1
|
Zhou Z, Chen Z, Li Y, Mao X, Chen J, Zhou X, Zhang B. Advances in solubilization and stabilization techniques for structural and functional studies of membrane proteins. PeerJ 2025; 13:e19211. [PMID: 40196297 PMCID: PMC11974516 DOI: 10.7717/peerj.19211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Membrane proteins (MPs) are indispensable in various biological processes, including material transport, signal transduction, immune response, and cell recognition. Unraveling the intricate interplay between MP structure and function is pivotal for advancing fundamental biology and pharmaceutical research. However, the inherent hydrophobicity and complex lipid interactions of MPs pose significant challenges in determining their three-dimensional configurations. In recent years, cryo-electron microscopy (cryo-EM) has emerged as a powerful alternative for structural elucidation, overcoming the challenges faced by traditional techniques such as X-ray crystallography and nuclear magnetic resonance (NMR). This review centers on advanced solubilization and stabilization techniques for MPs, as well as MP functions and expression systems, highlighting the strengths and limitations of conventional detergents, liposomes, bicelles, and nanodiscs, alongside emerging alternatives like styrene-maleic acid (SMA) and diisobutylene-maleic acid (DIBMA). Notably, SMA and its derivatives provide promising detergent-free alternatives that preserve protein stability and native conformation, which is particularly valuable for accurate cryo-EM characterization of complex MPs. This work is designed to serve as both an updated resource for researchers already immersed in the field and an accessible entry point for those new to MP research. By consolidating recent advancements and highlighting critical gaps, this review aims to inspire future investigations that push the boundaries of MP structural and functional studies, ultimately driving innovations in drug discovery and therapeutic development.
Collapse
Affiliation(s)
- Zhuanghan Zhou
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Zheng Chen
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Yiran Li
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xingyue Mao
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Junjie Chen
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Xuan Zhou
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Bo Zhang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University of New Jersey, Union, NJ, United States of America
| |
Collapse
|
2
|
Karimi R, Coupland CE, Rubinstein JL. Vesicle Picker: A tool for efficient identification of membrane protein complexes in vesicles. J Struct Biol 2024; 216:108148. [PMID: 39481498 DOI: 10.1016/j.jsb.2024.108148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/15/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
Electron cryomicroscopy (cryo-EM) has recently allowed determination of near-atomic resolution structures of membrane proteins and protein complexes embedded in lipid vesicles. However, particle selection from electron micrographs of these vesicles can be challenging due to the strong signal contributed from the lipid bilayer. This challenge often requires iterative and laborious particle selection workflows to generate a dataset of high-quality particle images for subsequent analysis. Here we present Vesicle Picker, an open-source program built on the Segment Anything model. Vesicle Picker enables automatic identification of vesicles in cryo-EM micrographs with high recall and precision. It then exhaustively selects all potential particle locations, either at the perimeter or uniformly over the surface of the projection of the vesicle. The program is designed to interface with cryoSPARC, which performs both upstream micrograph processing and downstream single particle image analysis. We demonstrate Vesicle Picker's utility by determining a high-resolution map of the vacuolar-type ATPase from micrographs of native synaptic vesicles (SVs) and identifying an additional protein or protein complex in the SV membrane.
Collapse
Affiliation(s)
- Ryan Karimi
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto M5G 1L7, Canada
| | - Claire E Coupland
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - John L Rubinstein
- Molecular Medicine Program, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Medical Biophysics, The University of Toronto, Toronto M5G 1L7, Canada; Department of Biochemistry, The University of Toronto, Toronto M5S 1A8, Canada.
| |
Collapse
|
3
|
Syngkli S, Das B. Purification and characterization of human glycerol 3-phosphate dehydrogenases (mitochondrial and cytosolic) by NAD +/NADH redox method. Biochimie 2023; 214:199-215. [PMID: 37481063 DOI: 10.1016/j.biochi.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/20/2023] [Indexed: 07/24/2023]
Abstract
Glycerol 3-phosphate (G3P) shuttle is composed of mGPDH and cGPDH and serves as the interface between carbohydrate- and lipid-metabolism. Recently, these metabolic enzymes have been implicated in type II diabetes mellitus but the detailed kinetic parameters and crystal structure of human mGPDH is unknown, though fewer studies on cGPDH are available. To characterize these enzymes, the human mGPDH and cGPDH genes were optimized and cloned into the pET-SUMO vector and pET-24a(+) vector, respectively, and over-expressed in Escherichia coli BL21 (DE3). However, SUMO-mGPDH was expressed as inclusion bodies. Hence, various culture parameters, solubilizing agents and expression vectors were used to solubilize the protein but they did not produce functional SUMO-mGPDH. Over-expression of SUMO-mGPDH along with molecular chaperone (pG-KJE8) produced a functional SUMO-mGPDH. The functional SUMO-mGPDH was purified and characterized using NAD+/NADH redox method. cGPDH was also over-expressed and purified for its characterization. DLS analysis and CD spectra of the purified proteins were performed. The mGPDH was a monomeric enzyme with MW of ∼74 kDa and displayed optimal activity in the Tris-HCl buffer (pH 7.4); while, cGPDH was a homodimer with a monomeric MW of ∼37 kDa and showed optimal activity in imidazole buffer (pH 8.0). The Kmapp was 0.475 mM for G3P, and 0.734 mM for DHAP. These methods may be used to characterize these enzymes to understand their role in metabolic disorders.
Collapse
Affiliation(s)
- Superior Syngkli
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Bidyadhar Das
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
4
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
5
|
Banerjee A, Lu CY, Dutt M. A hybrid coarse-grained model for structure, solvation and assembly of lipid-like peptides. Phys Chem Chem Phys 2021; 24:1553-1568. [PMID: 34940778 DOI: 10.1039/d1cp04205j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reconstituted photosynthetic proteins which are activated upon exposure to solar energy hold enormous potential for powering future solid state devices and solar cells. The functionality and integration of these proteins into such devices has been successfully enabled by lipid-like peptides. Yet, a fundamental understanding of the organization of these peptides with respect to the photosynthetic proteins and themselves remains unknown and is critical for guiding the design of such light-activated devices. This study investigates the relative organization of one such peptide sequence V6K2 (V: valine and K: lysine) within assemblies. Given the expansive spatiotemporal scales associated with this study, a hybrid coarse-grained (CG) model which captures the structure, conformation and aggregation of the peptide is adopted. The CG model uses a combination of iterative Boltzmann inversion and force matching to provide insight into the relative organization of V6K2 in assemblies. The CG model reproduces the structure of a V6K2 peptide sequence along with its all atom (AA) solvation structure. The relative organization of multiple peptides in an assembly, as captured by CG simulations, is in agreement with corresponding results from AA simulations. Also, a backmapping procedure reintroduces the AA details of the peptides within the aggregates captured by the CG model to demonstrate the relative organization of the peptides. Furthermore, a large number of peptides self-assemble into an elongated micelle in the CG simulation, which is consistent with experimental findings. The coarse-graining procedure is tested for transferability to longer peptide sequences, and hence can be extended to other amphiphilic peptide sequences.
