1
|
Hustedt EJ, Stein RA, Mchaourab HS. Protein functional dynamics from the rigorous global analysis of DEER data: Conditions, components, and conformations. J Gen Physiol 2021; 153:212643. [PMID: 34529007 PMCID: PMC8449309 DOI: 10.1085/jgp.201711954] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/30/2021] [Indexed: 01/03/2023] Open
Abstract
The potential of spin labeling to reveal the dynamic dimension of macromolecules has been recognized since the dawn of the methodology in the 1960s. However, it was the development of pulsed electron paramagnetic resonance spectroscopy to detect dipolar coupling between spin labels and the availability of turnkey instrumentation in the 21st century that realized the full promise of spin labeling. Double electron-electron resonance (DEER) spectroscopy has seen widespread applications to channels, transporters, and receptors. In these studies, distance distributions between pairs of spin labels obtained under different biochemical conditions report the conformational states of macromolecules, illuminating the key movements underlying biological function. These experimental studies have spurred the development of methods for the rigorous analysis of DEER spectroscopic data along with methods for integrating these distributions into structural models. In this tutorial, we describe a model-based approach to obtaining a minimum set of components of the distance distribution that correspond to functionally relevant protein conformations with a set of fractional amplitudes that define the equilibrium between these conformations. Importantly, we review and elaborate on the error analysis reflecting the uncertainty in the various parameters, a critical step in rigorous structural interpretation of the spectroscopic data.
Collapse
Affiliation(s)
- Eric J Hustedt
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Richard A Stein
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Hassane S Mchaourab
- Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
2
|
Jennings ML. Cell Physiology and Molecular Mechanism of Anion Transport by Erythrocyte Band 3/AE1. Am J Physiol Cell Physiol 2021; 321:C1028-C1059. [PMID: 34669510 PMCID: PMC8714990 DOI: 10.1152/ajpcell.00275.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The major transmembrane protein of the red blood cell, known as band 3, AE1, and SLC4A1, has two main functions: 1) catalysis of Cl-/HCO3- exchange, one of the steps in CO2 excretion; 2) anchoring the membrane skeleton. This review summarizes the 150 year history of research on red cell anion transport and band 3 as an experimental system for studying membrane protein structure and ion transport mechanisms. Important early findings were that red cell Cl- transport is a tightly coupled 1:1 exchange and band 3 is labeled by stilbenesulfonate derivatives that inhibit anion transport. Biochemical studies showed that the protein is dimeric or tetrameric (paired dimers) and that there is one stilbenedisulfonate binding site per subunit of the dimer. Transport kinetics and inhibitor characteristics supported the idea that the transporter acts by an alternating access mechanism with intrinsic asymmetry. The sequence of band 3 cDNA provided a framework for detailed study of protein topology and amino acid residues important for transport. The identification of genetic variants produced insights into the roles of band 3 in red cell abnormalities and distal renal tubular acidosis. The publication of the membrane domain crystal structure made it possible to propose concrete molecular models of transport. Future research directions include improving our understanding of the transport mechanism at the molecular level and of the integrative relationships among band 3, hemoglobin, carbonic anhydrase, and gradients (both transmembrane and subcellular) of HCO3-, Cl-, O2, CO2, pH, and NO metabolites during pulmonary and systemic capillary gas exchange.
Collapse
Affiliation(s)
- Michael L Jennings
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States
| |
Collapse
|
3
|
Del Alamo D, Tessmer MH, Stein RA, Feix JB, Mchaourab HS, Meiler J. Rapid Simulation of Unprocessed DEER Decay Data for Protein Fold Prediction. Biophys J 2020; 118:366-375. [PMID: 31892409 PMCID: PMC6976798 DOI: 10.1016/j.bpj.2019.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/13/2019] [Accepted: 12/04/2019] [Indexed: 01/02/2023] Open
Abstract
Despite advances in sampling and scoring strategies, Monte Carlo modeling methods still struggle to accurately predict de novo the structures of large proteins, membrane proteins, or proteins of complex topologies. Previous approaches have addressed these shortcomings by leveraging sparse distance data gathered using site-directed spin labeling and electron paramagnetic resonance spectroscopy to improve protein structure prediction and refinement outcomes. However, existing computational implementations entail compromises between coarse-grained models of the spin label that lower the resolution and explicit models that lead to resource-intense simulations. These methods are further limited by their reliance on distance distributions, which are calculated from a primary refocused echo decay signal and contain uncertainties that may require manual refinement. Here, we addressed these challenges by developing RosettaDEER, a scoring method within the Rosetta software suite capable of simulating double electron-electron resonance spectroscopy decay traces and distance distributions between spin labels fast enough to fold proteins de novo. We demonstrate that the accuracy of resulting distance distributions match or exceed those generated by more computationally intensive methods. Moreover, decay traces generated from these distributions recapitulate intermolecular background coupling parameters even when the time window of data collection is truncated. As a result, RosettaDEER can discriminate between poorly folded and native-like models by using decay traces that cannot be accurately converted into distance distributions using regularized fitting approaches. Finally, using two challenging test cases, we demonstrate that RosettaDEER leverages these experimental data for protein fold prediction more effectively than previous methods. These benchmarking results confirm that RosettaDEER can effectively leverage sparse experimental data for a wide array of modeling applications built into the Rosetta software suite.
Collapse
Affiliation(s)
- Diego Del Alamo
- Department of Chemistry and Center for Structural Biology; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | | | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Jimmy B Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Hassane S Mchaourab
- Department of Chemistry and Center for Structural Biology; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology; Institut for Drug Discovery, Leipzig University, Leipzig, Germany.
| |
Collapse
|
4
|
CW EPR and DEER Methods to Determine BCL-2 Family Protein Structure and Interactions: Application of Site-Directed Spin Labeling to BAK Apoptotic Pores. Methods Mol Biol 2018. [PMID: 30536012 DOI: 10.1007/978-1-4939-8861-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The continuous wave (CW) and pulse electron paramagnetic resonance (EPR) methods enable the measurement of distances between spin-labeled residues in biopolymers including proteins, providing structural information. Here we describe the CW EPR deconvolution/convolution method and the four-pulse double electron-electron resonance (DEER) approach for distance determination, which were applied to elucidate the organization of the BAK apoptotic pores formed in the lipid bilayers.
Collapse
|
5
|
Voskoboynikova N, Mosslehy W, Colbasevici A, Ismagulova TT, Bagrov DV, Akovantseva AA, Timashev PS, Mulkidjanian AY, Bagratashvili VN, Shaitan KV, Kirpichnikov MP, Steinhoff HJ. Characterization of an archaeal photoreceptor/transducer complex from Natronomonas pharaonis assembled within styrene–maleic acid lipid particles. RSC Adv 2017. [DOI: 10.1039/c7ra10756k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The archaeal receptor/transducer complex NpSRII/NpHtrII retains its integrity upon reconstitution in styrene–maleic acid lipid particles.
Collapse
Affiliation(s)
| | - W. Mosslehy
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| | - A. Colbasevici
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| | - T. T. Ismagulova
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - D. V. Bagrov
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - A. A. Akovantseva
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
- Russia
| | - P. S. Timashev
- Institute for Regenerative Medicine of I. M. Sechenov First Moscow State Medical University
- Moscow
- Russia
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
| | | | - V. N. Bagratashvili
- Institute of Photonic Technologies of Research Center “Crystallography and Photonics” of RAS
- Moscow
- Russia
| | - K. V. Shaitan
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - M. P. Kirpichnikov
- Department of Bioengineering
- Faculty of Biology
- Lomonosov Moscow State University
- Moscow
- Russia
| | - H.-J. Steinhoff
- Department of Physics
- University of Osnabrück
- Osnabrück
- Germany
| |
Collapse
|
6
|
Stein RA, Beth AH, Hustedt EJ. A Straightforward Approach to the Analysis of Double Electron-Electron Resonance Data. Methods Enzymol 2015; 563:531-67. [PMID: 26478498 PMCID: PMC5231402 DOI: 10.1016/bs.mie.2015.07.031] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Double electron-electron resonance (DEER) is now widely utilized to measure distance distributions in the 20-70Å range. DEER is frequently applied to biological systems that have multiple conformational states leading to complex distance distributions. These complex distributions raise issues regarding the best approach to analyze DEER data. A widely used method utilizes a priori background correction followed by Tikhonov regularization. Unfortunately, the underlying assumptions of this approach can impact the analysis. In this chapter, a method of analyzing DEER data is presented that is ideally suited to obtain these complex distance distributions. The approach allows the fitting of raw experimental data without a priori background correction as well as the rigorous determination of uncertainties for all fitting parameters. This same methodological approach can be used for the simultaneous or global analysis of multiple DEER data sets using variable ratios of a common set of components, thus allowing direct correlation of distance components with functionally relevant conformational and biochemical states. Examples are given throughout to highlight this robust fitting approach.
