1
|
Pirnia A, Maqdisi R, Mittal S, Sener M, Singharoy A. Perspective on Integrative Simulations of Bioenergetic Domains. J Phys Chem B 2024; 128:3302-3319. [PMID: 38562105 DOI: 10.1021/acs.jpcb.3c07335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bioenergetic processes in cells, such as photosynthesis or respiration, integrate many time and length scales, which makes the simulation of energy conversion with a mere single level of theory impossible. Just like the myriad of experimental techniques required to examine each level of organization, an array of overlapping computational techniques is necessary to model energy conversion. Here, a perspective is presented on recent efforts for modeling bioenergetic phenomena with a focus on molecular dynamics simulations and its variants as a primary method. An overview of the various classical, quantum mechanical, enhanced sampling, coarse-grained, Brownian dynamics, and Monte Carlo methods is presented. Example applications discussed include multiscale simulations of membrane-wide electron transport, rate kinetics of ATP turnover from electrochemical gradients, and finally, integrative modeling of the chromatophore, a photosynthetic pseudo-organelle.
Collapse
Affiliation(s)
- Adam Pirnia
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| | - Ranel Maqdisi
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| | - Sumit Mittal
- VIT Bhopal University, Sehore 466114, Madhya Pradesh, India
| | - Melih Sener
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1004, United States
| |
Collapse
|
2
|
Prince RC, Dutton PL, Gunner MR. The aprotic electrochemistry of quinones. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148558. [PMID: 35413248 DOI: 10.1016/j.bbabio.2022.148558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 05/09/2023]
Abstract
Quinones play important roles in biological electron transfer reactions in almost all organisms, with specific roles in many physiological processes and chemotherapy. Quinones participate in two-electron, two-proton reactions in aqueous solution at equilibrium near neutral pH, but protons often lag behind the electron transfers. The relevant reactions in proteins are often sequential one electron redox processes without involving protons. Here we report the aprotic electrochemistry of the two half-couples, Q/Q.- and Q.-/Q=, of 11 parent quinones and 118 substituted 1,4-benzoquinones, 91 1,4-naphthoquinones, and 107 9,10-anthraquinones. The measured redox potentials are fit quite well with the Hammett para sigma (σpara) parameter. Occasional exceptions can involve important groups, such as methoxy substituents in ubiquinone and hydroxy substituents in therapeutics. These can generally be explained by reasonable conjectures involving steric clashes and internal hydrogen bonds. We also provide data for 25 other quinones, 2 double quinones and 15 non-quinones, all measured under similar conditions.
Collapse
Affiliation(s)
| | - P Leslie Dutton
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - M R Gunner
- Physics Department City College of New York in the City University of New York, NY 10031, USA.
| |
Collapse
|
3
|
Liguori N, Croce R, Marrink SJ, Thallmair S. Molecular dynamics simulations in photosynthesis. PHOTOSYNTHESIS RESEARCH 2020; 144:273-295. [PMID: 32297102 PMCID: PMC7203591 DOI: 10.1007/s11120-020-00741-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/24/2020] [Indexed: 05/12/2023]
Abstract
Photosynthesis is regulated by a dynamic interplay between proteins, enzymes, pigments, lipids, and cofactors that takes place on a large spatio-temporal scale. Molecular dynamics (MD) simulations provide a powerful toolkit to investigate dynamical processes in (bio)molecular ensembles from the (sub)picosecond to the (sub)millisecond regime and from the Å to hundreds of nm length scale. Therefore, MD is well suited to address a variety of questions arising in the field of photosynthesis research. In this review, we provide an introduction to the basic concepts of MD simulations, at atomistic and coarse-grained level of resolution. Furthermore, we discuss applications of MD simulations to model photosynthetic systems of different sizes and complexity and their connection to experimental observables. Finally, we provide a brief glance on which methods provide opportunities to capture phenomena beyond the applicability of classical MD.
Collapse
Affiliation(s)
- Nicoletta Liguori
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Roberta Croce
- Department of Physics and Astronomy and Institute for Lasers, Life and Biophotonics, Faculty of Sciences, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
4
|
Singharoy A, Maffeo C, Delgado-Magnero KH, Swainsbury DJK, Sener M, Kleinekathöfer U, Vant JW, Nguyen J, Hitchcock A, Isralewitz B, Teo I, Chandler DE, Stone JE, Phillips JC, Pogorelov TV, Mallus MI, Chipot C, Luthey-Schulten Z, Tieleman DP, Hunter CN, Tajkhorshid E, Aksimentiev A, Schulten K. Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism. Cell 2019; 179:1098-1111.e23. [PMID: 31730852 PMCID: PMC7075482 DOI: 10.1016/j.cell.2019.10.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.