Collapse
Affiliation(s)
- Akash Banerjee
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Chien Yu Lu
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| | - Meenakshi Dutt
- Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
6
|
Gelain F, Luo Z, Zhang S. Self-Assembling Peptide EAK16 and RADA16 Nanofiber Scaffold Hydrogel. Chem Rev 2020; 120:13434-13460. [DOI: 10.1021/acs.chemrev.0c00690] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fabrizio Gelain
- Institute for Stem-cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71013, Italy
- Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Piazza dell’Ospedale Maggiore, 3, Milan 20162, Italy
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuguang Zhang
- Laboratory of Molecular Architecture, Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
7
|
Zhang S. Self-assembling peptides: From a discovery in a yeast protein to diverse uses and beyond. Protein Sci 2020; 29:2281-2303. [PMID: 32939884 PMCID: PMC7586918 DOI: 10.1002/pro.3951] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Well-defined nanofiber scaffold hydrogels made of self-assembling peptides have found their way into various 3D tissue culture and clinical products. I reflect initial puzzlement of the unexpected discovery, gradual understanding of how these peptides undergo self-assembly, to eventually translating designer biological scaffolds into commercial products. Peptides are ubiquitous in nature and useful in many fields. They are found as hormones, pheromones, antibacterial, and antifungal agents in innate immunity systems, toxins, as well anti-inset pesticides. However, the concept of peptides as materials was not recognized until 1990 when a self-assembling peptide as a repeating segment in a yeast protein was serendipitously discovered. The peptide materials have bona fide materials properties and are made from simple amino acids with well-ordered nanostructures under physiological conditions. Some current applications include: (a) Real 3D tissue cell cultures of diverse tissue cells and various stem cells; (b) reparative and regenerative medicine as well as tissue engineering; (c) 3D tissue printing; (d) sustained releases of small molecules, growth factors and monoclonal antibodies; and (e) accelerated wound healing of skin and diabetic ulcers as well as instant hemostasis in surgery. Self-assembling peptide nanobiotechnology will likely continue to expand in many directions in the coming years. I will also briefly introduce my current research using a simple QTY code for membrane protein design. I am greatly honored and humbled to be invited to contribute an Award Winner Recollection of the 2020 Emil Thomas Kaiser Award from the Protein Society.
Collapse
Affiliation(s)
- Shuguang Zhang
- Laboratory of Molecular ArchitectureMedia Lab, Massachusetts Institute of Technology77 Massachusetts Avenue E15‐391CambridgeMassachusetts02139‐4306USA
| |
Collapse
|
8
|
Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213418] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Kehlenbeck DM, Josts I, Nitsche J, Busch S, Forsyth VT, Tidow H. Comparison of lipidic carrier systems for integral membrane proteins - MsbA as case study. Biol Chem 2020; 400:1509-1518. [PMID: 31141477 DOI: 10.1515/hsz-2019-0171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/15/2019] [Indexed: 01/13/2023]
Abstract
Membrane protein research suffers from the drawback that detergents, which are commonly used to solubilize integral membrane proteins (IMPs), often lead to protein instability and reduced activity. Recently, lipid nanodiscs (NDs) and saposin-lipoprotein particles (Salipro) have emerged as alternative carrier systems that keep membrane proteins in a native-like lipidic solution environment and are suitable for biophysical and structural studies. Here, we systematically compare nanodiscs and Salipros with respect to long-term stability as well as activity and stability of the incorporated membrane protein using the ABC transporter MsbA as model system. Our results show that both systems are suitable for activity measurements as well as structural studies in solution. Based on our results we suggest screening of different lipids with respect to activity and stability of the incorporated IMP before performing structural studies.
Collapse
Affiliation(s)
- Dominique-Maurice Kehlenbeck
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Julius Nitsche
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Geesthacht, Lichtenbergstr. 1, 85747 Garching bei München, Germany
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue-Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France.,School of Life Sciences, Keele University, Staffordshire ST5 5BG, England
| | - Henning Tidow
- The Hamburg Centre for Ultrafast Imaging and Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| |
Collapse
|
10
|
Bozovičar K, Bratkovič T. Evolving a Peptide: Library Platforms and Diversification Strategies. Int J Mol Sci 2019; 21:E215. [PMID: 31892275 PMCID: PMC6981544 DOI: 10.3390/ijms21010215] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/22/2019] [Accepted: 12/25/2019] [Indexed: 12/22/2022] Open
Abstract
Peptides are widely used in pharmaceutical industry as active pharmaceutical ingredients, versatile tools in drug discovery, and for drug delivery. They find themselves at the crossroads of small molecules and proteins, possessing favorable tissue penetration and the capability to engage into specific and high-affinity interactions with endogenous receptors. One of the commonly employed approaches in peptide discovery and design is to screen combinatorial libraries, comprising a myriad of peptide variants of either chemical or biological origin. In this review, we focus mainly on recombinant peptide libraries, discussing different platforms for their display or expression, and various diversification strategies for library design. We take a look at well-established technologies as well as new developments and future directions.
Collapse
Affiliation(s)
| | - Tomaž Bratkovič
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
11
|
Trutneva K, Shleeva M, Nikitushkin V, Demina G, Kaprelyants A. Protein Composition of Mycobacterium smegmatis Differs Significantly Between Active Cells and Dormant Cells With Ovoid Morphology. Front Microbiol 2018; 9:2083. [PMID: 30233550 PMCID: PMC6131537 DOI: 10.3389/fmicb.2018.02083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/14/2018] [Indexed: 01/07/2023] Open
Abstract
Mycobacteria are able to form dormant cells, which survive for a long time without multiplication. The molecular mechanisms behind prolonged survival of dormant cells are not fully described. In particular, little information is known on biochemical processes which might take place in cells under dormancy. To gain insight into this problem, Mycobacterium smegmatis cells in deep dormant state were obtained after gradual acidification of the growth medium in prolonged stationary phase followed by 1 month of storage at room temperature. Such cells were characterized by low metabolic activity, including respiration, resistance to antibiotics, and altered morphology. The protein composition of cytoplasm and membrane fractions obtained from active and dormant cells were compared by 2D electrophoresis. Almost half of the proteins found in the proteome of dormant cells were absent in that of active cells. This result differs significantly from published results obtained in other studies employing different models of mycobacterium dormancy. This discrepancy could be explained by a deeper dormancy developed in the present model. A feature of a “dormant proteome” is high representation of enzymes involved in glycolysis and defense systems that inactivate or detoxify reactive oxygen and nitrogen species, aldehydes, and oxidized lipids. Dormant mycobacteria are enriched by degradative enzymes, which could eliminate damaged molecules, or the products of such degradation could be reutilized by the cell during prolonged storage. We suggest that some enzymes in dormant cells are inactive, having been used upon transition to the dormant state, or proteins stored in dormant cells for further cell reactivation. At the same time, some proteins could be functional and play roles in maintenance of cell metabolism, albeit at a very slow rate. This study provides a clue as to which biochemical processes could be active under dormancy to ensure long-term viability of dormant mycobacteria.
