1
|
Hecker F, Fries L, Hiller M, Chiesa M, Bennati M. 17 O Hyperfine Spectroscopy Reveals Hydration Structure of Nitroxide Radicals in Aqueous Solutions. Angew Chem Int Ed Engl 2023; 62:e202213700. [PMID: 36399425 PMCID: PMC10107301 DOI: 10.1002/anie.202213700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022]
Abstract
The hydration structure of nitroxide radicals in aqueous solutions is elucidated by advanced 17 O hyperfine (hf) spectroscopy with support of quantum chemical calculations and MD simulations. A piperidine and a pyrrolidine-based nitroxide radical are compared and show clear differences in the preferred directionality of H-bond formation. We demonstrate that these scenarios are best represented in 17 O hf spectra, where in-plane coordination over σ ${\sigma }$ -type H-bonding leads to little spin density transfer on the water oxygen and small hf couplings, whereas π ${{\rm \pi }}$ -type perpendicular coordination generates much larger hf couplings. Quantitative analysis of the spectra based on MD simulations and DFT predicted hf parameters is consistent with a distribution of close solvating water molecules, in which directionality is influenced by subtle steric effects of the ring and the methyl group substituents.
Collapse
Affiliation(s)
- Fabian Hecker
- Research Group EPR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Lisa Fries
- Research Group EPR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Current address: Center for Biostructural Imaging of Neurodegeneration, Medical Center Göttingen, Von-Siebold-Straße 3a, 37075, Göttingen, Germany.,NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Markus Hiller
- Research Group EPR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Current address: Isotope Technologies Dresden, Rossendorfer Ring 42, 01328, Dresden, Germany
| | - Mario Chiesa
- Department of Chemistry, University of Torino, Via Giuria 9, 10125, Torino, Italy
| | - Marina Bennati
- Research Group EPR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Department of Chemistry, Georg August University Göttingen, Tammanstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Paramagnetic resonance investigation of mono- and di-manganese-containing systems in biochemistry. Methods Enzymol 2022; 666:315-372. [DOI: 10.1016/bs.mie.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Hecker F, Stubbe J, Bennati M. Detection of Water Molecules on the Radical Transfer Pathway of Ribonucleotide Reductase by 17O Electron-Nuclear Double Resonance Spectroscopy. J Am Chem Soc 2021; 143:7237-7241. [PMID: 33957040 PMCID: PMC8154519 DOI: 10.1021/jacs.1c01359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/19/2022]
Abstract
The role of water in biological proton-coupled electron transfer (PCET) is emerging as a key for understanding mechanistic details at atomic resolution. Here we demonstrate 17O high-frequency electron-nuclear double resonance (ENDOR) in conjunction with H217O-labeled protein buffer to establish the presence of ordered water molecules at three radical intermediates in an active enzyme complex, the α2β2 E. coli ribonucleotide reductase. Our data give unambiguous evidence that all three, individually trapped, intermediates are hyperfine coupled to one water molecule with Tyr-O···17O distances in the range 2.8-3.1 Å. The availability of this structural information will allow for quantitative models of PCET in this prototype enzyme. The results also provide a spectroscopic signature for water H-bonded to a tyrosyl radical.