Collapse
Affiliation(s)
- Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Albert H Beth
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Eric J Hustedt
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
7
|
CW-EPR studies revealed different motional properties and oligomeric states of the integrin β1a transmembrane domain in detergent micelles or liposomes. Sci Rep 2015; 5:7848. [PMID: 25597475 PMCID: PMC4297981 DOI: 10.1038/srep07848] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2014] [Indexed: 12/15/2022] Open
Abstract
Integrins are heterodimeric membrane proteins that regulate essential processes: cell migration, cell growth, extracellular matrix assembly and tumor metastasis. Each integrin α or β subunit contains a large extracellular domain, a single transmembrane (TM) domain, and a short cytoplasmic tail. The integrin TM domains are important for heterodimeric association and dissociation during the conversion from inactive to active states. Moreover, integrin clustering occurs by homo-oligomeric interactions between the TM helices. Here, the transmembrane and cytoplasmic (TMC) domains of integrin β1a were overexpressed, and the protein was purified in detergent micelles and/or reconstituted in liposomes. To investigate the TM domain conformational properties of integrin β1a, 26 consecutive single cysteine mutants were generated for site-directed spin labeling and continuous-wave electron paramagnetic resonance (CW-EPR) mobility and accessibility analyses. The mobility analysis identified two integrin β1a-TM regions with different motional properties in micelles and a non-continuous integrin β1a-TM helix with high immobility in liposomes. The accessibility analysis verified the TM range (Val737-Lys752) of the integrin β1a-TMC in micelles. Further mobility and accessibility comparisons of the integrin β1a-TMC domains in micelles or liposomes identified distinctively different oligomeric states of integrin β1a-TM, namely a monomer embedded in detergent micelles and leucine-zipper-like homo-oligomeric clusters in liposomes.
Collapse
|
8
|
Edwards SJ, Moth CW, Kim S, Brandon S, Zhou Z, Cobb CE, Hustedt EJ, Beth AH, Smith JA, Lybrand TP. Automated structure refinement for a protein heterodimer complex using limited EPR spectroscopic data and a rigid-body docking algorithm: a three-dimensional model for an ankyrin-CDB3 complex. J Phys Chem B 2014; 118:4717-26. [PMID: 24758720 PMCID: PMC4018176 DOI: 10.1021/jp4099705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
We report here specialized functions
incorporated recently in the
rigid-body docking software toolkit TagDock to utilize electron paramagnetic
resonance derived (EPR-derived) interresidue distance measurements
and spin-label accessibility data. The TagDock package extensions
include a custom methanethiosulfonate spin label rotamer library to
enable explicit, all-atom spin-label side-chain modeling and scripts
to evaluate spin-label surface accessibility. These software enhancements
enable us to better utilize the biophysical data routinely available
from various spin-labeling experiments. To illustrate the power and
utility of these tools, we report the refinement of an ankyrin:CDB3
complex model that exhibits much improved agreement with the EPR distance
measurements, compared to model structures published previously.
Collapse
Affiliation(s)
- Sarah J Edwards
- Department of Chemistry, ‡Department of Molecular Physiology & Biophysics, §Department of Biochemistry, ∥Department of Pharmacology, ⊥Center for Structural Biology, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Giannoulis A, Ward R, Branigan E, Naismith JH, Bode BE. PELDOR in rotationally symmetric homo-oligomers. Mol Phys 2013; 111:2845-2854. [PMID: 24954956 PMCID: PMC4056887 DOI: 10.1080/00268976.2013.798697] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/12/2013] [Indexed: 12/24/2022]
Abstract
Nanometre distance measurements by pulsed electron-electron double resonance (PELDOR) spectroscopy have become an increasingly important tool in structural biology. The theoretical underpinning of the experiment is well defined for systems containing two nitroxide spin-labels (spin pairs); however, recently experiments have been reported on homo-oligomeric membrane proteins consisting of up to eight spin-labelled monomers. We have explored the theory behind these systems by examining model systems based on multiple spins arranged in rotationally symmetric polygons. The results demonstrate that with a rising number of spins within the test molecule, increasingly strong distortions appear in distance distributions obtained from an analysis based on the simple spin pair approach. These distortions are significant over a range of system sizes and remain so even when random errors are introduced into the symmetry of the model. We present an alternative approach to the extraction of distances on such systems based on a minimisation that properly treats multi-spin correlations. We demonstrate the utility of this approach on a spin-labelled mutant of the heptameric Mechanosensitive Channel of Small Conductance of E. coli.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Richard Ward
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Emma Branigan
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - James H. Naismith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| |
Collapse
|
10
|
Smith JA, Edwards SJ, Moth CW, Lybrand TP. TagDock: an efficient rigid body docking algorithm for oligomeric protein complex model construction and experiment planning. Biochemistry 2013; 52:5577-84. [PMID: 23875708 DOI: 10.1021/bi400158k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here new computational tools and strategies to efficiently generate three-dimensional models for oligomeric biomolecular complexes in cases where there is limited experimental restraint data to guide the docking calculations. Our computational tools are designed to rapidly and exhaustively enumerate all geometrically possible docking poses for an oligomeric complex, rather than generate detailed, atomic-resolution models. Experimental data, such as interatomic distance measurements, are then used to select and refine docking poses that are consistent with the experimental restraints. Our computational toolkit is designed for use with sparse data sets to generate intermediate-resolution docking models, and utilizes distance difference matrix analysis to identify further restraint measurements that will provide maximum additional structural refinement. Thus, these tools can be used to help plan optimal residue positions for probe incorporation in labor-intensive biophysical experiments such as chemical cross-linking, electron paramagnetic resonance, or Förster resonance energy transfer spectroscopy studies. We present benchmark results for docking the collection of all 176 heterodimer protein complexes from the ZDOCK database, as well as a protein homodimer with recently collected experimental distance restraints, to illustrate the toolkit's capabilities and performance, and to demonstrate how distance difference matrix analysis can automatically identify and prioritize additional restraint measurements that allow us to rapidly optimize docking poses.
Collapse
Affiliation(s)
- Jarrod A Smith
- Department of Biochemistry, Vanderbilt University, Box 351822, Nashville, TN 37235-1822, USA
| | | | | | | |
Collapse
|
11
|
Jeschke G. Conformational dynamics and distribution of nitroxide spin labels. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 72:42-60. [PMID: 23731861 DOI: 10.1016/j.pnmrs.2013.03.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 06/02/2023]
Abstract
Long-range distance measurements based on paramagnetic relaxation enhancement (PRE) in NMR, quantification of surface water dynamics near biomacromolecules by Overhauser dynamic nuclear polarization (DNP) and sensitivity enhancement by solid-state DNP all depend on introducing paramagnetic species into an otherwise diamagnetic NMR sample. The species can be introduced by site-directed spin labeling, which offers precise control for positioning the label in the sequence of a biopolymer. However, internal flexibility of the spin label gives rise to dynamic processes that potentially influence PRE and DNP behavior and leads to a spatial distribution of the electron spin even in solid samples. Internal dynamics of spin labels and their static conformational distributions have been studied mainly by electron paramagnetic resonance spectroscopy and molecular dynamics simulations, with a large body of results for the most widely applied methanethiosulfonate spin label MTSL. These results are critically discussed in a unifying picture based on rotameric states of the group that carries the spin label. Deficiencies in our current understanding of dynamics and conformations of spin labeled groups and of their influence on NMR observables are highlighted and directions for further research suggested.
Collapse
Affiliation(s)
- Gunnar Jeschke
- ETH Zürich, Laboratory Physical Chemistry, Zürich, Switzerland.
| |
Collapse
|
12
|
Hagelueken G, Abdullin D, Ward R, Schiemann O. mtsslSuite: In silico spin labelling, trilateration and distance-constrained rigid body docking in PyMOL. Mol Phys 2013; 111:2757-2766. [PMID: 24954955 PMCID: PMC4056886 DOI: 10.1080/00268976.2013.809804] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/18/2013] [Indexed: 01/07/2023]
Abstract
Nanometer distance measurements based on electron paramagnetic resonance methods in combination with site-directed spin labelling are powerful tools for the structural analysis of macromolecules. The software package mtsslSuite provides scientists with a set of tools for the translation of experimental distance distributions into structural information. The package is based on the previously published mtsslWizard software for in silico spin labelling. The mtsslSuite includes a new version of MtsslWizard that has improved performance and now includes additional types of spin labels. Moreover, it contains applications for the trilateration of paramagnetic centres in biomolecules and for rigid-body docking of subdomains of macromolecular complexes. The mtsslSuite is tested on a number of challenging test cases and its strengths and weaknesses are evaluated.
