycloaddition reaction, yielding a substituted 2-ethoxychroman. The DNA recognition and alkylation properties of these new derivatives were investigated by gel electrophoresis, circular dichroism, and enzymatic assays. The alkylation process occurred preferentially on the G-4 structure in comparison to other DNA conformations. By dissecting reversible recognition and alkylation events, we found that the reversible process is a prerequisite to DNA alkylation, which in turn reinforces the G-quadruplex structural rearrangement.
Collapse
|
33
|
Singh V, Azarkh M, Exner T, Hartig J, Drescher M. Human Telomeric Quadruplex Conformations Studied by Pulsed EPR. Angew Chem Int Ed Engl 2009; 48:9728-30. [DOI: 10.1002/anie.200902146] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Singh V, Azarkh M, Exner T, Hartig J, Drescher M. Untersuchung von Quadruplex-Konformationen der humanen Telomerensequenz mit Puls-EPR. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902146] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Renciuk D, Kejnovská I, Skoláková P, Bednárová K, Motlová J, Vorlícková M. Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res 2009; 37:6625-34. [PMID: 19717545 PMCID: PMC2770667 DOI: 10.1093/nar/gkp701] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The arrangement of the human telomeric quadruplex in physiologically relevant conditions has not yet been unambiguously determined. Our spectroscopic results suggest that the core quadruplex sequence G3(TTAG3)3 forms an antiparallel quadruplex of the same basket type in solution containing either K+ or Na+ ions. Analogous sequences extended by flanking nucleotides form a mixture of the antiparallel and hybrid (3 + 1) quadruplexes in K+-containing solutions. We, however, show that long telomeric DNA behaves in the same way as the basic G3(TTAG3)3 motif. Both G3(TTAG3)3 and long telomeric DNA are also able to adopt the (3 + 1) quadruplex structure: Molecular crowding conditions, simulated here by ethanol, induced a slow transition of the K+-stabilized quadruplex into the hybrid quadruplex structure and then into a parallel quadruplex arrangement at increased temperatures. Most importantly, we demonstrate that the same transitions can be induced even in aqueous, K+-containing solution by increasing the DNA concentration. This is why distinct quadruplex structures were detected for AG3(TTAG3)3 by X-ray, nuclear magnetic resonance and circular dichrosim spectroscopy: Depending on DNA concentration, the human telomeric DNA can adopt the antiparallel quadruplex, the (3 + 1) structure, or the parallel quadruplex in physiologically relevant concentrations of K+ ions.
Collapse
|
36
|
Fadrná E, Špačková N, Sarzyñska J, Koča J, Orozco M, Cheatham TE, Kulinski T, Šponer J. Single Stranded Loops of Quadruplex DNA As Key Benchmark for Testing Nucleic Acids Force Fields. J Chem Theory Comput 2009; 5:2514-30. [DOI: 10.1021/ct900200k] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Eva Fadrná
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Nad’a Špačková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Joanna Sarzyñska
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Jaroslav Koča
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Modesto Orozco
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Thomas E. Cheatham
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Tadeusz Kulinski
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| | - Jiří Šponer
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic, Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61 704 Poznań, Poland, Joint IRB-BSC program on Computational Biology, Institute for Research in Biomedicine, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Barcelona Supercomputing
| |
Collapse
|
37
|
Lim KW, Amrane S, Bouaziz S, Xu W, Mu Y, Patel DJ, Luu KN, Phan AT. Structure of the human telomere in K+ solution: a stable basket-type G-quadruplex with only two G-tetrad layers. J Am Chem Soc 2009; 131:4301-9. [PMID: 19271707 PMCID: PMC2662591 DOI: 10.1021/ja807503g] [Citation(s) in RCA: 385] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Previously, it has been reported that human telomeric DNA sequences could adopt in different experimental conditions four different intramolecular G-quadruplexes each involving three G-tetrad layers, namely, Na(+) solution antiparallel-stranded basket form, K(+) crystal parallel-stranded propeller form, K(+) solution (3 + 1) Form 1, and K(+) solution (3 + 1) Form 2. Here we present a new intramolecular G-quadruplex adopted by a four-repeat human telomeric sequence in K(+) solution (Form 3). This structure is a basket-type G-quadruplex with only two G-tetrad layers: loops are successively edgewise, diagonal, and edgewise; glycosidic conformations of guanines are syn x syn x anti x anti around each tetrad. Each strand of the core has both a parallel and an antiparallel adjacent strands; there are one narrow, one wide, and two medium grooves. Despite the presence of only two G-tetrads in the core, this structure is more stable than the three-G-tetrad intramolecular G-quadruplexes previously observed for human telomeric sequences in K(+) solution. Detailed structural elucidation of Form 3 revealed extensive base pairing and stacking in the loops capping both ends of the G-tetrad core, which might explain the high stability of the structure. This novel structure highlights the conformational heterogeneity of human telomeric DNA. It establishes a new folding principle for G-quadruplexes and suggests new loop sequences and structures for targeting in human telomeric DNA.