Collapse
Affiliation(s)
- Fabian Hecker
- Max
Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - JoAnne Stubbe
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 20139, United States
| | - Marina Bennati
- Max
Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Department
of Chemistry, Georg-August-University, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques. Proc Natl Acad Sci U S A 2019; 117:395-404. [PMID: 31862713 DOI: 10.1073/pnas.1916030116] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hsp90 plays a central role in cell homeostasis by assisting folding and maturation of a large variety of clients. It is a homo-dimer, which functions via hydrolysis of ATP-coupled to conformational changes. Hsp90's conformational cycle in the absence of cochaperones is currently postulated as apo-Hsp90 being an ensemble of "open"/"closed" conformations. Upon ATP binding, Hsp90 adopts an active ATP-bound closed conformation where the N-terminal domains, which comprise the ATP binding site, are in close contact. However, there is no consensus regarding the conformation of the ADP-bound Hsp90, which is considered important for client release. In this work, we tracked the conformational states of yeast Hsp90 at various stages of ATP hydrolysis in frozen solutions employing electron paramagnetic resonance (EPR) techniques, particularly double electron-electron resonance (DEER) distance measurements. Using rigid Gd(III) spin labels, we found the C domains to be dimerized with same distance distribution at all hydrolysis states. Then, we substituted the ATPase Mg(II) cofactor with paramagnetic Mn(II) and followed the hydrolysis state using hyperfine spectroscopy and measured the inter-N-domain distance distributions via Mn(II)-Mn(II) DEER. The point character of the Mn(II) spin label allowed us resolve 2 different closed states: The ATP-bound (prehydrolysis) characterized by a distance distribution having a maximum of 4.3 nm, which broadened and shortened, shifting the mean to 3.8 nm at the ADP-bound state (posthydrolysis). This provides experimental evidence to a second closed conformational state of Hsp90 in solution, referred to as "compact." Finally, the so-called high-energy state, trapped by addition of vanadate, was found structurally similar to the posthydrolysis state.
Collapse
|
5
|
Breitgoff FD, Keller K, Qi M, Klose D, Yulikov M, Godt A, Jeschke G. UWB DEER and RIDME distance measurements in Cu(II)-Cu(II) spin pairs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106560. [PMID: 31377151 DOI: 10.1016/j.jmr.2019.07.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Distance determination by Electron Paramagnetic Resonance (EPR) based on measurements of the dipolar coupling are technically challenging for electron spin systems with broad spectra due to comparatively narrow microwave pulse excitation bandwidths. With Na4[{CuII(PyMTA)}-(stiff spacer)-{CuII(PyMTA)}] as a model compound, we compared DEER and RIDME measurements and investigated the use of frequency-swept pulses. We found very large improvements in sensitivity when substituting the monochromatic pump pulse by a frequency-swept one in DEER experiments with monochromatic observer pulses. This effect was especially strong in X band, where nearly the whole spectrum can be included in the experiment. The RIDME experiment is characterised by a trade-off in signal intensity and modulation depth. Optimal parameters are further influenced by varying steepness of the background decay. A simple 2-point optimization experiment was found to serve as good estimate to identify the mixing time of highest sensitivity. Using frequency-swept pulses in the observer sequences resulted in lower SNR in both the RIDME and the DEER experiment. Orientation selectivity was found to vary in both experiments with the detection position as well as with the settings of the pump pulse in DEER. In RIDME, orientation selection by relaxation anisotropy of the inverted spin appeared to be negligible as form factors remain relatively constant with varying mixing time. This reduces the overall observed orientation selection to the one given by the detection position. Field-averaged data from RIDME and DEER with a shaped pump pulse resulted in the same dipolar spectrum. We found that both methods have their advantages and disadvantages for given instrumental limitations and sample properties. Thus the choice of method depends on the situation at hand and we discuss which parameters should be considered for optimization.
Collapse
Affiliation(s)
- Frauke D Breitgoff
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Katharina Keller
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland.