Collapse
Affiliation(s)
- Gregor Hagelueken
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Richard Ward
- Biomedical Sciences Research Complex, The University of St. Andrews, Fife, UK
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Bonn, Germany ; Biomedical Sciences Research Complex, The University of St. Andrews, Fife, UK
| |
Collapse
|
13
|
Otsu W, Kurooka T, Otsuka Y, Sato K, Inaba M. A new class of endoplasmic reticulum export signal PhiXPhiXPhi for transmembrane proteins and its selective interaction with Sec24C. J Biol Chem 2013; 288:18521-32. [PMID: 23658022 DOI: 10.1074/jbc.m112.443325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein export from the endoplasmic reticulum (ER) depends on the interaction between a signal motif on the cargo and a cargo recognition site on the coatomer protein complex II. A hydrophobic sequence in the N terminus of the bovine anion exchanger 1 (AE1) anion exchanger facilitated the ER export of human AE1Δ11, an ER-retained AE1 mutant, through interaction with a specific Sec24 isoform. The cell surface expression and N-glycan processing of various substitution mutants or chimeras of human and bovine AE1 proteins and their Δ11 mutants in HEK293 cells were examined. The N-terminal sequence (V/L/F)X(I/L)X(M/L), (26)VSIPM(30) in bovine AE1, which is comparable with ΦXΦXΦ, acted as the ER export signal for AE1 and AE1Δ11 (Φ is a hydrophobic amino acid, and X is any amino acid). The AE1-Ly49E chimeric protein possessing the ΦXΦXΦ motif exhibited effective cell surface expression and N-glycan maturation via the coatomer protein complex II pathway, whereas a chimera lacking this motif was retained in the ER. A synthetic polypeptide containing the N terminus of bovine AE1 bound the Sec23A-Sec24C complex through a selective interaction with Sec24C. Co-transfection of Sec24C-AAA, in which the residues (895)LIL(897) (the binding site for another ER export signal motif IXM on Sec24C and Sec24D) were mutated to (895)AAA(897), specifically increased ER retention of the AE1-Ly49E chimera. These findings demonstrate that the ΦXΦXΦ sequence functions as a novel signal motif for the ER export of cargo proteins through an exclusive interaction with Sec24C.
Collapse
Affiliation(s)
- Wataru Otsu
- Laboratory of Molecular Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|
14
|
Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol Rev 2013; 93:803-959. [PMID: 23589833 PMCID: PMC3768104 DOI: 10.1152/physrev.00023.2012] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mammalian Slc4 (Solute carrier 4) family of transporters is a functionally diverse group of 10 multi-spanning membrane proteins that includes three Cl-HCO3 exchangers (AE1-3), five Na(+)-coupled HCO3(-) transporters (NCBTs), and two other unusual members (AE4, BTR1). In this review, we mainly focus on the five mammalian NCBTs-NBCe1, NBCe2, NBCn1, NDCBE, and NBCn2. Each plays a specialized role in maintaining intracellular pH and, by contributing to the movement of HCO3(-) across epithelia, in maintaining whole-body pH and otherwise contributing to epithelial transport. Disruptions involving NCBT genes are linked to blindness, deafness, proximal renal tubular acidosis, mental retardation, and epilepsy. We also review AE1-3, AE4, and BTR1, addressing their relevance to the study of NCBTs. This review draws together recent advances in our understanding of the phylogenetic origins and physiological relevance of NCBTs and their progenitors. Underlying these advances is progress in such diverse disciplines as physiology, molecular biology, genetics, immunocytochemistry, proteomics, and structural biology. This review highlights the key similarities and differences between individual NCBTs and the genes that encode them and also clarifies the sometimes confusing NCBT nomenclature.
Collapse
Affiliation(s)
- Mark D Parker
- Dept. of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106-4970, USA.
| | | |
Collapse
|
15
|
Jiang J, Magilnick N, Tsirulnikov K, Abuladze N, Atanasov I, Ge P, Narla M, Pushkin A, Zhou ZH, Kurtz I. Single particle electron microscopy analysis of the bovine anion exchanger 1 reveals a flexible linker connecting the cytoplasmic and membrane domains. PLoS One 2013; 8:e55408. [PMID: 23393575 PMCID: PMC3564912 DOI: 10.1371/journal.pone.0055408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 12/21/2012] [Indexed: 11/18/2022] Open
Abstract
Anion exchanger 1 (AE1) is the major erythrocyte membrane protein that mediates chloride/bicarbonate exchange across the erythrocyte membrane facilitating CO₂ transport by the blood, and anchors the plasma membrane to the spectrin-based cytoskeleton. This multi-protein cytoskeletal complex plays an important role in erythrocyte elasticity and membrane stability. An in-frame AE1 deletion of nine amino acids in the cytoplasmic domain in a proximity to the membrane domain results in a marked increase in membrane rigidity and ovalocytic red cells in the disease Southeast Asian Ovalocytosis (SAO). We hypothesized that AE1 has a flexible region connecting the cytoplasmic and membrane domains, which is partially deleted in SAO, thus causing the loss of erythrocyte elasticity. To explore this hypothesis, we developed a new non-denaturing method of AE1 purification from bovine erythrocyte membranes. A three-dimensional (3D) structure of bovine AE1 at 2.4 nm resolution was obtained by negative staining electron microscopy, orthogonal tilt reconstruction and single particle analysis. The cytoplasmic and membrane domains are connected by two parallel linkers. Image classification demonstrated substantial flexibility in the linker region. We propose a mechanism whereby flexibility of the linker region plays a critical role in regulating red cell elasticity.
Collapse
Affiliation(s)
- Jiansen Jiang
- Department of Microbiology, Immunology and Molecular Genetics, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Structural Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nathaniel Magilnick
- Department of Medicine, D. Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Kirill Tsirulnikov
- Department of Medicine, D. Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Natalia Abuladze
- Department of Medicine, D. Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Ivo Atanasov
- Department of Microbiology, Immunology and Molecular Genetics, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Peng Ge
- Department of Microbiology, Immunology and Molecular Genetics, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Mohandas Narla
- New York Blood Centre, New York, New York, United States of America
| | - Alexander Pushkin
- Department of Medicine, D. Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IK); (ZHZ); (AP)
| | - Z. Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Structural Computational Biology and Molecular Biophysics Program, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (IK); (ZHZ); (AP)
| | - Ira Kurtz
- Department of Medicine, D. Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail: (IK); (ZHZ); (AP)
| |
Collapse
|
16
|
Matte A, Bertoldi M, Mohandas N, An X, Bugatti A, Brunati AM, Rusnati M, Tibaldi E, Siciliano A, Turrini F, Perrotta S, De Franceschi L. Membrane association of peroxiredoxin-2 in red cells is mediated by the N-terminal cytoplasmic domain of band 3. Free Radic Biol Med 2013; 55:27-35. [PMID: 23123411 DOI: 10.1016/j.freeradbiomed.2012.10.543] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/11/2012] [Accepted: 10/12/2012] [Indexed: 01/31/2023]
Abstract
Band 3 (B3), the anion transporter, is an integral membrane protein that plays a key structural role by anchoring the plasma membrane to the spectrin-based membrane skeleton in the red cell. In addition, it also plays a critical role in the assembly of glycolytic enzymes to regulate red cell metabolism. However, its ability to recruit proteins that can prevent membrane oxidation has not been previously explored. In this study, using a variety of experimental approaches including cross-linking studies, fluorescence and dichroic measurements, surface plasmon resonance analysis, and proteolytic digestion assays, we document that the antioxidant protein peroxiredoxin-2 (PRDX2), the third most abundant cytoplasmic protein in RBCs, interacts with the cytoplasmic domain of B3. The surface electrostatic potential analysis and stoichiometry measurements revealed that the N-terminal peptide of B3 is involved in the interaction. PRDX2 underwent a conformational change upon its binding to B3 without losing its peroxidase activity. Hemichrome formation induced by phenylhydrazine of RBCs prevented membrane association of PRDX2, implying overlapping binding sites. Documentation of the absence of binding of PRDX2 to B3 Neapolis red cell membranes, in which the initial N-terminal 11 amino acids are deleted, enabled us to conclude that PRDX2 binds to the N-terminal cytoplasmic domain of B3 and that the first 11 amino acids of this domain are crucial for PRDX2 membrane association in intact RBCs. These findings imply yet another important role for B3 in regulating red cell membrane function.