Collapse
Affiliation(s)
- Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Samir Amrane
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Serge Bouaziz
- Unité de Pharmacologie Chimique et Génétique, INSERM U640 — CNRS UMR 8151, Université Paris Descartes, France
| | - Weixin Xu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yuguang Mu
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Kim Ngoc Luu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
38
|
Bertrand H, Bombard S, Monchaud D, Talbot E, Guédin A, Mergny JL, Grünert R, Bednarski PJ, Teulade-Fichou MP. Exclusive platination of loop adenines in the human telomeric G-quadruplex. Org Biomol Chem 2009; 7:2864-71. [PMID: 19582295 DOI: 10.1039/b904599f] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hélène Bertrand
- Institut Curie, Section Recherche, CNRS UMR176, Centre Universitaire Paris XI, Bât. 110, 91405, Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dai J, Carver M, Yang D. Polymorphism of human telomeric quadruplex structures. Biochimie 2008; 90:1172-83. [PMID: 18373984 PMCID: PMC2556180 DOI: 10.1016/j.biochi.2008.02.026] [Citation(s) in RCA: 346] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 02/29/2008] [Indexed: 10/22/2022]
Abstract
Human telomeric DNA consists of tandem repeats of the sequence d(TTAGGG). Compounds that can stabilize the intramolecular DNA G-quadruplexes formed in the human telomeric sequence have been shown to inhibit the activity of telomerase and telomere maintenance, thus the telomeric DNA G-quadruplex has been considered as an attractive target for cancer therapeutic intervention. Knowledge of intramolecular human telomeric G-quadruplex structure(s) formed under physiological conditions is important for structure-based rational drug design and thus has been the subject of intense investigation. This review will give an overview of recent progress on the intramolecular human telomeric G-quadruplex structures formed in K+ solution. It will also give insight into the structure polymorphism of human telomeric sequences and its implications for drug targeting.
Collapse
Affiliation(s)
- Jixun Dai
- College of Pharmacy, The University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | | | | |
Collapse
|
40
|
Gaynutdinov TI, Neumann RD, Panyutin IG. Structural polymorphism of intramolecular quadruplex of human telomeric DNA: effect of cations, quadruplex-binding drugs and flanking sequences. Nucleic Acids Res 2008; 36:4079-87. [PMID: 18535007 PMCID: PMC2475613 DOI: 10.1093/nar/gkn351] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G-quadruplex structures formed in the telomeric DNA are thought to play a role in the telomere function. Drugs that stabilize the G-quadruplexes were shown to have anticancer effects. The structures formed by the basic telomeric quadruplex-forming unit G3(TTAG3)3 were the subject of multiple studies. Here, we employ 125I-radioprobing, a method based on analysis of the distribution of DNA breaks after decay of 125I incorporated into one of the nucleotides, to determine the fold of the telomeric DNA in the presence of TMPyP4 and telomestatin, G-quadruplex-binding ligands and putative anticancer drugs. We show that d[G3(TTAG3)3125I-CT] adopts basket conformation in the presence of NaCl and that addition of either of the drugs does not change this conformation of the quadruplex. In KCl, the d[G3(TTAG3)3125I-CT] is most likely present as a mixture of two or more conformations, but addition of the drugs stabilize the basket conformation. We also show that d[G3(TTAG3)3125I-CT] with a 5′-flanking sequence folds into (3+1) type 2 conformation in KCl, while in NaCl it adopts a novel (3+1) basket conformation with a diagonal central loop. The results demonstrate the structural flexibility of the human telomeric DNA; and show how cations, quadruplex-binding drugs and flanking sequences can affect the conformation of the telomeric quadruplex.