| | - Mian Qi
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Daniel Klose
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Maxim Yulikov
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| | - Adelheid Godt
- Faculty of Chemistry and Center for Molecular Materials (CM(2)), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Gunnar Jeschke
- ETH Zürich, Lab. Phys. Chem., Vladimir-Prelog-Weg 2, 8063 Zürich 3 Switzerland
| |
Collapse
|
6
|
Hetzke T, Bowen AM, Vogel M, Gauger M, Suess B, Prisner TF. Binding of tetracycline to its aptamer determined by 2D-correlated Mn 2+ hyperfine spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 303:105-114. [PMID: 31039520 DOI: 10.1016/j.jmr.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
The tetracycline-binding RNA aptamer (TC-aptamer) binds its cognate ligand the antibiotic tetracycline (TC) via a Mg2+ or Mn2+ ion with high affinity at high divalent metal ion concentrations (KD=800pM, ⩾10 mM). These concentrations lie above the physiological divalent metal ion concentration of ca. 1 mM and it is known from literature, that the binding affinity decreases upon decreasing the divalent metal ion concentration. This work uses a Mn2+ concentration of 1 mM and 1D-hyperfine experiments reveal two pronounced 31P couplings from the RNA besides the 13C signal of 13C-labeled TC. From these 1D-hyperfine data alone, however, no conclusions can be drawn on the binding of TC. Either TC may bind via Mn2+ to the aptamer or TC may form a free Mn-TC complex and some Mn2+ also binds to the aptamer. In this work, we show using 2D-correlated hyperfine spectroscopy at Q-band frequencies (34 GHz), that the 13C and 31P signals can be correlated; thus arising from a single species. We use THYCOS (triple hyperfine correlation spectroscopy) and 2D ELDOR-detected NMR (2D electron electron double resonance detected NMR) for this purpose showing that they are suitable techniques to correlate two different nuclear spin species (13C and 31P) on two different molecules (RNA and TC) to the same electron spin (Mn2+). Out of the two observed 31P-hyperfine couplings, only one shows a clear correlation to 13C. Although THYCOS and 2D EDNMR yield identical results, 2D EDNMR is far more sensitive. THYCOS spectra needed a time factor of ×20 in comparison to 2D EDNMR to achieve a comparable signal-to-noise.
Collapse
Affiliation(s)
- Thilo Hetzke
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alice M Bowen
- Center for Advanced Electron Spin Resonance (CAESR), Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Marc Vogel
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Maximilian Gauger
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Beatrix Suess
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Colaneri MJ, Vitali J. Probing Axial Water Bound to Copper in Tutton Salt Using Single Crystal 17O-ESEEM Spectroscopy. J Phys Chem A 2018; 122:6214-6224. [PMID: 29989412 DOI: 10.1021/acs.jpca.8b04075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electron spin-echo envelope modulation (ESEEM) signals attributed to axial water bound to Cu2+ have been detected and analyzed in Cu(II)-doped 17O-water-enriched potassium zinc sulfate hexahydrate (Tutton salt) crystals. The magnetic field orientation dependences of low frequency modulations were measured to fit hyperfine and quadrupole coupling tensors of a 17O ( I = 5/2) nucleus. The hyperfine tensor ( A xx, A yy, A zz: 0.13, 0.23, -3.81 MHz) exhibits almost axial symmetry with the largest value directed normal to the metal equatorial plane in the host structure. Comparisons with quantum chemical calculations position this nucleus about 2.3 Å from the copper. The isotropic coupling (-1.15 MHz) is small and reflects the weak axial water interaction with a dx2-y2 unshared orbital of copper. The 17O-water quadrupole interaction parameters ( e2 qQ/ h = 6.4 MHz and η = 0.93) are close to the average of those found in a variety of solid hydrates. In addition, the coupling tensor directions correlate very closely with the O8 water geometry, with the maximum quadrupole direction 3° from the water plane normal, and its minimum coupling about 2° from the H-H direction. In almost all previous magnetic resonance 17O-water studies, the quadrupole tensor orientation was based on theoretical considerations. This work represents one of the few experimental confirmations of its principal axis frame. When Cu2+ dopes into the Tutton salt, a Jahn-Teller distortion interchanges the relative long and intermediate metal O7 and O8 bond lengths of the zinc host. Therefore, only those unit cells containing the impurity conform to the pure copper Tutton structure. This study provides further support for this model. Moreover, coupling interactions from distant H217O such as in the present case have important implications in studies of copper enzymes and proteins where substrates have been proposed to displace weakly bound water in the active site.