Collapse
Affiliation(s)
- Alessandro Matte
- Section of Internal Medicine, Department of Medicine,University of Verona, 37134 Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Borbat PP, Freed JH. Pulse Dipolar Electron Spin Resonance: Distance Measurements. STRUCTURAL INFORMATION FROM SPIN-LABELS AND INTRINSIC PARAMAGNETIC CENTRES IN THE BIOSCIENCES 2013. [DOI: 10.1007/430_2012_82] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Dixit M, Kim S, Matthews GF, Erreger K, Galli A, Cobb CE, Hustedt EJ, Beth AH. Structural arrangement of the intracellular Ca2+ binding domains of the cardiac Na+/Ca2+ exchanger (NCX1.1): effects of Ca2+ binding. J Biol Chem 2012; 288:4194-207. [PMID: 23233681 DOI: 10.1074/jbc.m112.423293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac Na(+)/Ca(2+) exchanger (NCX1.1) serves as the primary means of Ca(2+) extrusion across the plasma membrane of cardiomyocytes after the rise in intracellular Ca(2+) during contraction. The exchanger is regulated by binding of Ca(2+) to its intracellular domain, which contains two structurally homologous Ca(2+) binding domains denoted as CBD1 and CBD2. NMR and x-ray crystallographic studies have provided structures for the isolated CBD1 and CBD2 domains and have shown how Ca(2+) binding affects their structures and motional dynamics. However, structural information on the entire Ca(2+) binding domain, denoted CBD12, and how binding of Ca(2+) alters its structure and dynamics is more limited. Site-directed spin labeling has been employed in this work to address these questions. Electron paramagnetic resonance measurements on singly labeled constructs of CBD12 have identified the regions that undergo changes in dynamics as a result of Ca(2+) binding. Double electron-electron resonance (DEER) measurements on doubly labeled constructs of CBD12 have shown that the β-sandwich regions of the CBD1 and CBD2 domains are largely insensitive to Ca(2+) binding and that these two domains are widely separated at their N and C termini. Interdomain distances measured by DEER have been employed to construct structural models for CBD12 in the presence and absence of Ca(2+). These models show that there is not a major change in the relative orientation of the two Ca(2+) binding domains as a result of Ca(2+) binding in the NCX1.1 isoform. Additional measurements have shown that there are significant changes in the dynamics of the F-G loop region of CBD2 that merit further characterization with regard to their possible involvement in regulation of NCX1.1 activity.
Collapse
Affiliation(s)
- Mrinalini Dixit
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Grey JL, Kodippili GC, Simon K, Low PS. Identification of contact sites between ankyrin and band 3 in the human erythrocyte membrane. Biochemistry 2012; 51:6838-46. [PMID: 22861190 DOI: 10.1021/bi300693k] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The red cell membrane is stabilized by a spectrin/actin-based cortical cytoskeleton connected to the phospholipid bilayer via multiple protein bridges. By virtue of its interaction with ankyrin and adducin, the anion transporter, band 3 (AE1), contributes prominently to these bridges. In a previous study, we demonstrated that an exposed loop comprising residues 175-185 of the cytoplasmic domain of band 3 (cdB3) constitutes a critical docking site for ankyrin on band 3. In this paper, we demonstrate that an adjacent loop, comprising residues 63-73 of cdB3, is also essential for ankyrin binding. Data that support this hypothesis include the following. (1) Deletion or mutation of residues within the latter loop abrogates ankyrin binding without affecting cdB3 structure or its other functions. (2) Association of cdB3 with ankyrin is inhibited by competition with the loop peptide. (3) Resealing of the loop peptide into erythrocyte ghosts alters membrane morphology and stability. To characterize cdB3-ankyrin interaction further, we identified their interfacial contact sites using molecular docking software and the crystal structures of D(3)D(4)-ankyrin and cdB3. The best fit for the interaction reveals multiple salt bridges and hydrophobic contacts between the two proteins. The most important ion pair interactions are (i) cdB3 K69-ankyrin E645, (ii) cdB3 E72-ankyrin K611, and (iii) cdB3 D183-ankyrin N601 and Q634. Mutation of these four residues on ankyrin yielded an ankyrin with a native CD spectrum but little or no affinity for cdB3. These data define the docking interface between cdB3 and ankyrin in greater detail.
Collapse
Affiliation(s)
- Jesse L Grey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
20
|
Brandon S, Beth AH, Hustedt EJ. The global analysis of DEER data. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 218:93-104. [PMID: 22578560 PMCID: PMC3608411 DOI: 10.1016/j.jmr.2012.03.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 05/11/2023]
Abstract
Double Electron-Electron Resonance (DEER) has emerged as a powerful technique for measuring long range distances and distance distributions between paramagnetic centers in biomolecules. This information can then be used to characterize functionally relevant structural and dynamic properties of biological molecules and their macromolecular assemblies. Approaches have been developed for analyzing experimental data from standard four-pulse DEER experiments to extract distance distributions. However, these methods typically use an a priori baseline correction to account for background signals. In the current work an approach is described for direct fitting of the DEER signal using a model for the distance distribution which permits a rigorous error analysis of the fitting parameters. Moreover, this approach does not require a priori background correction of the experimental data and can take into account excluded volume effects on the background signal when necessary. The global analysis of multiple DEER data sets is also demonstrated. Global analysis has the potential to provide new capabilities for extracting distance distributions and additional structural parameters in a wide range of studies.
Collapse
Affiliation(s)
| | | | - Eric J. Hustedt
- Corresponding author. Address: 735B Light Hall, Vanderbilt University, Nashville, TN 37232, United States. (E.J. Hustedt)
| |
Collapse
|
21
|
Hagelueken G, Ward R, Naismith JH, Schiemann O. MtsslWizard: In Silico Spin-Labeling and Generation of Distance Distributions in PyMOL. APPLIED MAGNETIC RESONANCE 2012; 42:377-391. [PMID: 22448103 PMCID: PMC3296949 DOI: 10.1007/s00723-012-0314-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Indexed: 05/09/2023]
Abstract
MtsslWizard is a computer program, which operates as a plugin for the PyMOL molecular graphics system. MtsslWizard estimates distances between spin labels on proteins quickly with user-configurable options through a simple graphical interface. In default mode, the program searches for ensembles of possible MTSSL conformations that do not clash with a static model of the protein. Once conformations are assigned, distance distributions between two or more ensembles are calculated, displayed, and can be exported to other software. The program's use is evaluated in a number of challenging test cases and its strengths and weaknesses evaluated. The benefits of the program are its accuracy and simplicity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00723-012-0314-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregor Hagelueken
- Biomedical Sciences Research Complex, The University of St. Andrews, Fife, KY16 9ST UK
| | - Richard Ward
- Biomedical Sciences Research Complex, The University of St. Andrews, Fife, KY16 9ST UK
| | - James H. Naismith
- Biomedical Sciences Research Complex, The University of St. Andrews, Fife, KY16 9ST UK
| | - Olav Schiemann
- Biomedical Sciences Research Complex, The University of St. Andrews, Fife, KY16 9ST UK
| |
Collapse
|
22
|
Yulikov M, Lueders P, Farooq Warsi M, Chechik V, Jeschke G. Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd3+–DTPA chelate complexes. Phys Chem Chem Phys 2012; 14:10732-46. [DOI: 10.1039/c2cp40282c] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Hatmal MM, Li Y, Hegde BG, Hegde PB, Jao CC, Langen R, Haworth IS. Computer modeling of nitroxide spin labels on proteins. Biopolymers 2012; 97:35-44. [PMID: 21792846 PMCID: PMC3422567 DOI: 10.1002/bip.21699] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 06/24/2011] [Accepted: 06/25/2011] [Indexed: 01/26/2023]
Abstract
Electron paramagnetic resonance using site-directed spin labeling can be used as an approach for determination of protein structures that are difficult to solve by other methods. One important aspect of this approach is the measurement of interlabel distances using the double electron-electron resonance (DEER) method. Interpretation of experimental data could be facilitated by a computational approach to calculation of interlabel distances. We describe an algorithm, PRONOX, for rapid computation of interlabel distances based on calculation of spin label conformer distributions at any site of a protein. The program incorporates features of the label distribution established experimentally, including weighting of favorable conformers of the label. Distances calculated by PRONOX were compared with new DEER distances for amphiphysin and annexin B12 and with published data for FCHo2 (F-BAR), endophilin, and α-synuclein, a total of 44 interlabel distances. The program reproduced these distances accurately (r(2) = 0.94, slope = 0.98). For 9 of the 11 distances for amphiphysin, PRONOX reproduced the experimental data to within 2.5 Å. The speed and accuracy of PRONOX suggest that the algorithm can be used for fitting to DEER data for determination of protein tertiary structure.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern CA, Los Angeles, CA 90089, USA