Collapse
Affiliation(s)
- Timur I Gaynutdinov
- Department of Nuclear Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892-1180, USA
| | | | | |
Collapse
|
41
|
Paramasivan S, Rujan I, Bolton PH. Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods 2008; 43:324-31. [PMID: 17967702 DOI: 10.1016/j.ymeth.2007.02.009] [Citation(s) in RCA: 427] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 02/14/2007] [Indexed: 10/22/2022] Open
Abstract
Circular dichroism, CD, spectra can be used to gain information about quadruplex structures of DNAs as well as the effects of sequence, cations, chemical modification and ligand binding on quadruplex structure. There is not yet a validated approach to calculate a CD spectrum from a quadruplex structure nor is their one to go from a CD spectrum to a structure. However, it is possible to empirically correlate CD spectra features with quadruplex structural type in many cases. In this article four case studies are presented to indicate the strengths and limitations of CD in investigations of the properties of quadruplex structures formed by telomere repeat sequences. The case studies include determination of the quadruplex structural type present as a function of potassium concentration, the effect of sequence on the equilibrium between quadruplex structural types as a function of potassium concentration, the effect of ligand binding on quadruplex structure and the effect of 5' phosphorylation on quadruplex structural type.
Collapse
|
42
|
Sponer J, Spacková N. Molecular dynamics simulations and their application to four-stranded DNA. Methods 2007; 43:278-90. [PMID: 17967698 PMCID: PMC2431124 DOI: 10.1016/j.ymeth.2007.02.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 02/14/2007] [Indexed: 11/30/2022] Open
Abstract
This review provides a critical assessment of the advantages and limitations of modeling methods available for guanine quadruplex (G-DNA) molecules. We characterize the relations of simulations to the experimental techniques and explain the actual meaning and significance of the results. The following aspects are discussed: pair-additive approximation of the empirical force fields, sampling limitations stemming from the simulation time and accuracy of description of base stacking, H-bonding, sugar-phosphate backbone and ions by force fields. Several methodological approaches complementing the classical explicit solvent molecular dynamics simulations are commented on, including enhanced sampling methods, continuum solvent methods, free energy calculations and gas phase simulations. The successes and pitfalls of recent simulation studies of G-DNA are demonstrated on selected results, including studies of cation interactions and dynamics of G-DNA stems, studies of base substitutions (inosine, thioguanine and mixed tetrads), analysis of possible kinetic intermediates in folding pathway of a G-DNA stem and analysis of loop regions of G-DNA molecules.
Collapse
Affiliation(s)
- Jirí Sponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, 612 65 Brno, Czech Republic.
| | | |
Collapse
|
43
|
Abstract
Over the past decade, nucleic acid chemists have seen the spectacular emergence of molecules designed to interact efficiently and selectively with a peculiar DNA structure named G-quadruplex. Initially derived from classical DNA intercalators, these G-quadruplex ligands progressively became the focal point of new excitement since they appear to inhibit selectively the growth of cancer cells thereby opening interesting perspectives towards the development of novel anti-cancer drugs. The present article aims to help researchers enter this exciting research field, and to highlight recent advances in the design of G-quadruplex ligands.
Collapse
Affiliation(s)
- David Monchaud
- Institut Curie, CNRS UMR176, Section Recherche, Centre Universitaire Paris XI, Bât. 110, 91405, Orsay, France
| | | |
Collapse
|
44
|
Tang CF, Shafer RH. Engineering the quadruplex fold: nucleoside conformation determines both folding topology and molecularity in guanine quadruplexes. J Am Chem Soc 2007; 128:5966-73. [PMID: 16637665 PMCID: PMC2597528 DOI: 10.1021/ja0603958] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleic acid quadruplexes, based on the guanine quartet, can arise from one or several strands, depending on the sequence. Those consisting of a single strand are usually folded in one of two principal topologies: antiparallel, in which all or half of the guanine stretches are antiparallel to each other, or parallel, in which all guanine stretches are parallel to each other. In the latter, all guanine nucleosides possess the anti conformation about the glycosidic bond, while in the former, half possess the anti conformation, and half possess the syn conformation. While antiparallel is the more common fold, examples of biologically important, parallel quadruplexes are becoming increasingly common. Thus, it is of interest to understand the forces that determine the quadruplex fold. Here, we examine the influence of individual nucleoside conformation on the overall folding topology by selective substitution of rG for dG. We can reverse the antiparallel fold of the thrombin binding aptamer (TBA) by this approach. Additionally, this substitution converts a unimolecular quadruplex into a bimolecular one. Similar reverse substitutions in the all-RNA analogue of TBA result in a parallel to antiparallel change in topology and alter the strand configuration from bimolecular to unimolecular. On the basis of the specific substitutions made, we conclude that the strong preference of guanine ribonucleosides for the anti conformation is the driving force for the change in topology. These results demonstrate how conformational properties of guanine nucleosides govern not only the quadruplex folding topology but also impact quadruplex molecularity and provide a means to control these properties.