Collapse
Affiliation(s)
- Michael J Colaneri
- Department of Chemistry and Physics , State University of New York at Old Westbury , Old Westbury , New York 11568 , United States
| | - Jacqueline Vitali
- Department of Physics and Department of Biological, Geological and Environmental Sciences , Cleveland State University , Cleveland , Ohio 44115 , United States
| |
Collapse
|
8
|
Un S, Bruch EM. How Bonding in Manganous Phosphates Affects their Mn(II)-(31)P Hyperfine Interactions. Inorg Chem 2015; 54:10422-8. [PMID: 26488236 DOI: 10.1021/acs.inorgchem.5b01864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Manganous phosphates have been postulated to play an important role in cells as antioxidants. In situ Mn(II) electron-nuclear double resonance (ENDOR) spectroscopy has been used to measure their speciation in cells. The analyses of such ENDOR spectra and the quantification of cellular Mn(II) phosphates has been based on comparisons to in vitro model complexes and heuristic modeling. In order to put such analyses on a more physical and theoretical footing, the Mn(II)-(31)P hyperfine interactions of various Mn(II) phosphate complexes have been measured by 95 GHz ENDOR spectroscopy. The dipolar components of these interactions remained relatively constant as a function of pH, esterification, and phosphate chain length, while the isotropic contributions were significantly affected. Counterintuitively, although the manganese-phosphate bonds are weakened by protonation and esterification, they lead to larger isotropic values, indicating higher unpaired-electron spin densities at the phosphorus nuclei. By comparison, extending the phosphate chain with additional phosphate groups lowers the spin density. Density functional theory calculations of model complexes quantitatively reproduced the measured hyperfine couplings and provided detailed insights into how bonding in Mn(II) phosphate complexes modulates the electron-spin polarization and consequently their isotropic hyperfine couplings. These results show that various classes of phosphates can be identified by their ENDOR spectra and provide a theoretical framework for understanding the in situ (31)P ENDOR spectra of cellular Mn(II) complexes.
Collapse
Affiliation(s)
- Sun Un
- Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay , F-91198 Gif-sur-Yvette, France
| | - Eduardo M Bruch
- Department of Biochemistry, Biophysics and Structural Biology, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Saclay , F-91198 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Akhmetzyanov D, Plackmeyer J, Endeward B, Denysenkov V, Prisner TF. Pulsed electron–electron double resonance spectroscopy between a high-spin Mn2+ ion and a nitroxide spin label. Phys Chem Chem Phys 2015; 17:6760-6. [DOI: 10.1039/c4cp05362a] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PELDOR experiments on a Mn2+–nitroxide complex were performed. At 1.2 T the Mn2+–nitroxide distance was determined by probing both spins. PELDOR obtained at 6.4 T provided as well the orientation of the nitroxide with respect to the dipolar vector connecting the spins.
Collapse
Affiliation(s)
- D. Akhmetzyanov
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - J. Plackmeyer
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - B. Endeward
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - V. Denysenkov
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| | - T. F. Prisner
- Goethe University Frankfurt am Main
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance
- 60438 Frankfurt am Main
- Germany
| |
Collapse
|
10
|
Abstract
Electron-nuclear double resonance (ENDOR) is a method that probes the local structure of paramagnetic centers via their hyperfine interactions with nearby magnetic nuclei. Here we describe the use of this technique to structurally characterize the ATPase active site of the RNA helicase DbpA, where Mg(2+)-ATP binds. This is achieved by substituting the EPR (electron paramagnetic resonance) silent Mg(2+) ion with paramagnetic, EPR active, Mn(2+) ion. (31)P ENDOR provides the interaction of the Mn(2+) with the nucleotide (ADP, ATP and its analogs) through the phosphates. The ENDOR spectra clearly distinguish between ATP- and ADP-binding modes. In addition, by preparing (13)C-enriched DbpA, (13)C ENDOR is used to probe the interaction of the Mn(2+) with protein residues. This combination allows tracking structural changes in the Mn(2+) coordination shell, in the ATPase site, in different states of the protein, namely with and without RNA and with different ATP analogs. Here, a detailed description of sample preparation and the ENDOR measurement methodology is provided, focusing on measurements at W-band (95 GHz) where sensitivity is high and spectral interpretations are relatively simple.