Collapse
Affiliation(s)
- Kseniya Trutneva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Margarita Shleeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Vadim Nikitushkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Galina Demina
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Arseny Kaprelyants
- A.N. Bach Institute of Biochemistry, Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Qiu F, Chen Y, Tang C, Zhao X. Amphiphilic peptides as novel nanomaterials: design, self-assembly and application. Int J Nanomedicine 2018; 13:5003-5022. [PMID: 30214203 PMCID: PMC6128269 DOI: 10.2147/ijn.s166403] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Designer self-assembling peptides are a category of emerging nanobiomaterials which have been widely investigated in the past decades. In this field, amphiphilic peptides have received special attention for their simplicity in design and versatility in application. This review focuses on recent progress in designer amphiphilic peptides, trying to give a comprehensive overview about this special type of self-assembling peptides. By exploring published studies on several typical types of amphiphilic peptides in recent years, herein we discuss in detail the basic design, self-assembling behaviors and the mechanism of amphiphilic peptides, as well as how their nanostructures are affected by the peptide characteristics or environmental parameters. The applications of these peptides as potential nanomaterials for nanomedicine and nanotechnology are also summarized.
Collapse
Affiliation(s)
- Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu 610041, China, .,Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| | - Yongzhu Chen
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengkang Tang
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, , .,Core Facility of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu 610041, China, ,
| |
Collapse
|
13
|
Abstract
Peptides are ubiquitous in nature and useful in many fields, from agriculture as pesticides, in medicine as antibacterial and antifungal drugs founded in the innate immune systems, to medicinal chemistry as hormones. However, the concept of peptides as materials was not recognized until 1990 when a self-assembling peptide as a repeating segment in a yeast protein was serendipitously discovered. Peptide materials are so called because they have bona fide materials property and are made from simple amino acids with well-ordered nanostructures under physiological conditions. These structures include well-ordered nanofibres, nanotubes and nanovesicles. These peptide materials have been used for: (i) three-dimensional tissue cell cultures of primary cells and stem cells, (ii) three-dimensional tissue printing, (iii) sustained releases of small molecules, growth factors, monoclonal antibody and siRNA, (iv) accelerated wound healing in reparative and regenerative medicine as well as tissue engineering, (v) used to stabilize membrane proteins including difficult G-protein coupled receptors and photosystem I for designing nanobiodevices, (vi) a few self-assembling peptides have been used in human clinical trials for accelerated wound healings in surgical uses and (vii) in human clinical trials for siRNA delivery for treatment of cancers. It is likely that these self-assembling peptides will open doors for more and more diverse uses. The field of self-assembling peptides is growing in a number of directions in areas of materials, synthetic biology, and clinical medicine and beyond.
Collapse
Affiliation(s)
- Shuguang Zhang
- Laboratory of Molecular Architecture, Canter for Bits and Atoms, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
14
|
Veith K, Martinez Molledo M, Almeida Hernandez Y, Josts I, Nitsche J, Löw C, Tidow H. Lipid-like Peptides can Stabilize Integral Membrane Proteins for Biophysical and Structural Studies. Chembiochem 2017; 18:1735-1742. [PMID: 28603929 PMCID: PMC5601290 DOI: 10.1002/cbic.201700235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Indexed: 12/30/2022]
Abstract
A crucial bottleneck in membrane protein structural biology is the difficulty in identifying a detergent that can maintain the stability and functionality of integral membrane proteins (IMPs). Detergents are poor membrane mimics, and their common use in membrane protein crystallography may be one reason for the challenges in obtaining high-resolution crystal structures of many IMP families. Lipid-like peptides (LLPs) have detergent-like properties and have been proposed as alternatives for the solubilization of G protein-coupled receptors and other membrane proteins. Here, we systematically analyzed the stabilizing effect of LLPs on integral membrane proteins of different families. We found that LLPs could significantly stabilize detergent-solubilized IMPs in vitro. This stabilizing effect depended on the chemical nature of the LLP and the intrinsic stability of a particular IMP in the detergent. Our results suggest that screening a subset of LLPs is sufficient to stabilize a particular IMP, which can have a substantial impact on the crystallization and quality of the crystal.
Collapse
Affiliation(s)
- Katharina Veith
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Maria Martinez Molledo
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Yasser Almeida Hernandez
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Inokentijs Josts
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Julius Nitsche
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
- Department of Medical Biochemistry and BiophysicsKarolinska InstitutetScheeles väg 217177StockholmSweden
| | - Henning Tidow
- The Hamburg Centre for Ultrafast ImagingDepartment of ChemistryInstitute for Biochemistry and Molecular BiologyUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| |
Collapse
|
15
|
Sun L, Zheng C, Webster TJ. Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls. Int J Nanomedicine 2016; 12:73-86. [PMID: 28053525 PMCID: PMC5191618 DOI: 10.2147/ijn.s117501] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last several decades, a great number of advances have been made in the area of self-assembled supramolecules for regenerative medicine. Such advances have involved the design, preparation, and characterization of brand new self-assembled peptide nanomaterials for a variety of applications. Among all biomolecules considered for self-assembly applications, peptides have attracted a great deal of attention as building blocks for bottom-up fabrication, due to their versatility, ease of manufacturing, low costs, tunable structures, and versatile properties. Herein, some of the more exciting new designs of self-assembled peptides and their associated unique features are reviewed and several promising applications of how self-assembled peptides are advancing drug delivery, tissue engineering, antibacterial therapy, and biosensor device applications are highlighted.
Collapse
Affiliation(s)
- Linlin Sun
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Chunli Zheng
- Pharmaceutical Research Institute, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Thomas J Webster
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Systematic comparison of the functional physico-chemical characteristics and biocidal activity of microbial derived biosurfactants on blood-derived and breast cancer cells. J Colloid Interface Sci 2016; 479:221-233. [PMID: 27390853 DOI: 10.1016/j.jcis.2016.06.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/12/2016] [Accepted: 06/21/2016] [Indexed: 01/03/2023]
Abstract
HYPOTHESIS The cytotoxicity of biosurfactants on cell membranes may be influenced by composition of their hydrophilic head and hydrophobic tails. It is hypothesised that they form mixed micelles which exert a detergent-like effect that disrupts the plasma membrane. The functional physico-chemical and biocidal characteristics of four biosurfactants were concurrently investigated to determine which of their structural characteristics may be tuned for greater efficacy. EXPERIMENTS Rhamnolipid-95, rhamnolipid-90, surfactin and sophorolipid were characterised using FTIR, LC-MS, HPLC, surface tension and critical micelle concentration. Their biocidal activity against HEK 293, MCF-7 and THP-1 cell lines were investigated by MTT assay, using doxorubicin as cytotoxic control. Growth curves were established for all cell lines using trypan blue (TB) and MTT assays, corresponding doubling time (DT) and growth rate were obtained and compared. FINDINGS HEK 293 cell-line had the highest growth rate amongst the three cell lines. For TB assay, growth of HEK 293>THP-1 and for MTT, HEK 293>MCF-7 while the DT was in the order of THP-1>MCF-7>HEK 293. Sophorolipid showed anti-proliferative activity comparable to doxorubicin on THP-1>MCF-7>HEK 293. THP-1 showed high sensitivity to sophorolipid with IC50 of 10.50, 25.58 and 6.78(μg/ml) after 24, 48 and 72h respectively. However, sophorolipid was cytotoxic from 24 to 72h on HEK 293 cell lines with IC50 of 21.53, 40.57 and 27.53μg/ml respectively. Although, doxorubicin showed higher anti-proliferative activity than all biosurfactants, it had poorer selectivity index for the same time durations compared to the biosurfactants. This indicates that biosurfactants were more effective for slowing the growth of the tested cancer cell lines and hence may be potential candidates for use in human cancer therapy. Physico-chemical characteristics of the biosurfactants suggest that their mechanism of action may be due to activity on the cell membrane.