- Department of Biochemistry, University of Southern California, Los Angeles, CA, 90033-9151, USA
| | - Yiyu Li
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern CA, Los Angeles, CA 90089, USA
| | - Balachandra G. Hegde
- Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Prabhavati B. Hegde
- Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Christine C. Jao
- Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Ralf Langen
- Department of Biochemistry, University of Southern California, Los Angeles, CA, 90033-9151, USA
- Zilkha Neurogenetic Institute, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Ian S. Haworth
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern CA, Los Angeles, CA 90089, USA
- Department of Biochemistry, University of Southern California, Los Angeles, CA, 90033-9151, USA
| |
Collapse
|
24
|
Bartelli NL, Hazelbauer GL. Direct evidence that the carboxyl-terminal sequence of a bacterial chemoreceptor is an unstructured linker and enzyme tether. Protein Sci 2011; 20:1856-66. [PMID: 21858888 PMCID: PMC3267950 DOI: 10.1002/pro.719] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/07/2011] [Accepted: 08/09/2011] [Indexed: 12/21/2022]
Abstract
Sensory adaptation in bacterial chemotaxis involves reversible methylation of specific glutamyl residues on chemoreceptors. The reactions are catalyzed by a dedicated methyltransferase and dedicated methylesterase. In Escherichia coli and related organisms, control of these enzymes includes an evolutionarily recent addition of interaction with a pentapeptide activator located at the carboxyl terminus of the receptor polypeptide chain. Effective enzyme activation requires not only the pentapeptide but also a segment of the receptor polypeptide chain between that sequence and the coiled-coil body of the chemoreceptor. This segment has features consistent with a role as a flexible and presumably unstructured linker and enzyme tether, but there has been no direct information about its structure. We used site-directed spin labeling and electron paramagnetic resonance spectroscopy to characterize structural features of the carboxyl-terminal 40 residues of E. coli chemoreceptor Tar. Beginning ∼ 35 residues from the carboxyl terminus and continuing to the end of the protein, spectra of spin-labeled Tar embedded in native membranes or in reconstituted proteoliposomes, exhibited mobilities characteristic of unstructured, disordered segments. Binding of methyltransferase substantially reduced mobility for positions in or near the pentapeptide but mobility for the linker sequence remained high, being only modestly reduced in a gradient of decreasing effects for 10-15 residues, a pattern consistent with the linker providing a flexible arm that would allow enzyme diffusion within defined limits. Thus, our data identify that the carboxyl-terminal linker between the receptor body and the pentapeptide is an unstructured, disordered segment that can serve as a flexible arm and enzyme tether.
Collapse
Affiliation(s)
| | - Gerald L Hazelbauer
- Department of Biochemistry117 Schweitzer HallUniversity of MissouriColumbia, Missouri 65211
| |
Collapse
|
25
|
Bode BE, Dastvan R, Prisner TF. Pulsed electron-electron double resonance (PELDOR) distance measurements in detergent micelles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 211:11-17. [PMID: 21474348 DOI: 10.1016/j.jmr.2011.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 05/30/2023]
Abstract
Pulsed electron-electron double resonance (PELDOR) spectroscopy is a powerful tool for measuring nanometer distances in spin-labeled systems. A common approach is doubly covalent spin-labeling of a macromolecule and measurement of the inter-spin distance, or to use singly-labeled components of a system that forms aggregates or oligomers. This situation has been described as a spin-cluster. The PELDOR signal, however, does not only contain the desired dipolar coupling between the spin-labels of the molecule or cluster under study. In samples of finite concentration the dipolar coupling between the spin-labels of the randomly distributed molecules or spin-clusters also contributes significantly. In homogeneous frozen solutions or lipid vesicle membranes this second contribution can be considered to be an exponential or stretched exponential decay, respectively. In this study, we show that this assumption is not valid in detergent micelles. Spin-labeled fatty acids that are randomly partitioned into different detergent micelles give rise to PELDOR time traces which clearly deviate from stretched exponential decays. The obtained signals can be modeled quantitatively based on the size of the micelles, their aggregation number, the spin-label concentration and the degree of spin-labeling. As a main conclusion a PELDOR signal deviating from a stretched exponential decay does not necessarily prove the observation of specific distance information on the molecule or cluster. These results are important for the interpretation of PELDOR experiments on membrane proteins or lipophilic peptides solubilized in detergent micelles or small vesicles, which often do not show pronounced dipolar oscillations in their time traces.
Collapse
Affiliation(s)
- Bela E Bode
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | |
Collapse
|
26
|
Schultz KM, Merten JA, Klug CS. Characterization of the E506Q and H537A dysfunctional mutants in the E. coli ABC transporter MsbA. Biochemistry 2011; 50:3599-608. [PMID: 21462989 PMCID: PMC3128438 DOI: 10.1021/bi101666p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MsbA is a member of the ABC transporter superfamily that is specifically found in Gram-negative bacteria and is homologous to proteins involved in both bacterial and human drug resistance. The E506Q and H537A mutations have been introduced and used for crystallization of other members of the ABC transporter protein family, including BmrA and the ATPase domains MalK, HlyB-NBD, and MJ0796, but have not been previously studied in detail or investigated in the MsbA lipid A exporter. We utilized an array of biochemical and EPR spectroscopy approaches to characterize the local and global effects of these nucleotide binding domain mutations on the E. coli MsbA homodimer. The lack of cell viability in an in vivo growth assay confirms that the presence of the E506Q or H537A mutations within MsbA creates a dysfunctional protein. To further investigate the mode of dysfunction, a fluorescent ATP binding assay was used and showed that both mutant proteins maintain their ability to bind ATP, but ATPase assays indicate hydrolysis is severely inhibited by each mutation. EPR spectroscopy data using previously identified and characterized reporter sites within the nucleotide binding domain along with ATP detection assays show that hydrolysis does occur over time in both mutants, though more readily in the H537A protein. DEER spectroscopy demonstrates that both proteins studied are purified in a closed dimer conformation, indicating that events within the cell can induce a stable, closed conformation of the MsbA homodimer that does not reopen even in the absence of nucleotide.
Collapse
Affiliation(s)
- Kathryn M. Schultz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Jacqueline A. Merten
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
27
|
Pirman NL, Milshteyn E, Galiano L, Hewlett JC, Fanucci GE. Characterization of the disordered-to-α-helical transition of IA₃ by SDSL-EPR spectroscopy. Protein Sci 2011; 20:150-9. [PMID: 21080428 DOI: 10.1002/pro.547] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy coupled with site-directed spin labeling (SDSL) is a valuable tool for characterizing the mobility and conformational changes of proteins but has seldom been applied to intrinsically disordered proteins (IDPs). Here, IA₃ is used as a model system demonstrating SDSL-EPR characterization of conformational changes in small IDP systems. IA₃ has 68 amino acids, is unstructured in solution, and becomes α-helical upon addition of the secondary structural stabilizer 2,2,2-trifluoroethanol (TFE). Two single cysteine substitutions, one in the N-terminus (S14C) and one in the C-terminus (N58C), were generated and labeled with three different nitroxide spin labels. The resultant EPR line shapes of each of the labels were compared and each reported changes in mobility upon addition of TFE. Specifically, the spectral line shape parameters h((+1))/h(₀), the local tumbling volume (V(L)), and the percent change of the h(₋₁) intensity were utilized to quantitatively monitor TFE-induced conformational changes. The values of h((+1)/)h(₀) as a function of TFE titration varied in a sigmoidal manner and were fit to a two-state Boltzmann model that provided values for the midpoint of the transition, thus, reporting on the global conformational change of IA₃. The other parameters provide site-specific information and show that S14C-SL undergoes a conformational change resulting in more restricted motion than N58C-SL, which is consistent with previously published results obtained by studies using NMR and circular dichroism spectroscopy indicating a higher degree of α-helical propensity of the N-terminal segment of IA₃. Overall, the results provide a framework for data analyzes that can be used to study induced unstructured-to-helical conformations in IDPs by SDSL.