Collapse
|
11
|
Kaminker I, Sushenko A, Potapov A, Daube S, Akabayov B, Sagi I, Goldfarb D. Probing conformational variations at the ATPase site of the RNA helicase DbpA by high-field electron-nuclear double resonance spectroscopy. J Am Chem Soc 2011; 133:15514-23. [PMID: 21819147 DOI: 10.1021/ja204291d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The RNA helicase DbpA promotes RNA remodeling coupled to ATP hydrolysis. It is unique because of its specificity to hairpin 92 of 23S rRNA (HP92). Although DbpA kinetic pathways leading to ATP hydrolysis and RNA unwinding have been recently elucidated, the molecular (atomic) basis for the coupling of ATP hydrolysis to RNA remodeling remains unclear. This is, in part, due to the lack of detailed structural information on the ATPase site in the presence and absence of RNA in solution. We used high-field pulse ENDOR (electron-nuclear double resonance) spectroscopy to detect and analyze fine conformational changes in the protein's ATPase site in solution. Specifically, we substituted the essential Mg(2+) cofactor in the ATPase active site for paramagnetic Mn(2+) and determined its close environment with different nucleotides (ADP, ATP, and the ATP analogues ATPγS and AMPPnP) in complex with single- and double-stranded RNA. We monitored the Mn(2+) interactions with the nucleotide phosphates through the (31)P hyperfine couplings and the coordination by protein residues through (13)C hyperfine coupling from (13)C-enriched DbpA. We observed that the nucleotide binding site of DbpA adopts different conformational states upon binding of different nucleotides. The ENDOR spectra revealed a clear distinction between hydrolyzable and nonhydrolyzable nucleotides prior to RNA binding. Furthermore, both the (13)C and the (31)P ENDOR spectra were found to be highly sensitive to changes in the local environment of the Mn(2+) ion induced by the hydrolysis. More specifically, ATPγS was efficiently hydrolyzed upon binding of RNA, similar to ATP. Importantly, the Mn(2+) cofactor remains bound to a single protein side chain and to one or two nucleotide phosphates in all complexes, whereas the remaining metal coordination positions are occupied by water. The conformational changes in the protein's ATPase active site associated with the different DbpA states occur in remote coordination shells of the Mn(2+) ion. Finally, a competitive Mn(2+) binding site was found for single-stranded RNA construct.
Collapse
Affiliation(s)
- Ilia Kaminker
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
12
|
Doan PE. Combining steady-state and dynamic methods for determining absolute signs of hyperfine interactions: pulsed ENDOR Saturation and Recovery (PESTRE). JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 208:76-86. [PMID: 21075026 PMCID: PMC3023343 DOI: 10.1016/j.jmr.2010.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 08/10/2010] [Accepted: 10/08/2010] [Indexed: 05/30/2023]
Abstract
The underlying causes of asymmetric intensities in Davies pulsed ENDOR spectra that are associated with the signs of the hyperfine interaction are reinvestigated. The intensity variations in these asymmetric ENDOR patterns are best described as shifts in an apparent baseline intensity that occurs dynamically following on-resonance ENDOR transitions. We have developed an extremely straightforward multi-sequence protocol that is capable of giving the sign of the hyperfine interaction by probing a single ENDOR transition, without reference to its partner transition. This technique, Pulsed ENDOR Saturation and Recovery (PESTRE) monitors dynamic shifts in the 'baseline' following measurements at a single RF frequency (single ENDOR peak), rather than observing anomalous ENDOR intensity differences between the two branches of an ENDOR response. These baseline shifts, referred to as dynamic reference levels (DRLs), can be directly tied to the electron-spin manifold from which that ENDOR transition arises. The application of this protocol is demonstrated on (57)Fe ENDOR of a 2Fe-2S ferredoxin. We use the (14)N ENDOR transitions of the S = 3/2[Fe(II)NO](2+) center of the non-heme iron enzyme, anthranilate dioxygenase (AntDO) to examine the details of the relaxation model using PESTRE.