Collapse
|
17
|
Tegler LT, Corin K, Hillger J, Wassie B, Yu Y, Zhang S. Cell-free expression, purification, and ligand-binding analysis of Drosophila melanogaster olfactory receptors DmOR67a, DmOR85b and DmORCO. Sci Rep 2015; 5:7867. [PMID: 25597985 PMCID: PMC4297953 DOI: 10.1038/srep07867] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/11/2014] [Indexed: 01/25/2023] Open
Abstract
Insects transmit numerous devastating diseases, including malaria, dengue fever, and sleeping sickness. Olfactory cues guide insects to their hosts, and are thus responsible for disease transmission. Understanding the molecular basis of insect olfaction could facilitate the development of interventions. The first step is to heterologously overexpress and purify insect olfactory receptors (ORs). This is challenging, as ORs are membrane proteins. Here, we show that insect ORs and their co-receptor can be expressed in an E. coli cell-free system. After immunoaffinity chromatography, the ORs are ~95% pure, and up to 1 mg/10 ml reaction is obtained. Circular dichroism together with microscale thermophoresis indicate that each receptor is properly folded, and can bind its respective ligand. This is the first time insect ORs have been expressed in an E. coli system. The methods described here could facilitate future structure-function studies, which may aid in developments to alleviate the suffering of millions caused by insect-transmitted diseases.
Collapse
Affiliation(s)
- Lotta Tollstoy Tegler
- 1] Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA [2] Division of Chemistry, Department of Physics, Chemistry and Biology, Linkoping University, SE-581 83 Linkoping, Sweden
| | - Karolina Corin
- 1] Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA [2] Biomedical Engineering Research Group, School of Electrical and Information Engineering University of the Witwatersrand, Johannesburg, South Africa [3] Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | - Julia Hillger
- Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA
| | - Brooke Wassie
- Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA
| | - Yanmei Yu
- 1] Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA [2] College of Electronics and Information Engineering, Sichuan University, Chengdu, China 610065
| | - Shuguang Zhang
- Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts, Cambridge, MA 02139-4307, USA
| |
Collapse
|
18
|
|
19
|
Han SG, Na JH, Lee WK, Park D, Oh J, Yoon SH, Lee CK, Sung MH, Shin YK, Yu YG. An amphipathic polypeptide derived from poly-γ-glutamic acid for the stabilization of membrane proteins. Protein Sci 2014; 23:1800-7. [PMID: 25283538 DOI: 10.1002/pro.2575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 09/14/2014] [Accepted: 09/30/2014] [Indexed: 11/11/2022]
Abstract
Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4-5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA ) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins.
Collapse
Affiliation(s)
- Seong-Gu Han
- Department of Chemistry, Kookmin University, Seongbuk-gu, Seoul, 136-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Han R, Li J, Shin HD, Chen RR, Liu L, Du G, Chen J. Fusion of self-assembling amphipathic oligopeptides with cyclodextrin glycosyltransferase improves 2-O-D-glucopyranosyl-L-ascorbic acid synthesis with soluble starch as the glycosyl donor. Appl Environ Microbiol 2014; 80:4717-24. [PMID: 24858090 PMCID: PMC4148807 DOI: 10.1128/aem.01249-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 11/20/2022] Open
Abstract
In this study, we fused six self-assembling amphipathic peptides (SAPs) with cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans to catalyze 2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G) production with cheap substrates, including maltose, maltodextrin, and soluble starch as glycosyl donors. The results showed that two fusion enzymes, SAP5-CGTase and SAP6-CGTase, increased AA-2G yields to 2.33- and 3.36-fold that of wild-type CGTase when soluble starch was used as a substrate. The cyclization activities of these enzymes decreased, while disproportionation activities increased. Enzymatic characterization of the two fusion enzymes was performed, and kinetics analysis of AA-2G synthesis confirmed the enhanced soluble starch specificity of SAP5-CGTase and SAP6-CGTase compared to that in the wild-type CGTase. As revealed by structure modeling of the fusion and wild-type CGTases, enhanced substrate-binding capacity may result from the increased number of hydrogen bonds present after fusion. This study demonstrates an effective protein fusion approach to improving the substrate specificity of CGTase for AA-2G synthesis. Fusion enzymes, especially SAP6-CGTase, are promising starting points for further development through protein engineering.
Collapse
Affiliation(s)
- Ruizhi Han
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Hyun-dong Shin
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rachel R. Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering of Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Synergetic Innovation of Center of Food Safety and Nutrition, Jiangnan University, Wuxi, China
- National Engineering of Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
21
|
Zheng X, Dong S, Zheng J, Li D, Li F, Luo Z. Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants. Biotechnol Adv 2014; 32:564-74. [PMID: 24566241 DOI: 10.1016/j.biotechadv.2014.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 06/13/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022]
Abstract
G-protein coupled receptors (GPCRs) are involved in regulating most of physiological actions and metabolism in the bodies, which have become most frequently addressed therapeutic targets for various disorders and diseases. Purified GPCR-based drug discoveries have become routine that approaches to structural study, novel biophysical and biochemical function analyses. However, several bottlenecks that GPCR-directed drugs need to conquer the problems including overexpression, solubilization, and purification as well as stabilization. The breakthroughs are to obtain efficient protein yield and stabilize their functional conformation which are both urgently requiring of effective protein synthesis system methods and optimal surfactants. Cell-free protein synthesis system is superior to the high yields and post-translation modifications, and early signs of self-assembly peptide detergents also emerged to superiority in purification of membrane proteins. We herein focus several predominant protein synthesis systems and surfactants involving the novel peptide detergents, and uncover the advantages of cell-free protein synthesis system with self-assembling peptide detergents in purification of functional GPCRs. This review is useful to further study in membrane proteins as well as the new drug exploration.
Collapse
Affiliation(s)
- Xuan Zheng
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Shuangshuang Dong
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jie Zheng
- College of laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Duanhua Li
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute, Zhengzhou, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Midtgaard SR, Pedersen MC, Kirkensgaard JJK, Sørensen KK, Mortensen K, Jensen KJ, Arleth L. Self-assembling peptides form nanodiscs that stabilize membrane proteins. SOFT MATTER 2014; 10:738-752. [PMID: 24651399 DOI: 10.1039/c3sm51727f] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self-assemble in combination with phospholipids to form discoidal shaped particles that can stabilize membrane proteins. In the present study, we have investigated an ApoA1 mimetic peptide with respect to its solution structure when in complex with phospholipids. This was achieved using a powerful combination of small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS) supported by coarse-grained molecular dynamics simulations. The detailed structure of the discs was determined in unprecedented detail and it was found that they adopt a discoidal structure very similar to the ApoA1 based nanodiscs. We furthermore show that, like the ApoA1 and derived nanodiscs, these peptide discs can accommodate and stabilize a membrane protein. Finally, we exploit their dynamic properties and show that the 18A discs may be used for transferring membrane proteins and associated phospholipids directly and gently into phospholipid nanodiscs.