Collapse
Affiliation(s)
- Natasha L Pirman
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
28
|
Kim S, Brandon S, Zhou Z, Cobb CE, Edwards SJ, Moth CW, Parry CS, Smith JA, Lybrand TP, Hustedt EJ, Beth AH. Determination of structural models of the complex between the cytoplasmic domain of erythrocyte band 3 and ankyrin-R repeats 13-24. J Biol Chem 2011; 286:20746-57. [PMID: 21493712 DOI: 10.1074/jbc.m111.230326] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adaptor protein ankyrin-R interacts via its membrane binding domain with the cytoplasmic domain of the anion exchange protein (AE1) and via its spectrin binding domain with the spectrin-based membrane skeleton in human erythrocytes. This set of interactions provides a bridge between the lipid bilayer and the membrane skeleton, thereby stabilizing the membrane. Crystal structures for the dimeric cytoplasmic domain of AE1 (cdb3) and for a 12-ankyrin repeat segment (repeats 13-24) from the membrane binding domain of ankyrin-R (AnkD34) have been reported. However, structural data on how these proteins assemble to form a stable complex have not been reported. In the current studies, site-directed spin labeling, in combination with electron paramagnetic resonance (EPR) and double electron-electron resonance, has been utilized to map the binding interfaces of the two proteins in the complex and to obtain inter-protein distance constraints. These data have been utilized to construct a family of structural models that are consistent with the full range of experimental data. These models indicate that an extensive area on the peripheral domain of cdb3 binds to ankyrin repeats 18-20 on the top loop surface of AnkD34 primarily through hydrophobic interactions. This is a previously uncharacterized surface for binding of cdb3 to AnkD34. Because a second dimer of cdb3 is known to bind to ankyrin repeats 7-12 of the membrane binding domain of ankyrin-R, the current models have significant implications regarding the structural nature of a tetrameric form of AE1 that is hypothesized to be involved in binding to full-length ankyrin-R in the erythrocyte membrane.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schultz KM, Merten JA, Klug CS. Effects of the L511P and D512G mutations on the Escherichia coli ABC transporter MsbA. Biochemistry 2011; 50:2594-602. [PMID: 21344946 DOI: 10.1021/bi1018418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MsbA is a member of the ABC transporter superfamily and is homologous to ABC transporters linked to multidrug resistance. The nucleotide binding domains (NBDs) of these proteins include conserved motifs that are involved in ATP binding, including conserved SALD residues (D-loop) that are diagnostic in identifying ABC transporters but whose roles have not been identified. Within the D-loop, single point mutations L511P and D512G were discovered by random mutational analysis of MsbA to disrupt protein function in the cell [Polissi, A., and Georgopoulos, C. (1996) Mol. Microbiol. 20, 1221-1233] but have not been further studied in MsbA or in detail in any other ABC transporter. In these studies, we show that both L511P and D512G mutants of MsbA are able to bind ATP at near-wild-type levels but are unable to maintain cell viability in an in vivo growth assay, verifying the theory that they are dysfunctional at some point after ATP binding. An ATPase assay further suggests that the L511P mutation prevents effective ATP hydrolysis, and an ATP detection assay reveals that only small amounts of ATP are hydrolyzed; D512G is able to hydrolyze ATP at a rate 3-fold faster than that of the wild type. EPR spectroscopy studies using reporter sites within the NBDs also indicate that at least some hydrolysis occurs in L511P or D512G MsbA but show fewer spectral changes than observed for the same reporters in the wild-type background. These studies indicate that L511 is necessary for efficient ATP hydrolysis and D512 is essential for conformational rearrangements required for flipping lipid A.
Collapse
Affiliation(s)
- Kathryn M Schultz
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | | | | |
Collapse
|
30
|
Wang X, Lee HW, Liu Y, Prestegard JH. Structural NMR of protein oligomers using hybrid methods. J Struct Biol 2011; 173:515-29. [PMID: 21074622 PMCID: PMC3040251 DOI: 10.1016/j.jsb.2010.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 10/03/2010] [Accepted: 11/04/2010] [Indexed: 11/19/2022]
Abstract
Solving structures of native oligomeric protein complexes using traditional high-resolution NMR techniques remains challenging. However, increased utilization of computational platforms, and integration of information from less traditional NMR techniques with data from other complementary biophysical methods, promises to extend the boundary of NMR-applicable targets. This article reviews several of the techniques capable of providing less traditional and complementary structural information. In particular, the use of orientational constraints coming from residual dipolar couplings and residual chemical shift anisotropy offsets are shown to simplify the construction of models for oligomeric complexes, especially in cases of weak homo-dimers. Combining this orientational information with interaction site information supplied by computation, chemical shift perturbation, paramagnetic surface perturbation, cross-saturation and mass spectrometry allows high resolution models of the complexes to be constructed with relative ease. Non-NMR techniques, such as mass spectrometry, EPR and small angle X-ray scattering, are also expected to play increasingly important roles by offering alternative methods of probing the overall shape of the complex. Computational platforms capable of integrating information from multiple sources in the modeling process are also discussed in the article. And finally a new, detailed example on the determination of a chemokine tetramer structure will be used to illustrate how a non-traditional approach to oligomeric structure determination works in practice.
Collapse
Affiliation(s)
- Xu Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Hsiau-Wei Lee
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - Yizhou Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| | - James H. Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602. USA
| |
Collapse
|
31
|
Abstract
Intrinsically disordered proteins (IDPs) form a unique protein category characterized by the absence of a well-defined structure and by remarkable conformational flexibility. Electron Paramagnetic Resonance (EPR) spectroscopy combined with site-directed spin labeling (SDSL) is amongst the most suitable methods to unravel their structure and dynamics. This review summarizes the tremendous methodological developments in the area of SDSL EPR and its applications in protein research. Recent results on the intrinsically disordered Parkinson's disease protein α-synuclein illustrate that the method has gained increasing attention in IDP research. SDSL EPR has now reached a level where broad application in this rapidly advancing field is feasible.
Collapse
Affiliation(s)
- Malte Drescher
- Department of Chemistry, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
32
|
Bowman A, Ward R, El-Mkami H, Owen-Hughes T, Norman DG. Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 2010; 38:695-707. [PMID: 19914933 PMCID: PMC2810997 DOI: 10.1093/nar/gkp1003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 12/30/2022] Open
Abstract
The (H3-H4)(2) histone tetramer forms the central core of nucleosomes and, as such, plays a prominent role in assembly, disassembly and positioning of nucleosomes. Despite its fundamental role in chromatin, the tetramer has received little structural investigation. Here, through the use of pulsed electron-electron double resonance spectroscopy coupled with site-directed spin labelling, we survey the structure of the tetramer in solution. We find that tetramer is structurally more heterogeneous on its own than when sequestered in the octamer or nucleosome. In particular, while the central region including the H3-H3' interface retains a structure similar to that observed in nucleosomes, other regions such as the H3 alphaN helix display increased structural heterogeneity. Flexibility of the H3 alphaN helix in the free tetramer also illustrates the potential for post-translational modifications to alter the structure of this region and mediate interactions with histone chaperones. The approach described here promises to prove a powerful system for investigating the structure of additional assemblies of histones with other important factors in chromatin assembly/fluidity.