Collapse
Affiliation(s)
- Abhishek Singharoy
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA.
| | - Christopher Maffeo
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karelia H Delgado-Magnero
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - John W Vant
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA
| | - Jonathan Nguyen
- School of Molecular Sciences, Center for Applied Structural Discovery, Arizona State University at Tempe, Tempe, AZ 85282, USA
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Barry Isralewitz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ivan Teo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Danielle E Chandler
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - John E Stone
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - James C Phillips
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Taras V Pogorelov
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - M Ilaria Mallus
- Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany
| | - Christophe Chipot
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Laboratoire International Associé CNRS-UIUC, UMR 7019, Université de Lorraine, 54506 Vandœuvre-lès-Nancy, France
| | - Zaida Luthey-Schulten
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - D Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Departments of Biochemistry, Chemistry, Bioengineering, and Pharmacology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Aleksei Aksimentiev
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Klaus Schulten
- Department of Physics, NSF Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Zhang X, Gunner MR. Affinity and activity of non-native quinones at the Q(B) site of bacterial photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2014; 120:181-96. [PMID: 23715773 PMCID: PMC4442677 DOI: 10.1007/s11120-013-9850-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/08/2013] [Indexed: 05/11/2023]
Abstract
Purple, photosynthetic reaction centers from Rhodobacter sphaeroides bacteria use ubiquinone (UQ10) as both primary (Q(A)) and secondary (Q(B)) electron acceptors. Many quinones reconstitute Q(A) function, while a few will act as Q(B). Nine quinones were tested for their ability to bind and reconstitute Q(A) and Q(B) functions. Only ubiquinone (UQ) reconstitutes both functions in the same protein. The affinities of the non-native quinones for the Q(B) site were determined by a competitive inhibition assay. The affinities of benzoquinones, naphthoquinone (NQ), and 2-methyl-NQ for the Q(B) site are 7 ± 3 times weaker than that at Q(A) site. However, di-ortho-substituted NQs and anthraquinone bind tightly to the Q(A) site (K d ≤ 200 nM), and ≥1,000 times more weakly to the Q(B) site, perhaps setting a limit on the size of the site. With a low-potential electron donor, 2-methyl, 3-dimethylamino-1,4-NQ, (Me-diMeAm-NQ) at Q(A), Q(B) reduction is 260 meV, more favorable than with UQ as Q(A). Electron transfer from Me-diMeAm-NQ at the Q(A) site to NQ at the Q(B) site can be detected. In the Q(B) site, the NQ semiquinone is estimated to be ≈60-100 meV higher in energy than the UQ semiquinone, while in the Q(A) site, the semiquinone energy level is similar or lower with NQ than with UQ. Thus, the NQ semiquinone is more stable in the Q(A) than in the Q(B) site. In contrast, the native UQ semiquinone is ≈60 meV lower in energy in the Q(B) than in the Q(A) site, stabilizing forward electron transfer from Q(A) to Q(B).
Collapse
Affiliation(s)
| | - M. R. Gunner
- To whom correspondence should be addressed. Telephone: 212-650-5557. Fax: 212-650-6940
| |
Collapse
|
6
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
7
|
Madeo J, Zubair A, Marianne F. A review on the role of quinones in renal disorders. SPRINGERPLUS 2013; 2:139. [PMID: 23577302 PMCID: PMC3618882 DOI: 10.1186/2193-1801-2-139] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/10/2013] [Indexed: 12/12/2022]
Abstract
Quinones are electron and proton carriers that play a primary role in the aerobic metabolism of virtually every cell in nature. Most physiological quinones are benzoquinones. They undergo highly regulated redox reactions in the mitochondria, Golgi apparatus, plasma membrane and endoplasmic reticulum. Important consequences of these electron transfer reactions are the production of and protection against reactive oxygen species (ROS). Quinones have been extensively studied for both their cytotoxic as well as cellular protective properties and they have been particularly useful in rational drug design. The role of quinones in medicine is explored in this literature review with a particular focus on renal diseases. Due to their high basal metabolism and detoxification role, the kidneys are particularly sensitive to oxidative stress. Regardless of the underlying etiology, ROS plays an important role in both acute kidney injury (AKI) and chronic kidney diseases (CKD). Depending on the oxidative state of the kidney, quinones can be nephrotoxoic or nephro-protective. Many factors play a role in the interaction between quinones and the kidney and the consequences of this are just beginning to be explored.