Collapse
|
23
|
Mandal D, Tiwari RK, Shirazi AN, Oh D, Ye G, Banerjee A, Yadav A, Parang K. Self-Assembled Surfactant Cyclic Peptide Nanostructures as Stabilizing Agents. SOFT MATTER 2013; 9:10.1039/C3SM50764E. [PMID: 24187575 PMCID: PMC3811951 DOI: 10.1039/c3sm50764e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A number of cyclic peptides including [FR]4, [FK]4, [WR]4, [CR]4, [AK]4, and [WK]n (n = 3-5) containing L-amino acids were produced using solid-phase peptide synthesis. We hypothesized that an optimal balance of hydrophobicity and charge could generate self-assembled nanostructures in aqueous solution by intramolecular and/or intermolecular interactions. Among all the designed peptides, [WR]n (n = 3-5) generated self-assembled vesicle-like nanostructures at room temperature as shown by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and/or dynamic light scattering (DLS). This class of peptides represents the first report of surfactant-like cyclic peptides that self-assemble into nanostructures. A plausible mechanistic insight into the self-assembly of [WR]5 was obtained by molecular modeling studies. Modified [WR]5 analogues, such as [WMeR]5, [WR(Me)2]5, [WMeR(Me)2]5, and [WdR]5, exhibited different morphologies to [WR]5 as shown by TEM observations. [WR]5 exhibited a significant stabilizing effect for generated silver nanoparticles and glyceraldehyde-3-phosphate dehydrogenase activity. These studies established a new class of surfactant-like cyclic peptides that self-assembled into nanostructures and could have potential applications for the stabilization of silver nanoparticles and protein biomolecules.
Collapse
Affiliation(s)
- Dindyal Mandal
- 7 Greenhouse Road, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881, USA
| | - Rakesh K. Tiwari
- 7 Greenhouse Road, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881, USA
- One University Drive, School of Pharmacy, Chapman University, Orange, California 92866, USA
| | - Amir Nasrolahi Shirazi
- 7 Greenhouse Road, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881, USA
| | - Donghoon Oh
- 7 Greenhouse Road, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881, USA
| | - Guofeng Ye
- 7 Greenhouse Road, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881, USA
| | - Antara Banerjee
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
| | - Arpita Yadav
- Department of Chemistry, University Institute of Engineering and Technology, Chhatrapati Shahuji Maharaj University, Kanpur 208024, India
| | - Keykavous Parang
- 7 Greenhouse Road, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881, USA
- One University Drive, School of Pharmacy, Chapman University, Orange, California 92866, USA
| |
Collapse
|
24
|
Wang X, Huang G, Yu D, Ge B, Wang J, Xu F, Huang F, Xu H, Lu JR. Solubilization and stabilization of isolated photosystem I complex with lipopeptide detergents. PLoS One 2013; 8:e76256. [PMID: 24098786 PMCID: PMC3787008 DOI: 10.1371/journal.pone.0076256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/22/2013] [Indexed: 11/20/2022] Open
Abstract
It is difficult to maintain a target membrane protein in a soluble and functional form in aqueous solution without biological membranes. Use of surfactants can improve solubility, but it remains challenging to identify adequate surfactants that can improve solubility without damaging their native structures and biological functions. Here we report the use of a new class of lipopeptides to solubilize photosystem I (PS-I), a well known membrane protein complex. Changes in the molecular structure of these surfactants affected their amphiphilicity and the goal of this work was to exploit a delicate balance between detergency and biomimetic performance in PS-I solubilization via their binding capacity. Meanwhile, the effects of these surfactants on the thermal and structural stability and functionality of PS-I in aqueous solution were investigated by circular dichroism, fluorescence spectroscopy, SDS-PAGE analysis and O2 uptake measurements, respectively. Our studies showed that the solubility of PS-I depended on both the polarity and charge in the hydrophilic head of the lipopeptides and the length of its hydrophobic tail. The best performing lipopeptides in favour of PS-I solubility turned out to be C14DK and C16DK, which were comparable to the optimal amphiphilicity of the conventional chemical surfactants tested. Lipopeptides showed obvious advantages in enhancing PS-I thermostability over sugar surfactant DDM and some full peptide amphiphiles reported previously. Fluorescence spectroscopy along with SDS-PAGE analysis demonstrated that lipopeptides did not undermine the polypeptide composition and conformation of PS-I after solubilization; instead they showed better performance in improving the structural stability and integrity of this multi-subunit membrane protein than conventional detergents. Furthermore, O2 uptake measurements indicated that PS-I solubilized with lipopeptides maintained its functionality. The underlying mechanism for the favorable actions of lipopeptide in PS-I solubilization and stabilization is discussed.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Guihong Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Fengxi Xu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
- * E-mail: (FH); (HX)
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, P. R. China
- * E-mail: (FH); (HX)
| | - Jian R. Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
25
|
Chen Y, Tang C, Xing Z, Zhang J, Qiu F. Ethanol induced the formation of β-sheet and amyloid-like fibrils by surfactant-like peptide A6K. J Pept Sci 2013; 19:708-16. [PMID: 24105725 DOI: 10.1002/psc.2553] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/09/2013] [Accepted: 08/19/2013] [Indexed: 02/05/2023]
Abstract
Self-assembly of natural or designed peptides into fibrillar structures based on β-sheet conformation is a ubiquitous and important phenomenon. Recently, organic solvents have been reported to play inductive roles in the process of conformational change and fibrillization of some proteins and peptides. In this study, we report the change of secondary structure and self-assembling behavior of the surfactant-like peptide A6K at different ethanol concentrations in water. Circular dichroism indicated that ethanol could induce a gradual conformational change of A6K from unordered secondary structure to β-sheet depending upon the ethanol concentration. Dynamic light scattering and atomic force microscopy revealed that with an increase of ethanol concentration the nanostructure formed by A6K was transformed from nanosphere/string-of-beads to long and smooth fibrils. Furthermore, Congo red staining/binding and thioflavin-T binding experiments showed that with increased ethanol concentration, the fibrils formed by A6K exhibited stronger amyloid fibril features. These results reveal the ability of ethanol to promote β-sheet conformation and fibrillization of the surfactant-like peptide, a fact that may be useful for both designing self-assembling peptide nanomaterials and clarifying the molecular mechanism behind the formation of amyloid fibrils.