Collapse
Affiliation(s)
- Peter E Doan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, United States.
| |
Collapse
|
13
|
Lyubenova S, Maly T, Zwicker K, Brandt U, Ludwig B, Prisner T. Multifrequency pulsed electron paramagnetic resonance on metalloproteins. Acc Chem Res 2010; 43:181-9. [PMID: 19842617 DOI: 10.1021/ar900050d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metalloproteins often contain metal centers that are paramagnetic in some functional state of the protein; hence electron paramagnetic resonance (EPR) spectroscopy can be a powerful tool for studying protein structure and function. Dipolar spectroscopy allows the determination of the dipole-dipole interactions between metal centers in protein complexes, revealing the structural arrangement of different paramagnetic centers at distances of up to 8 nm. Hyperfine spectroscopy can be used to measure the interaction between an unpaired electron spin and nuclear spins within a distance of 0.8 nm; it therefore permits the characterization of the local structure of the paramagnetic center's ligand sphere with very high precision. In this Account, we review our laboratory's recent applications of both dipolar and hyperfine pulsed EPR methods to metalloproteins. We used pulsed dipolar relaxation methods to investigate the complex of cytochrome c and cytochrome c oxidase, a noncovalent protein-protein complex involved in mitochondrial electron-transfer reactions. Hyperfine sublevel correlation spectroscopy (HYSCORE) was used to study the ligand sphere of iron-sulfur clusters in complex I of the mitochondrial respiratory chain and substrate binding to the molybdenum enzyme polysulfide reductase. These examples demonstrate the potential of the two techniques; however, they also highlight the difficulties of data interpretation when several paramagnetic species with overlapping spectra are present in the protein. In such cases, further approaches and data are very useful to enhance the information content. Relaxation filtered hyperfine spectroscopy (REFINE) can be used to separate the individual components of overlapping paramagnetic species on the basis of differences in their longitudinal relaxation rates; it is applicable to any kind of pulsed hyperfine or dipolar spectroscopy. Here, we show that the spectra of the iron-sulfur clusters in complex I can be separated by this method, allowing us to obtain hyperfine (and dipolar) information from the individual species. Furthermore, performing pulsed EPR experiments at different magnetic fields is another important tool to disentangle the spectral components in such complex systems. Despite the fact that high magnetic fields do not usually lead to better spectral separation for metal centers, they provide additional information about the relative orientation of different paramagnetic centers. Our high-field EPR studies on cytochrome c oxidase reveal essential information regarding the structural arrangement of the binuclear Cu(A) center with respect to both the manganese ion within the enzyme and the cytochrome in the protein-protein complex with cytochrome c.
Collapse
Affiliation(s)
- Sevdalina Lyubenova
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Thorsten Maly
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Klaus Zwicker
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Ulrich Brandt
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Bernd Ludwig
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| | - Thomas Prisner
- Cluster of Excellence Macromolecular Complexes, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Hunsicker-Wang L, Vogt M, Derose VJ. EPR methods to study specific metal-ion binding sites in RNA. Methods Enzymol 2009; 468:335-67. [PMID: 20946777 DOI: 10.1016/s0076-6879(09)68016-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The properties of metal-ion interactions with RNA can be explored by spectroscopic methods. In this chapter, we describe the use of paramagnetic Mn(2+) ions and electron paramagnetic resonance (EPR)-based techniques to monitor the association of Mn(2+) with RNA and related nucleotides. Solution EPR methods are used to determine the numbers of Mn(2+) ions associating with RNA. For RNA poised with a single-bound Mn(2+), low-temperature EPR characteristics provide information about the asymmetry of the Mn(2+) coordination site. To identify the RNA groups coordinating to the Mn(2+) ion, ENDOR (electron nuclear double resonance) and ESEEM (electron spin echo envelope modulation) methods are applied. Both continuous-wave (CW) and electron spin echo (ESE)-detected ENDOR methods are described. This chapter includes practical details for RNA sample preparation, including isotope substitution and cryoprotection, and an overview of data acquisition and analysis methods used in these techniques, as well as examples from the current literature.