Collapse
Affiliation(s)
- Chung-Fei Tang
- Department of Pharmaceutical Chemistry, School of Pharmacy and Graduate Group in Chemistry and Chemical Biology, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
45
|
Phan AT, Kuryavyi V, Luu KN, Patel DJ. Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K+ solution. Nucleic Acids Res 2007; 35:6517-25. [PMID: 17895279 PMCID: PMC2095816 DOI: 10.1093/nar/gkm706] [Citation(s) in RCA: 419] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intramolecular G-quadruplexes formed by human telomere sequences are attractive anticancer targets. Recently, four-repeat human telomere sequences have been shown to form two different intramolecular (3 + 1) G-quadruplexes in K(+) solution (Form 1 and Form 2). Here we report on the solution structures of both Form 1 and Form 2 adopted by natural human telomere sequences. Both structures contain the (3 + 1) G-tetrad core with one double-chain-reversal and two edgewise loops, but differ in the successive order of loop arrangements within the G-quadruplex scaffold. Our results provide the structural details at the two ends of the G-tetrad core in the context of natural sequences and information on different loop conformations. This structural information might be important for our understanding of telomere G-quadruplex structures and for anticancer drug design targeted to such scaffolds.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637551, Singapore
- *To whom correspondence should be addressed. +65 6514 1915+65 6794 1325 Correspondence may also be addressed to Dinshaw J. Patel. Tel:+ 1 212 639 7207+ 1 212 717 3066
| | - Vitaly Kuryavyi
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kim Ngoc Luu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA and Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
46
|
Luu KN, Phan AT, Kuryavyi V, Lacroix L, Patel DJ. Structure of the human telomere in K+ solution: an intramolecular (3 + 1) G-quadruplex scaffold. J Am Chem Soc 2007; 128:9963-70. [PMID: 16866556 PMCID: PMC4692383 DOI: 10.1021/ja062791w] [Citation(s) in RCA: 661] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present the intramolecular G-quadruplex structure of human telomeric DNA in physiologically relevant K(+) solution. This G-quadruplex, whose (3 + 1) topology differs from folds reported previously in Na(+) solution and in a K(+)-containing crystal, involves the following: one anti.syn.syn.syn and two syn.anti.anti.anti G-tetrads; one double-chain reversal and two edgewise loops; three G-tracts oriented in one direction and the fourth in the opposite direction. The topological characteristics of this (3 + 1) G-quadruplex scaffold should provide a unique platform for structure-based anticancer drug design targeted to human telomeric DNA.
Collapse
Affiliation(s)
- Kim Ngoc Luu
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Vitaly Kuryavyi
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Laurent Lacroix
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle, INSERM UR565, CNRS UMR5153, 75231 Paris Cedex 05, France
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| |
Collapse
|
47
|
Green JJ, Ladame S, Ying L, Klenerman D, Balasubramanian S. Investigating a quadruplex-ligand interaction by unfolding kinetics. J Am Chem Soc 2007; 128:9809-12. [PMID: 16866537 PMCID: PMC2196206 DOI: 10.1021/ja0615425] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have investigated the interaction of the intramolecular human telomeric DNA G-quadruplex with a hemicyanine-peptide ligand, by studying the rate of quadruplex opening with a complementary DNA oligonucleotide. By employing a minimal kinetic model, the relationship between the observed rate of quadruplex opening and the ligand concentration has enabled estimation of the dissociation constant. A van't Hoff analysis revealed the enthalpy and entropy changes of binding to be -77 +/- 22 kJ mol(-1) and -163 +/- 75 J mol(-1) K(-1), respectively. Arrhenius analyses of the rate constants of opening free and bound quadruplex gave activation energies of 118 +/- 2 and 98 +/- 10 kJ mol(-1), respectively. These results indicate that the presence of the ligand has only a small effect on the activation energy, suggesting that the unbinding of the ligand occurs after the transition state for quadruplex unfolding.