Collapse
Affiliation(s)
- Jennifer Madeo
- Department of Medicine, Nassau University Medical Center, 2201 Hempstead Turnpike, East Meadow, NY 11554 USA
| | | | | |
Collapse
|
8
|
Dikanov SA. Resolving protein-semiquinone interactions by two-dimensional ESEEM spectroscopy. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S. A. Dikanov
- University of Illinois at Urbana-Champaign, Department of Veterinary Clinical Medicine 190 MSB, 506 S. Mathews Ave., Urbana IL 61801 USA
| |
Collapse
|
9
|
Madeo J, Mihajlovic M, Lazaridis T, Gunner MR. Slow dissociation of a charged ligand: analysis of the primary quinone Q(A) site of photosynthetic bacterial reaction centers. J Am Chem Soc 2011; 133:17375-85. [PMID: 21863833 PMCID: PMC3202297 DOI: 10.1021/ja205811f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 12/14/2022]
Abstract
Reaction centers (RCs) are integral membrane proteins that undergo a series of electron transfer reactions during the process of photosynthesis. In the Q(A) site of RCs from Rhodobacter sphaeroides, ubiquinone-10 is reduced, by a single electron transfer, to its semiquinone. The neutral quinone and anionic semiquinone have similar affinities, which is required for correct in situ reaction thermodynamics. A previous study showed that despite similar affinities, anionic quinones associate and dissociate from the Q(A) site at rates ≈10(4) times slower than neutral quinones indicating that anionic quinones encounter larger binding barriers (Madeo, J.; Gunner, M. R. Modeling binding kinetics at the Q(A) site in bacterial reaction centers. Biochemistry 2005, 44, 10994-11004). The present study investigates these barriers computationally, using steered molecular dynamics (SMD) to model the unbinding of neutral ground state ubiquinone (UQ) and its reduced anionic semiquinone (SQ(-)) from the Q(A) site. In agreement with experiment, the SMD unbinding barrier for SQ(-) is larger than for UQ. Multi Conformational Continuum Electrostatics (MCCE), used here to calculate the binding energy, shows that SQ(-) and UQ have comparable affinities. In the Q(A) site, there are stronger binding interactions for SQ(-) compared to UQ, especially electrostatic attraction to a bound non-heme Fe(2+). These interactions compensate for the higher SQ(-) desolvation penalty, allowing both redox states to have similar affinities. These additional interactions also increase the dissociation barrier for SQ(-) relative to UQ. Thus, the slower SQ(-) dissociation rate is a direct physical consequence of the additional binding interactions required to achieve a Q(A) site affinity similar to that of UQ. By a similar mechanism, the slower association rate is caused by stronger interactions between SQ(-) and the polar solvent. Thus, stronger interactions for both the unbound and bound states of charged and highly polar ligands can slow their binding kinetics without a conformational gate. Implications of this for other systems are discussed.
Collapse
Affiliation(s)
- Jennifer Madeo
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Maja Mihajlovic
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Themis Lazaridis
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - M. R. Gunner
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| |
Collapse
|
10
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Gunner MR, Madeo J, Zhu Z. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers. J Bioenerg Biomembr 2008; 40:509-19. [PMID: 18979192 DOI: 10.1007/s10863-008-9179-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/31/2008] [Indexed: 11/29/2022]
Abstract
Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc(1) oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the Q(A) and Q(B) sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary Q(A) site ubiquinone is reduced only to the anionic semiquinone (Q(*-)) while in the secondary Q(B) site the product is the doubly reduced, doubly protonated quinol (QH(2)). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q(*-) while destabilizing Q(=) relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department, The City College of New York, New York, NY 10031, USA.
| | | | | |
Collapse
|
12
|
Gunner MR, Mao J, Song Y, Kim J. Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:942-68. [PMID: 16905113 PMCID: PMC2760439 DOI: 10.1016/j.bbabio.2006.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/15/2022]
Abstract
A protein structure should provide the information needed to understand its observed properties. Significant progress has been made in developing accurate calculations of acid/base and oxidation/reduction reactions in proteins. Current methods and their strengths and weaknesses are discussed. The distribution and calculated ionization states in a survey of proteins is described, showing that a significant minority of acidic and basic residues are buried in the protein and that most of these remain ionized. The electrochemistry of heme and quinones are considered. Proton transfers in bacteriorhodopsin and coupled electron and proton transfers in photosynthetic reaction centers, 5-coordinate heme binding proteins and cytochrome c oxidase are highlighted as systems where calculations have provided insight into the reaction mechanism.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
13
|
Shinkarev VP. Ubiquinone (coenzyme Q10) binding sites: Low dielectric constant of the gate prevents the escape of the semiquinone. FEBS Lett 2006; 580:2534-9. [PMID: 16647706 DOI: 10.1016/j.febslet.2006.04.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Accepted: 04/06/2006] [Indexed: 11/30/2022]
Abstract
The photosynthetic reaction center (RC) from purple bacteria is frequently used as a model for the interaction of ubiquinones (coenzyme Q) with membrane proteins. Single-turnover flash activation of RC leads to formation of the semiquinone (SQ) of the secondary acceptor quinone after odd flashes and quinol after even flashes. The ubiquinol escapes the binding site in 1 ms, while the SQ does not leave the binding site for at least 5 min. Observed difference between these times suggests a large energetic barrier for the SQ. However, high apparent dielectric constant in the vicinity of the quinone ring (>or=25) results in a relatively small electrostatic energy of SQ stabilization. To resolve this apparent contradiction I suggest that a significant part of the kinetic stabilization of the SQ is achieved by the special topology of the binding site in which quinone can exit the binding site only by moving its headgroup toward the center of the membrane. The large energetic penalty of transferring the charged headgroup to the membrane dielectric can explain the observed kinetic stability of the SQ.
Collapse
Affiliation(s)
- V P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 156 Davenport Hall, 607 South Mathews Avenue, Urbana, 61801, USA.
| |
Collapse
|