Collapse
|
15
|
Kaminker I, Potapov A, Feintuch A, Vega S, Goldfarb D. Population transfer for signal enhancement in pulsed EPR experiments on half integer high spin systems. Phys Chem Chem Phys 2009; 11:6799-806. [DOI: 10.1039/b906177k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Fritscher J, Hrobárik P, Kaupp M. Computational studies of EPR parameters for paramagnetic molybdenum complexes. II. Larger MoV systems relevant to molybdenum enzymes. Inorg Chem 2007; 46:8146-61. [PMID: 17725345 DOI: 10.1021/ic070341e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The careful validation of modern density functional methods for the computation of electron paramagnetic resonance (EPR) parameters in molybdenum complexes has been extended to a number of low-symmetry MoV systems that model molybdoenzyme active sites. Both g and hyperfine tensors tend to be reproduced best by hybrid density functionals with about 30-40% exact-exchange admixture, with no particular spin contamination problems encountered. Spin-orbit corrections to hyperfine tensors are mandatory for quantitative and, in some cases, even for qualitative agreement. The g11 (g||) component of the g tensor tends to come out too positive when spin-orbit coupling is included only to leading order in perturbation theory. Compared to single-crystal experiments, the calculations reproduce both g- and hyperfine-tensor orientations well, both relative to each other and to the molecular framework. This is significant, as simulations of the EPR spectra of natural-abundance frozen-solution samples frequently do not allow a reliable determination of the hyperfine tensors. These may now be extracted based on the quantum-chemically calculated parameters. In a number of cases, revised simulations of the experimental spectra have brought theory and experiment into substantially improved agreement. Systems with two terminal oxo ligands, and to some extent with an oxo and a sulfido ligand, have been confirmed to exhibit particularly large negative Deltag33 shifts and thus large g anisotropies. This is discussed in the context of the experimental data for xanthine oxidase.
Collapse
Affiliation(s)
- Jörg Fritscher
- Institute of Physical and Theoretical Chemistry and Center for Biological Magnetic Resonance, J. W. Goethe University of Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt, Germany.
| | | | | |
Collapse
|
17
|
Fritscher J, Hrobarik P, Kaupp M. Computational Studies of Electron Paramagnetic Resonance Parameters for Paramagnetic Molybdenum Complexes. 1. Method Validation on Small and Medium-Sized Systems. J Phys Chem B 2007; 111:4616-29. [PMID: 17408258 DOI: 10.1021/jp070638y] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variety of density functional methods have been evaluated in the computation of electronic g-tensors and molybdenum hyperfine couplings for systems ranging from the Mo atom through MoIIIN, [MoVOCl4]-, and [MoVOF5]2- to two larger MoV complexes MoXLCl2 (X=O, S; L=tris(3,5-dimethylpyrazolyl)hydroborate anion). In particular, the influence of the molybdenum basis set and of various exchange-correlation functionals with variable admixtures of Hartree-Fock exchange on the computed EPR parameters have been evaluated in detail. Careful basis-set studies have provided a moderate-sized 12s6p5d all-electron basis on molybdenum that gives hyperfine tensors in excellent agreement with much larger basis sets and that will be useful for calculations on larger systems. The best agreement with experimental data for both hyperfine and g-tensors is obtained with hybrid functionals containing approximately 30-40% Hartree-Fock exchange. Only for MoSLCl2 does increasing spin contamination with increasing exact-exchange admixture restrict the achievable computational accuracy. In all cases, spin-orbit corrections to the hyperfine tensors are sizable and have to be included in accurate calculations. Scalar relativistic effects enhance the isotropic Mo hyperfine coupling by approximately 15-20%. Two-component g-tensor calculations with variational inclusion of spin-orbit coupling show that the Deltag parallel components in [MoVOCl4]- and [MoVOF5]2- depend on higher-order spin-orbit contributions and are thus described insufficiently by the usual second-order perturbation approaches. Computed orientations of g- and hyperfine tensors relative to each other and to the molecular framework for the MoXLCl2 complexes provide good agreement between theory and single-crystal electron paramagnetic resonance experiments. In these cases, the hyperfine tensor orientations are influenced only slightly by spin-orbit effects.
Collapse
Affiliation(s)
- Jörg Fritscher
- Institute of Physical and Theoretical Chemistry, J. W. Goethe University of Frankfurt, and Center for Biological Magnetic Resonance, Max-von-Laue-Strasse 7, D-60438 Frankfurt, Germany.
| | | | | |
Collapse
|