Collapse
Affiliation(s)
- Yongzhu Chen
- West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | | | | | | | | |
Collapse
|
26
|
Hosseinkhani H, Hong PD, Yu DS. Self-assembled proteins and peptides for regenerative medicine. Chem Rev 2013; 113:4837-61. [PMID: 23547530 DOI: 10.1021/cr300131h] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology (Taiwan Tech), Taipei 10607, Taiwan.
| | | | | |
Collapse
|
27
|
Lu X, Liu S, Zhang D, Zhou X, Wang M, Liu Y, Wu J, Du G, Chen J. Enhanced thermal stability and specific activity of Pseudomonas aeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides. Appl Microbiol Biotechnol 2013; 97:9419-27. [DOI: 10.1007/s00253-013-4751-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/20/2013] [Accepted: 01/31/2013] [Indexed: 11/24/2022]
|
28
|
Shadiac N, Nagarajan Y, Waters S, Hrmova M. Close allies in membrane protein research: Cell-free synthesis and nanotechnology. Mol Membr Biol 2013; 30:229-45. [DOI: 10.3109/09687688.2012.762125] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
29
|
Abstract
One important question in prebiotic chemistry is the search for simple structures that might have enclosed biological molecules in a cell-like space. Phospholipids, the components of biological membranes, are highly complex. Instead, we looked for molecules that might have been available on prebiotic Earth. Simple peptides with hydrophobic tails and hydrophilic heads that are made up of merely a combination of these robust, abiotically synthesized amino acids and could self-assemble into nanotubes or nanovesicles fulfilled our initial requirements. These molecules could provide a primitive enclosure for the earliest enzymes based on either RNA or peptides and other molecular structures with a variety of functions. We discovered and designed a class of these simple lipid-like peptides, which we describe in this Account. These peptides consist of natural amino acids (glycine, alanine, valine, isoleucine, leucine, aspartic acid, glutamic acid, lysine, and arginine) and exhibit lipid-like dynamic behaviors. These structures further undergo spontaneous assembly to form ordered arrangements including micelles, nanovesicles, and nanotubes with visible openings. Because of their simplicity and stability in water, such assemblies could provide examples of prebiotic molecular evolution that may predate the RNA world. These short and simple peptides have the potential to self-organize to form simple enclosures that stabilize other fragile molecules, to bring low concentration molecules into a local environment, and to enhance higher local concentration. As a result, these structures plausibly could not only accelerate the dehydration process for new chemical bond formation but also facilitate further self-organization and prebiotic evolution in a dynamic manner. We also expect that this class of lipid-like peptides will likely find a wide range of uses in the real world. Because of their favorable interactions with lipids, these lipid-like peptides have been used to solubilize and stabilize membrane proteins, both for scientific studies and for the fabrication of nanobiotechological devices. They can also increase the solubility of other water-insoluble molecules and increase long-term stability of some water-soluble proteins. Likewise, because of their lipophilicity, these structures can deliver molecular cargo, such as small molecules, siRNA, and DNA, in vivo for potential therapeutic applications.
Collapse
Affiliation(s)
- Shuguang Zhang
- Laboratory of Molecular Design, Center for Bits and Atoms, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
30
|
Short self-assembling peptides as building blocks for modern nanodevices. Trends Biotechnol 2012; 30:155-65. [DOI: 10.1016/j.tibtech.2011.11.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 01/01/2023]
|
31
|
Koutsopoulos S, Kaiser L, Eriksson HM, Zhang S. Designer peptidesurfactants stabilize diverse functional membrane proteins. Chem Soc Rev 2012; 41:1721-8. [DOI: 10.1039/c1cs15180k] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Luo Z, Zhang S. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem Soc Rev 2012; 41:4736-54. [DOI: 10.1039/c2cs15360b] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Production of UCP1 a membrane protein from the inner mitochondrial membrane using the cell free expression system in the presence of a fluorinated surfactant. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:798-805. [PMID: 22226924 DOI: 10.1016/j.bbamem.2011.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/07/2011] [Accepted: 12/19/2011] [Indexed: 12/23/2022]
Abstract
Structural studies of membrane protein are still challenging due to several severe bottlenecks, the first being the overproduction of well-folded proteins. Several expression systems are often explored in parallel to fulfil this task, or alternately prokaryotic analogues are considered. Although, mitochondrial carriers play key roles in several metabolic pathways, only the structure of the ADP/ATP carrier purified from bovine heart mitochondria was determined so far. More generally, characterisations at the molecular level are restricted to ADP/ATP carrier or the uncoupling protein UCP1, another member of the mitochondrial carrier family, which is abundant in brown adipose tissues. Indeed, mitochondrial carriers have no prokaryotic homologues and very few efficient expression systems were described so far for these proteins. We succeeded in producing UCP1 using a cell free expression system based on E. coli extracts, in quantities that are compatible with structural approaches. The protein was synthesised in the presence of a fluorinated surfactant, which maintains the protein in a soluble form. Further biochemical and biophysical analysis such as size exclusion chromatography, circular dichroism and thermal stability, of the purified protein showed that the protein is non-aggregated, monodisperse and well-folded.
Collapse
|
34
|
Corin K, Baaske P, Ravel DB, Song J, Brown E, Wang X, Wienken CJ, Jerabek-Willemsen M, Duhr S, Luo Y, Braun D, Zhang S. Designer lipid-like peptides: a class of detergents for studying functional olfactory receptors using commercial cell-free systems. PLoS One 2011; 6:e25067. [PMID: 22132066 PMCID: PMC3223156 DOI: 10.1371/journal.pone.0025067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/26/2011] [Indexed: 01/18/2023] Open
Abstract
A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.
Collapse
Affiliation(s)
- Karolina Corin
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | | | - Deepali B. Ravel
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Junyao Song
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Emily Brown
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Xiaoqiang Wang
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong, China
| | - Christoph J. Wienken
- Systems Biophysics, Functional Nanosystems, Ludwig-Maximilians University Munich, München, Germany
| | - Moran Jerabek-Willemsen
- Systems Biophysics, Functional Nanosystems, Ludwig-Maximilians University Munich, München, Germany
| | - Stefan Duhr
- NanoTemper Technologies GmbH, München, Germany
| | - Yuan Luo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, United States of America
| | - Dieter Braun
- Systems Biophysics, Functional Nanosystems, Ludwig-Maximilians University Munich, München, Germany
| | - Shuguang Zhang
- Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
35
|
Zhuang F, Oglęcka K, Hauser CAE. Self-Assembling Peptide Surfactants A6K and A6D Adopt a-Helical Structures Useful for Membrane Protein Stabilization. MEMBRANES 2011; 1:314-26. [PMID: 24957871 PMCID: PMC4021873 DOI: 10.3390/membranes1040314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/30/2011] [Accepted: 10/10/2011] [Indexed: 11/30/2022]
Abstract
Elucidation of membrane protein structures have been greatly hampered by difficulties in producing adequately large quantities of the functional protein and stabilizing them. A6D and A6K are promising solutions to the problem and have recently been used for the rapid production of membrane-bound G protein-coupled receptors (GPCRs). We propose that despite their short lengths, these peptides can adopt α-helical structures through interactions with micelles formed by the peptides themselves. These α-helices are then able to stabilize α-helical motifs which many membrane proteins contain. We also show that A6D and A6K can form β-sheets and appear as weak hydrogels at sufficiently high concentrations. Furthermore, A6D and A6K together in sodium dodecyl sulfate (SDS) can form expected β-sheet structures via a surprising α-helical intermediate.