Collapse
Affiliation(s)
- Andrew Bowman
- Wellcome Trust Centre for Gene Regulation and Expression, Nucleic Acid Structure Research Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH and School of Physics and Astronomy, University of St Andrews, St Andrews FE2 4KM, UK
| | - Richard Ward
- Wellcome Trust Centre for Gene Regulation and Expression, Nucleic Acid Structure Research Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH and School of Physics and Astronomy, University of St Andrews, St Andrews FE2 4KM, UK
| | - Hassane El-Mkami
- Wellcome Trust Centre for Gene Regulation and Expression, Nucleic Acid Structure Research Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH and School of Physics and Astronomy, University of St Andrews, St Andrews FE2 4KM, UK
| | - Tom Owen-Hughes
- Wellcome Trust Centre for Gene Regulation and Expression, Nucleic Acid Structure Research Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH and School of Physics and Astronomy, University of St Andrews, St Andrews FE2 4KM, UK
| | - David G. Norman
- Wellcome Trust Centre for Gene Regulation and Expression, Nucleic Acid Structure Research Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH and School of Physics and Astronomy, University of St Andrews, St Andrews FE2 4KM, UK
| |
Collapse
|
33
|
Alper SL. Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 2009; 212:1672-83. [PMID: 19448077 PMCID: PMC2683012 DOI: 10.1242/jeb.029454] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2009] [Indexed: 01/12/2023]
Abstract
Plasmalemmal Cl(-)/HCO(3)(-) exchangers are encoded by the SLC4 and SLC26 gene superfamilies, and function to regulate intracellular pH, [Cl(-)] and cell volume. The Cl(-)/HCO(3)(-) exchangers of polarized epithelial cells also contribute to transepithelial secretion and reabsorption of acid-base equivalents and Cl(-). This review focuses on Na(+)-independent electroneutral Cl(-)/HCO(3)(-) exchangers of the SLC4 family. Human SLC4A1/AE1 mutations cause the familial erythroid disorders of spherocytic anemia, stomatocytic anemia and ovalocytosis. A largely discrete set of AE1 mutations causes familial distal renal tubular acidosis. The Slc4a2/Ae2(-/-) mouse dies before weaning with achlorhydria and osteopetrosis. A hypomorphic Ae2(-/-) mouse survives to exhibit male infertility with defective spermatogenesis and a syndrome resembling primary biliary cirrhosis. A human SLC4A3/AE3 polymorphism is associated with seizure disorder, and the Ae3(-/-) mouse has increased seizure susceptibility. The transport mechanism of mammalian SLC4/AE polypeptides is that of electroneutral Cl(-)/anion exchange, but trout erythroid Ae1 also mediates Cl(-) conductance. Erythroid Ae1 may mediate the DIDS-sensitive Cl(-) conductance of mammalian erythrocytes, and, with a single missense mutation, can mediate electrogenic SO(4)(2-)/Cl(-) exchange. AE1 trafficking in polarized cells is regulated by phosphorylation and by interaction with other proteins. AE2 exhibits isoform-specific patterns of acute inhibition by acidic intracellular pH and independently by acidic extracellular pH. In contrast, AE2 is activated by hypertonicity and, in a pH-independent manner, by ammonium and by hypertonicity. A growing body of structure-function and interaction data, together with emerging information about physiological function and structure, is advancing our understanding of SLC4 anion exchangers.
Collapse
Affiliation(s)
- Seth L Alper
- Renal Division and Molecular and Vascular Medicine Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
34
|
Heidarsson PO, Sigurdsson ST, Ásgeirsson B. Structural features and dynamics of a cold-adapted alkaline phosphatase studied by EPR spectroscopy. FEBS J 2009; 276:2725-35. [DOI: 10.1111/j.1742-4658.2009.06996.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Bird GH, Pornsuwan S, Saxena S, Schafmeister CE. Distance distributions of end-labeled curved bispeptide oligomers by electron spin resonance. ACS NANO 2008; 2:1857-1864. [PMID: 19206425 DOI: 10.1021/nn800327g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We demonstrate the synthesis of a series of spin-labeled curved oligomers to determine their end-to-end lengths and distance distributions using electron spin resonance. We synthesize shape-persistent macromolecules from conformationally restricted, asymmetric monomers that are coupled through pairs of amide bonds to create water-soluble, spiro-ladder oligomers with well-defined three-dimensional structures. We synthesized seven different macromolecules, each containing eight monomers but differing in the sequence to create macromolecules with different curved shapes. The ends of the oligomers were labeled with nitroxide spin probes, and double electron-electron resonance (DEER) electron spin resonance (ESR) experiments were carried out to obtain quantitative information about the shapes and flexibility of the oligomers. The most probable end-to-end distance of the oligomers ranges from 23 to 36 A, a range of length that we previously accessed by assembling rod-like homo-oligomers that contain 4-8 bisamino acid monomers. The relative distances measured for the oligomers confirm that, by varying the sequence of an oligomer, we are able to control its shape. The shapes of the ESR-derived population distributions allow us to compare the degree of shape persistence and flexibility of spiro-ladder oligomers to other well-studied nanoscale molecular structures such as p-phenylethynylenes.
Collapse
Affiliation(s)
- Gregory H Bird
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
36
|
Pang AJ, Bustos SP, Reithmeier RAF. Structural characterization of the cytosolic domain of kidney chloride/bicarbonate anion exchanger 1 (kAE1). Biochemistry 2008; 47:4510-7. [PMID: 18358003 DOI: 10.1021/bi702149b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kidney anion exchanger 1 (kAE1) is a membrane glycoprotein expressed in alpha-intercalated cells in the collecting ducts of the kidney where it mediates electroneutral chloride/bicarbonate exchange. Human kAE1 is a truncated form of erythroid AE1 missing the first 65 residues of the N-terminal cytosolic domain, which includes a disordered acidic region (residues 1-54) and the first beta-strand (residues 55-65) of the folded region. Unlike erythroid AE1, kAE1 does not bind deoxyhemoglobin, glycolytic enzymes, or cytoskeletal components. To understand the effect of the N-terminal deletion on the structure of the cytosolic domain, we performed an extensive biophysical analysis on His 6 tagged cytosolic domains of erythroid AE1 (cdAE1), kidney AE1 (cdkAE1), and a novel truncation mutant (cdDelta54AE1) missing the first 54 residues, but retaining the beta-strand. Circular dichroism did not detect any major differences in secondary structure, and sedimentation analyses showed that all three proteins were dimeric. Differential scanning calorimetry revealed that cdAE1 and cdDelta54AE1 had similar thermal stabilities with midpoints of transition higher than cdkAE1. cdAE1 and cdDelta54AE1 underwent similar pH-dependent fluorescence changes, while cdkAE1 exhibited a higher intrinsic fluorescence at neutral and acidic pH. Urea denaturation resulted in dequenching of tryptophan fluorescence in cdAE1, while tryptophans in cdkAE1 were already dequenched in the native state. We conclude that the absence of the central beta-strand in cdkAE1 results in a less stable and more open structure than cdAE1. This structural change, in addition to the loss of the acidic amino-terminal region, may account for the altered protein binding properties of kAE1.
Collapse
Affiliation(s)
- Allison J Pang
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 5216, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
37
|
Klug CS, Feix JB. Methods and Applications of Site-Directed Spin Labeling EPR Spectroscopy. Methods Cell Biol 2008; 84:617-58. [DOI: 10.1016/s0091-679x(07)84020-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Schiemann O, Prisner TF. Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 2007; 40:1-53. [PMID: 17565764 DOI: 10.1017/s003358350700460x] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy provides a variety of tools to study structures and structural changes of large biomolecules or complexes thereof. In order to unravel secondary structure elements, domain arrangements or complex formation, continuous wave and pulsed EPR methods capable of measuring the magnetic dipole coupling between two unpaired electrons can be used to obtain long-range distance constraints on the nanometer scale. Such methods yield reliably and precisely distances of up to 80 A, can be applied to biomolecules in aqueous buffer solutions or membranes, and are not size limited. They can be applied either at cryogenic or physiological temperatures and down to amounts of a few nanomoles. Spin centers may be metal ions, metal clusters, cofactor radicals, amino acid radicals, or spin labels. In this review, we discuss the advantages and limitations of the different EPR spectroscopic methods, briefly describe their theoretical background, and summarize important biological applications. The main focus of this article will be on pulsed EPR methods like pulsed electron-electron double resonance (PELDOR) and their applications to spin-labeled biosystems.
Collapse
Affiliation(s)
- Olav Schiemann
- Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, J. W. Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany.
| | | |
Collapse
|
39
|
Pistolesi S, Pogni R, Feix JB. Membrane insertion and bilayer perturbation by antimicrobial peptide CM15. Biophys J 2007; 93:1651-60. [PMID: 17496013 PMCID: PMC1948049 DOI: 10.1529/biophysj.107.104034] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are an important component of innate immunity and have generated considerable interest as a potential new class of antibiotic. The biological activity of AMPs is strongly influenced by peptide-membrane interactions; however, for many of these peptides the molecular details of how they disrupt and/or translocate across target membranes are not known. CM15 is a linear, synthetic hybrid AMP composed of the first seven residues of the cecropin A and residues 2-9 of the bee venom peptide mellitin. Previous studies have shown that upon membrane binding CM15 folds into an alpha-helix with its helical axis aligned parallel to the bilayer surface and have implicated the formation of 2.2-3.8 nm pores in its bactericidal activity. Here we report site-directed spin labeling electron paramagnetic resonance studies examining the behavior of CM15 analogs labeled with a methanethiosulfonate spin label (MTSL) and a brominated MTSL as a function of increasing peptide concentration and utilize phospholipid-analog spin labels to assess the effects of CM15 binding and accumulation on the physical properties of membrane lipids. We find that as the concentration of membrane-bound CM15 is increased the N-terminal domain of the peptide becomes more deeply immersed in the lipid bilayer. Only minimal changes are observed in the rotational dynamics of membrane lipids, and changes in lipid dynamics are confined primarily to near the membrane surface. However, the accumulation of membrane-bound CM15 dramatically increases accessibility of lipid-analog spin labels to the polar relaxation agent, nickel (II) ethylenediaminediacetate, suggesting an increased permeability of the membrane to polar solutes. These results are discussed in relation to the molecular mechanism of membrane disruption by CM15.