Collapse
|
48
|
Allain C, Monchaud D, Teulade-Fichou MP. FRET templated by G-quadruplex DNA: a specific ternary interaction using an original pair of donor/acceptor partners. J Am Chem Soc 2007; 128:11890-3. [PMID: 16953629 DOI: 10.1021/ja062193h] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
G-quadruplex represents a suitable scaffold for FRET (fluorescence resonance energy transfer) since its two external quartets offer two well-defined binding sites for concomitant trapping of donor/acceptor partners. Combining selective G-quadruplex binders (macrocyclic bis(quinacridine) BOQ(1) or monomeric quinacridine MMQ(1), donor) with a highly fluorescent DNA probe (thiazole orange, acceptor), we designed a structure-specific FRET-system based on an unprecedented noncovalent ternary complex. This system could be potentially usable as a signature for quadruplex-DNA conformation in solution, but also might offer a unique means for observing cation and ligand binding influence on quadruplex topology.
Collapse
Affiliation(s)
- Clémence Allain
- Laboratoire de Chimie des Interactions Moléculaires, Collège de France, CNRS UPR 285, 11 place Marcelin Berthelot, 75005 Paris, France
| | | | | |
Collapse
|
49
|
De Cian A, Lacroix L, Douarre C, Temime-Smaali N, Trentesaux C, Riou JF, Mergny JL. Targeting telomeres and telomerase. Biochimie 2007; 90:131-55. [PMID: 17822826 DOI: 10.1016/j.biochi.2007.07.011] [Citation(s) in RCA: 477] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 07/16/2007] [Indexed: 01/06/2023]
Abstract
Telomeres and telomerase represent, at least in theory, an extremely attractive target for cancer therapy. The objective of this review is to present the latest view on the mechanism(s) of action of telomerase inhibitors, with an emphasis on a specific class of telomere ligands called G-quadruplex ligands, and to discuss their potential use in oncology.
Collapse
Affiliation(s)
- Anne De Cian
- INSERM, U565, Acides nucléiques: dynamique, ciblage et fonctions biologiques, 43 rue Cuvier, CP26, Paris Cedex 05, F-75231, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Bertrand H, Bombard S, Monchaud D, Teulade-Fichou MP. A platinum–quinacridine hybrid as a G-quadruplex ligand. J Biol Inorg Chem 2007; 12:1003-14. [PMID: 17638029 DOI: 10.1007/s00775-007-0273-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 06/12/2007] [Indexed: 11/26/2022]
Abstract
A novel platinum-quinacridine hybrid, comprising a monofunctional Pt moiety and a G-quadruplex ligand (mono-para-quinacridine or MPQ), has been synthesized and shown to interact with quadruplex DNA via a dual noncovalent/covalent binding mode. Denaturing gel electrophoresis was used to separate the various platination products of 22AG (an oligonucleotide that mimics the human telomeric repeat) by Pt-MPQ, and it was shown that two platinated adducts are highly stable quadruplex structures. Dimethylsulfate/piperidine treatment and 3'-exonuclease digestion of the isolated adducts allowed us to precisely determine the platination pattern of 22AG by Pt-MPQ, which displays three main sites G2, G10 and G22. Data presented herein support the hypothesis that Pt-MPQ traps preferentially the antiparallel structure of the 22AG quadruplex. Finally, the kinetics of Pt-MPQ platination using a construct containing both quadruplex DNA and a duplex DNA parts provide the first insights into the Pt-MPQ preference for quadruplex DNA over duplex DNA.
Collapse
Affiliation(s)
- Hélène Bertrand
- Institut Curie, Section Recherche, CNRS UMR176, Centre Universitaire Paris XI, Bat. 110, 91405 Orsay, France
| | | | | | | |
Collapse
|