Collapse
Affiliation(s)
- Furen Zhuang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore.
| | - Kamila Oglęcka
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore.
| | - Charlotte A E Hauser
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos #04-01, Singapore 138669, Singapore.
| |
Collapse
|
36
|
Wang X, Corin K, Baaske P, Wienken CJ, Jerabek-Willemsen M, Duhr S, Braun D, Zhang S. Peptide surfactants for cell-free production of functional G protein-coupled receptors. Proc Natl Acad Sci U S A 2011; 108:9049-54. [PMID: 21562213 PMCID: PMC3107261 DOI: 10.1073/pnas.1018185108] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two major bottlenecks in elucidating the structure and function of membrane proteins are the difficulty of producing large quantities of functional receptors, and stabilizing them for a sufficient period of time. Selecting the right surfactant is thus crucial. Here we report using peptide surfactants in commercial Escherichia coli cell-free systems to rapidly produce milligram quantities of soluble G protein-coupled receptors (GPCRs). These include the human formyl peptide receptor, human trace amine-associated receptor, and two olfactory receptors. The GPCRs expressed in the presence of the peptide surfactants were soluble and had α-helical secondary structures, suggesting that they were properly folded. Microscale thermophoresis measurements showed that one olfactory receptor expressed using peptide surfactants bound its known ligand heptanal (molecular weight 114.18). These short and simple peptide surfactants may be able to facilitate the rapid production of GPCRs, or even other membrane proteins, for structure and function studies.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Center for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307
- Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, Shandong 266555, People’s Republic of China
| | - Karolina Corin
- Center for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307
| | - Philipp Baaske
- NanoTemper Technologies GmbH, Amalienstrasse 54, 80799 Munich, Germany; and
| | - Christoph J. Wienken
- Systems Biophysics, Functional Nanosystems, Department of Physics, Ludwig-Maximilians University Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Moran Jerabek-Willemsen
- Systems Biophysics, Functional Nanosystems, Department of Physics, Ludwig-Maximilians University Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Stefan Duhr
- NanoTemper Technologies GmbH, Amalienstrasse 54, 80799 Munich, Germany; and
| | - Dieter Braun
- Systems Biophysics, Functional Nanosystems, Department of Physics, Ludwig-Maximilians University Munich, Amalienstrasse 54, 80799 Munich, Germany
| | - Shuguang Zhang
- Center for Biomedical Engineering NE47-379, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307
| |
Collapse
|
37
|
Luo Z, Wang S, Zhang S. Fabrication of self-assembling d-form peptide nanofiber scaffold d-EAK16 for rapid hemostasis. Biomaterials 2011; 32:2013-20. [DOI: 10.1016/j.biomaterials.2010.11.049] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
38
|
Abstract
This article defines protein stability, emphasizes its importance and surveys some notable recent publications (2004-2008) in the field of protein stability/stabilization. Knowledge of the factors stabilizing proteins has emerged from denaturation studies and from study of thermophilic (and other extremophilic) proteins. One can enhance stability by protein engineering strategies, the judicious use of solutes and additives, immobilization, and chemical modification in solution. General protocols are set out on how to measure the kinetic thermal stability of a given protein and how to undertake chemical modification of a protein in solution.
Collapse
Affiliation(s)
- Ciarán O'Fágáin
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| |
Collapse
|
39
|
Marcia M, Langer JD, Parcej D, Vogel V, Peng G, Michel H. Characterizing a monotopic membrane enzyme. Biochemical, enzymatic and crystallization studies on Aquifex aeolicus sulfide:quinone oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2114-23. [DOI: 10.1016/j.bbamem.2010.07.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/28/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
40
|
Hauser CA, Zhang S. Designer Self-Assembling Peptide Materials for Diverse Applications. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/masy.200900171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Popot JL. Amphipols, Nanodiscs, and Fluorinated Surfactants: Three Nonconventional Approaches to Studying Membrane Proteins in Aqueous Solutions. Annu Rev Biochem 2010; 79:737-75. [DOI: 10.1146/annurev.biochem.052208.114057] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jean-Luc Popot
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, Unité Mixte de Recherche 7099, Centre National de la Recherche Scientifique and Université Paris-7 Denis Diderot, Institut de Biologie Physico-Chimique, F-75005 Paris, France; e-mail:
| |
Collapse
|
42
|
Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, Zhang S, Lu JR. Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev 2010; 39:3480-98. [PMID: 20498896 DOI: 10.1039/b915923c] [Citation(s) in RCA: 490] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Short synthetic peptide amphiphiles have recently been explored as effective nanobiomaterials in applications ranging from controlled gene and drug release, skin care, nanofabrication, biomineralization, membrane protein stabilization to 3D cell culture and tissue engineering. This range of applications is heavily linked to their unique nanostructures, remarkable simplicity and biocompatibility. Some peptide amphiphiles also possess antimicrobial activities whilst remaining benign to mammalian cells. These attractive features are inherently related to their selective affinity to different membrane interfaces, high capacity for interfacial adsorption, nanostructuring and spontaneous formation of nano-assemblies. Apart from sizes, the primary sequences of short peptides are very diverse as they can be either biomimetic or de novo designed. Thus, their self-assembling mechanistic processes and the nanostructures also vary enormously. This critical review highlights recent advances in studying peptide amphiphiles, focusing on the formation of different nanostructures and their applications in diverse fields. Many interesting features learned from peptide self-organisation and hierarchical templating will serve as useful guidance for functional materials design and nanobiotechnology (123 references).
Collapse
Affiliation(s)
- Xiubo Zhao
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester, UK M13 9PL
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Ge B, Yang F, Yu D, Liu S, Xu H. Designer amphiphilic short peptides enhance thermal stability of isolated photosystem-I. PLoS One 2010; 5:e10233. [PMID: 20422003 PMCID: PMC2858086 DOI: 10.1371/journal.pone.0010233] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 03/08/2010] [Indexed: 11/18/2022] Open
Abstract
Stability of membrane protein is crucial during protein purification and crystallization as well as in the fabrication of protein-based devices. Several recent studies have examined how various surfactants can stabilize membrane proteins out of their native membrane environment. However, there is still no single surfactant that can be universally employed for all membrane proteins. Because of the lack of knowledge on the interaction between surfactants and membrane proteins, the choice of a surfactant for a specific membrane protein remains purely empirical. Here we report that a group of short amphiphilic peptides improve the thermal stability of the multi-domain protein complex photosystem-I (PS-I) in aqueous solution and that the peptide surfactants have obvious advantages over other commonly used alkyl chain based surfactants. Of all the short peptides studied, Ac-I5K2-CONH2 (I5K2) showed the best stabilizing effect by enhancing the melting temperature of PS-I from 48.0°C to 53.0°C at concentration of 0.65 mM and extending the half life of isolated PS-I significantly. AFM experiments showed that PS-I/I5K2/Triton X-100 formed large and stable vesicles and thus provide interfacial environment mimicking that of native membranes, which may partly explain why I5K2 enhanced the thermal stability of PS-I. Hydrophobic and hydrophilic group length of IxKy had an important influence on the stabilization of PS-I. Our results showed that longer hydrophobic group was more effective in stabilizing PS-I. These simple short peptides therefore exhibit significant potential for applications in membrane protein studies.