Collapse
Affiliation(s)
- Sara Pistolesi
- Department of Biophysics and National Biomedical Electron Paramagnetic Resonance Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
40
|
Bode BE, Margraf D, Plackmeyer J, Dürner G, Prisner TF, Schiemann O. Counting the Monomers in Nanometer-Sized Oligomers by Pulsed Electron−Electron Double Resonance. J Am Chem Soc 2007; 129:6736-45. [PMID: 17487970 DOI: 10.1021/ja065787t] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a lot of cases active biomolecules are complexes of higher order, thus methods capable of counting the number of building blocks and elucidating their geometric arrangement are needed. Therefore, we experimentally validate here spin-counting via 4-pulse electron-electron double resonance (PELDOR) on well-defined test samples. Two biradicals, a symmetric and an asymmetric triradical, and a tetraradical were synthesized in a convergent reaction scheme via palladium-catalyzed cross-coupling reactions. PELDOR was then used to obtain geometric information and the number of spin centers per molecule in a single experiment. The measurement yielded the expected distances (2.2-3.8 nm) and showed that different spin-spin distances in one molecule can be resolved even if the difference amounts to only 5 A. The number of spins n has been determined to be 2.1 in both biradicals, to 3.1 and 3.0 in the symmetric and asymmetric triradicals, respectively, and to 3.9 in the tetraradical. The overall error of PELDOR spin-counting was found to be 5% for up to four spins. Thus, this method is a valuable tool to determine the number of constituting spin-bearing monomers in biologically relevant homo- and heterooligomers and how their oligomerization state and geometric arrangement changes during function.
Collapse
Affiliation(s)
- Bela E Bode
- Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, J. W. Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Polyhach Y, Godt A, Bauer C, Jeschke G. Spin pair geometry revealed by high-field DEER in the presence of conformational distributions. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 185:118-29. [PMID: 17188008 DOI: 10.1016/j.jmr.2006.11.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Accepted: 11/29/2006] [Indexed: 05/13/2023]
Abstract
Orientation selection on two nitroxide-labelled shape-persistent molecules is demonstrated by high-field pulsed electron-electron double resonance experiments at a frequency of 95 GHz with a commercial spectrometer. The experiments are performed with fixed observer and pump frequencies by variation of the magnetic field, so that the variation of both the dipolar frequencies and the modulation depths can be analyzed. By applying the deadtime-free four-pulse double electron-electron resonance (DEER) sequence, the lineshapes of the dipolar spectra are obtained. In the investigated linear biradical and equilateral triradical the nitroxide labels undergo restricted dynamics, so that their relative orientations are not fixed, but are correlated to some extent. In this situation, the general dependence of the dipolar spectra on the observer field can be satisfyingly modelled by simple geometrical models that involve only one rotational degree of freedom for the biradical and two rotational degrees of freedom for the triradical. A somewhat better agreement of the dipolar lineshapes for the biradical is obtained by simulations based on a molecular dynamics trajectory. For the triradical, small but significant deviations of the lineshape are observed with both models, indicating that the technique can reveal deficiencies in modelling of the conformational ensemble of a macromolecule.
Collapse
Affiliation(s)
- Ye Polyhach
- Max Planck Institute for Polymer Research, Postfach 3148, 55021 Mainz, Germany
| | | | | | | |
Collapse
|
42
|
Jeschke G, Polyhach Y. Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys Chem Chem Phys 2007; 9:1895-910. [PMID: 17431518 DOI: 10.1039/b614920k] [Citation(s) in RCA: 460] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biological function of protein, DNA, and RNA molecules often depends on relative movements of domains with dimensions of a few nanometers. This length scale can be accessed by distance measurements between spin labels if pulsed electron paramagnetic resonance (EPR) techniques such as electron-electron double resonance (ELDOR) and double-quantum EPR are used. The approach does not require crystalline samples and is well suited to biomacromolecules with an intrinsic flexibility as distributions of distances can be measured. Furthermore, oligomerization or complexation of biomacromolecules can also be studied, even if it is incomplete. The sensitivity of the technique and the reliability of the measured distance distribution depend on careful optimization of the experimental conditions and procedures for data analysis. Interpretation of spin-to-spin distance distributions in terms of the structure of the biomacromolecules furthermore requires a model for the conformational distribution of the spin labels.
Collapse
Affiliation(s)
- Gunnar Jeschke
- University of Konstanz, Universitätsstrasse, 78457 Konstanz, Germany.
| | | |
Collapse
|
43
|
Borbat PP, Freed JH. Measuring distances by pulsed dipolar ESR spectroscopy: spin-labeled histidine kinases. Methods Enzymol 2007; 423:52-116. [PMID: 17609127 DOI: 10.1016/s0076-6879(07)23003-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Applications of dipolar ESR spectroscopy to structural biology are rapidly expanding, and it has become a useful method that is aimed at resolving protein structure and functional mechanisms. The method of pulsed dipolar ESR spectroscopy (PDS) is outlined in the first half of the chapter, and it illustrates the simplicity and potential of this developing technology with applications to various biological systems. A more detailed description is presented of the implementation of PDS to reconstruct the ternary structure of a large dimeric protein complex from Thermotoga maritima, formed by the histidine kinase CheA and the coupling protein CheW. This protein complex is a building block of an extensive array composed of coupled supramolecular structures assembled from CheA/CheW proteins and transmembrane signaling chemoreceptors, which make up a sensor that is key to controlling the motility in bacterial chemotaxis. The reconstruction of the CheA/CheW complex has employed several techniques, including X-ray crystallography and pulsed ESR. Emphasis is on the role of PDS, which is part of a larger effort to reconstruct the entire signaling complex, including chemoreceptor, by means of PDS structural mapping. In order to precisely establish the mode of coupling of CheW to CheA and to globally map the complex, approximately 70 distances have already been determined and processed into molecular coordinates by readily available methods of distance geometry constraints.
Collapse
Affiliation(s)
- Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
44
|
Hustedt EJ, Stein RA, Sethaphong L, Brandon S, Zhou Z, Desensi SC. Dipolar coupling between nitroxide spin labels: the development and application of a tether-in-a-cone model. Biophys J 2006; 90:340-56. [PMID: 16214868 PMCID: PMC1367032 DOI: 10.1529/biophysj.105.068544] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 09/26/2005] [Indexed: 11/18/2022] Open
Abstract
A tether-in-a-cone model is developed for the simulation of electron paramagnetic resonance spectra of dipolar coupled nitroxide spin labels attached to tethers statically disordered within cones of variable halfwidth. In this model, the nitroxides adopt a range of interprobe distances and orientations. The aim is to develop tools for determining both the distance distribution and the relative orientation of the labels from experimental spectra. Simulations demonstrate the sensitivity of electron paramagnetic resonance spectra to the orientation of the cones as a function of cone halfwidth and other parameters. For small cone halfwidths (< approximately 40 degrees ), simulated spectra are strongly dependent on the relative orientation of the cones. For larger cone halfwidths, spectra become independent of cone orientation. Tether-in-a-cone model simulations are analyzed using a convolution approach based on Fourier transforms. Spectra obtained by the Fourier convolution method more closely fit the tether-in-a-cone simulations as the halfwidth of the cone increases. The Fourier convolution method gives a reasonable estimate of the correct average distance, though the distance distribution obtained can be significantly distorted. Finally, the tether-in-a-cone model is successfully used to analyze experimental spectra from T4 lysozyme. These results demonstrate the utility of the model and highlight directions for further development.
Collapse
Affiliation(s)
- Eric J Hustedt
- Department of Molecular Physiology and Biophysics, and Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | |
Collapse
|