Collapse
Affiliation(s)
- Baosheng Ge
- Center for Bioengineering and Biotechnology, China University of Petroleum, Qingdao, People's Republic of China
| | - Feng Yang
- Center for Bioengineering and Biotechnology, China University of Petroleum, Qingdao, People's Republic of China
| | - Daoyong Yu
- Center for Bioengineering and Biotechnology, China University of Petroleum, Qingdao, People's Republic of China
- * E-mail: (DY); (HX)
| | - Shuang Liu
- Center for Bioengineering and Biotechnology, China University of Petroleum, Qingdao, People's Republic of China
| | - Hai Xu
- Center for Bioengineering and Biotechnology, China University of Petroleum, Qingdao, People's Republic of China
- * E-mail: (DY); (HX)
| |
Collapse
|
44
|
Lu S, Chen P. Constructing biomaterials using self-assembling peptide building blocks. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11706-010-0021-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Serrano-Vega MJ, Tate CG. Transferability of thermostabilizing mutations between beta-adrenergic receptors. Mol Membr Biol 2010; 26:385-96. [PMID: 19883298 DOI: 10.3109/09687680903208239] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In previous work we described six point mutations that thermostabilised the turkey beta(1)-adrenergic receptor (tbeta(1)AR). The thermostable mutant, tbeta(1)AR-m23, had an apparent T(m) 21 degrees C higher than the native protein when solubilized in dodecylmaltoside (DDM) and, in addition, was significantly more stable in short chain detergents, which allowed its crystallization and structure determination. Identification of thermostabilizing mutations in tbeta(1)AR was performed by systematic mutagenesis followed by expressing and assaying each of the 318 mutants for their thermostability. This is time-consuming, so to facilitate studies on related receptors, we have studied the transferability of these mutations to the human adrenergic receptors, hbeta(1)AR and hbeta(2)AR, which have, respectively, 76% and 59% sequence identity to tbeta(2)AR, excluding the N- and C-termini. Thermostability assays revealed that hbeta(1)AR was much more unstable than tbeta(2)AR, whereas hbeta(2)AR was more stable than tbeta(1)AR. Addition of the 6 thermostabilizing mutations in tbeta(2)AR-m23 into both hbeta(2)AR and hbeta(2)AR increased their apparent T(m)s by 17 degrees C and 11 degrees C, respectively. In addition, the mutations affected the global conformation of the human receptors so that they were predominantly in the antagonist bound form, as was originally observed for tbeta(2)AR-m23. Thus, once thermostabilizing mutations have been identified in one G protein-coupled receptor, stabilization of close members within the subfamily is rapidly obtainable.
Collapse
|
46
|
Practical considerations of membrane protein instability during purification and crystallisation. Methods Mol Biol 2010; 601:187-203. [PMID: 20099147 DOI: 10.1007/978-1-60761-344-2_12] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Crystallisation of integral membranes requires milligrams of purified protein in a homogeneous, monodisperse state, and crucially, the membrane protein must also be fully functional and stable. The stability of membrane proteins in solution is dependent on the type of detergents used, but unfortunately the use of the most stabilising detergent can often decrease the probability of obtaining crystals that diffract to high resolution, especially of small membrane proteins. A number of strategies have been developed to facilitate the purification of membrane proteins in a functional form, which have led to new possibilities for structure determination.
Collapse
|
47
|
Childers WS, Ni R, Mehta AK, Lynn DG. Peptide membranes in chemical evolution. Curr Opin Chem Biol 2009; 13:652-9. [PMID: 19879180 PMCID: PMC2801140 DOI: 10.1016/j.cbpa.2009.09.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/23/2009] [Accepted: 09/28/2009] [Indexed: 11/21/2022]
Abstract
Simple surfactants achieve remarkable long-range order in aqueous environments. This organizing potential is seen most dramatically in biological membranes where phospholipid assemblies both define cell boundaries and provide a ubiquitous structural scaffold for controlling cellular chemistry. Here we consider simple peptides that also spontaneously assemble into exceptionally ordered scaffolds, and review early data suggesting that these structures maintain the functional diversity of proteins. We argue that such scaffolds can achieve the required molecular order and catalytic agility for the emergence of chemical evolution.
Collapse
Affiliation(s)
- W Seth Childers
- Center for Fundamental and Applied Molecular Evolution and Center for Chemical Evolution, Department of Chemistry and Biology, Emory University, Atlanta, GA, United States
| | | | | | | |
Collapse
|
48
|
|
49
|
Deniaud A, Goulielmakis A, Covès J, Pebay-Peyroula E. Differences between CusA and AcrB crystallisation highlighted by protein flexibility. PLoS One 2009; 4:e6214. [PMID: 19593437 PMCID: PMC2704858 DOI: 10.1371/journal.pone.0006214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 06/08/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Until very recently, AcrB was the only Resistance Nodulation and cell Division transporter for which the structure has been elucidated. Towards a general understanding of this protein family, CusA and AcrB were compared. METHODOLOGY/PRINCIPAL FINDINGS In dodecylmaltoside, AcrB crystallised in many different conditions, while CusA does not. This could be due to the difference in dynamic between these proteins as judged from limited proteolysis assays. Addition of various compounds, in particular heavy metal cations, stabilises CusA. CONCLUSION/SIGNIFICANCE This approach could constitute a first step towards CusA crystallisation.
Collapse
Affiliation(s)
- Aurélien Deniaud
- Institut de Biologie Structurale Jean Pierre Ebel, UMR5075 CEA-CNRS-Université Joseph Fourier, Grenoble, France
| | - Aurélie Goulielmakis
- Institut de Biologie Structurale Jean Pierre Ebel, UMR5075 CEA-CNRS-Université Joseph Fourier, Grenoble, France
| | - Jacques Covès
- Institut de Biologie Structurale Jean Pierre Ebel, UMR5075 CEA-CNRS-Université Joseph Fourier, Grenoble, France
| | - Eva Pebay-Peyroula
- Institut de Biologie Structurale Jean Pierre Ebel, UMR5075 CEA-CNRS-Université Joseph Fourier, Grenoble, France
- * E-mail:
| |
Collapse
|
50
|
Khoe U, Yang Y, Zhang S. Self-assembly of nanodonut structure from a cone-shaped designer lipid-like peptide surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:4111-4114. [PMID: 19007256 DOI: 10.1021/la8025232] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report here the donut-shaped nanostructure formation from the self-assembly of a designer lipid-like amphiphilic cone-shaped peptide. The critical aggregation concentration was measured using dynamic light scattering in water and phosphate-buffered saline. The dynamic self-assembly of the peptide was also studied using atomic force microscopy. We have studied numerous peptides over 17 years, and this is the first time that we have ever observed the nanodonut structure from cone-shaped peptides. We propose a plausible self-assembling pathway of the nanodonut structure that was self-assembled through the fusion or elongation of spherical micelles. Furthermore, the bending of the nanostructure gives rise to the nanodonut structures as a result of the tension originating from the interaction of the cone-shaped peptide side chains. Our observations may be useful for further fine tuning the geometry and shape of a new class of designer peptides and their self-assembled supramolecular materials for diverse uses.
Collapse
Affiliation(s)
- Ulung Khoe
- Center for Biomedical Engineering NE47-379, Center for Bits & Atoms, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|